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This is an exposition of the role played by the calculus of variations in the
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“In physics we have dealt hitherto only with periodic crystals. To a
humble physicist’s mind, these are very interesting and complicated
objects; they constitute one of the most fascinating and complex
material structures by which inanimate nature puzzles his wits. Yet,
compared with the aperiodic crystal, they are rather plain and dull.
The difference in structure is of the same kind as that between an
ordinary wallpaper in which the same pattern is repeated again and
again in regular periodicity and a masterpiece of embroidery, say a
Raphael tapestry, which shows no dull repetition, but an elaborate,
coherent, meaningful design traced by the great master.”

Erwin Schrödinger, What is Life? [24]
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1. The science and technology of liquid crystals

1.1. How do LCDs work?

A liquid crystal display consists of a light source (be it the fluorescent lamps
of the traditional displays or the modern LED backlight) and an array of red,
green and blue pixels capable of blocking as well as of transmiting the light
emitted by that source. The method used to either block or let the light
go through a pixel, depending on the colour that the screen should have in
that particular point to display a given image, consists in depositing a liquid
crystal between two electrodes, located behind the colour filter of the pixel,
and then ask the liquid crystal to either block or transmit the light. But how
can such a request be made to a liquid crystal? By having placed it between
two electrodes it is possible to generate a voltage gradient and, with it, an
electric field that changes the orientation of the liquid crystal. In a single pixel,
whose characteristic length is of approximately 100µm (a tenth of a milimiter,
just as a hair or a needle), there are about a thousand million liquid crystal
molecules. One of their many special properties is their capacity to interact
with the applied electric field, making it possible to align the thousand million
molecules along a single direction, preventing light from passing. In order to
understand why the orientation of the LC molecules determines whether light
passes through the pixel, it is necessary to understand first the effect of light
polarization.

1.2. Light polarization

Light is composed of particles called photons which, apart from travelling at
the speed of the light in a given direction, also vibrate in a plane perpendicular
to it. In general the direction in which photons vibrate within that plane is
random (i.e., light is composed of photons that vibrate in different directions
within that plane and, given any fixed direction, there are as many photons
vibrating close to that direction as there are vibrating close to any other).
However, in some occasions part of the light is absorbed by various media and
only those photons vibrating in a specific direction remain; the light is then
said to be polarized in that direction. An instance of this occurs when light
is reflected in a window or in water; in this case most of the photons of the
reflected light vibrate parallel to the surface. The same happens, although
possibly to a less extent, when light is reflected from any non-metallic surface.
This is the principle behind Polarid filters, invented by Edwin Land in 1929,
made out of long-chain hydrocarbons that absorb any light with an electric
field parallel to them. These filters are used, for example, in sunglasses, by
aligning the hydrocabons horizontally in order to absorb the light reflected by
roads and other horizontal surfaces.

Going back to liquid crystals, apart from being able to align with the electric
field generated by the electrodes, they also possess the ability to interact with
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polarized light and modify its polarization direction. If in the two electrodes
the LC molecules are parallel to the surface, but pointing to different directions
on the two electrodes, and if in the intermediate region the molecules twist
gradually until they attain their final orientation, the liquid crystal receives
light polarized in the direction of the LC molecules on one electrode and ends
up giving light polarized in the direction of the LC on the other electrode.
Thanks to this the pixel is able to transmit light even if crossed polarized filters
are placed behind the electrodes, as long as, in each electrode, the liquid crystal
aligns with the polarization axis of the polarizer. In contrast, when the electric
field is turned on, the alignment of the LC molecules no longer coincides with
the directions permitted by the polarizers, the light is completely absorbed by
the end polarized and the pixel becomes dark.

1.3. The fourth state of matter

Even though plasma is commonly regarded as the fourth state of matter, it
is not very common. “On earth, plasmas can be found in the glass envelopes
of fluorescent lights and in the picture elements of some large-area television
sets. Only in the heavens will plasma be commonly encountered, in the form of
northern (or southern) lights, or in stars, galactic trails, and other astrophysical
phenomena, but on our planet, there are no free-standing plasmas. Liquid
crystals, on the other hand, are indeed a terrestrial fourth state of matter.”
[11, Preface].

The story begins in 1888 with the Austrian botanist and chemist Friedrich
Reinitzer who, in his attempts to discover the molecular formula of cholesterol
(which was only discovered in the 1930’s thanks to the work of Adolf Windaus
and Heinrich Wieland), was struck to find that the Cholesteryl benzoate he
extracted from carrots had not one but two melting points. At the time the
general idea was that all matter normally had one melting point, where it
turns from solid to liquid, and a boiling point where it turns from liquid to
gas. However, at 145.5◦C this cholesterol substance melted from its solid state
into a turbid liquid which existed until 178.5◦C where the cloudiness suddenly
disappeared, giving way to a clear transparent liquid. Being unable to explain
this discovery, the name of Otto Lehmann, a german physicist expert in crystal
optics, came to his mind. Lehmann had invented a very special microscope. On
the one hand, it was a polarizing microscope: it was fitted with two polarizers
in such a way that liquid and gases appeared black, whereas minerals and
crystals could actually be seen; moreover, the image changed if the orientation
of the crystal changed. Being, hence, extremely valuable for identifying crystals
and resolving the details of the crystal structure, these microscopes were very
popular in the 19th century due to the prominent role of geology and mineralogy
in the mining industry. On the other hand, Lehmann had added a hot stage to
the microscope and in that way he could study what happened to the samples
upon heating. Lehmann was fascinated with Reinitzer samples because he saw
images, containing straight worm-like objects, that looked like no other sample
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he had studied before and, most of all, because those objects were flowing,
coalescing, separating, and exhibiting all sorts of phenomena (as opposed to
the images produced from classical crystals which were perfectly still). He
went even further in his excitement to the point of truly believing that he had
discovered the secret of life [10].

That crystals can be studied under polarized light is due to the fact their
atoms are arranged in a definite pattern, possessing special discrete transla-
tional and rotational symmetries. At the other end, that liquids and gases
look black under polarizing microscopes is a consequence of the mobility their
molecules gain by having higher temperature than solids, mobility that in-
creases its disorder ending up in molecules having a random orientation even
in very small regions of the material, each molecule also eventually taking all
possible orientations as it evolves in time. Since Reitnitzer’s turbid fliuds did
not looked black under his microscope, Lehmann knew that their constitutent
molecules could not be completely disordered as in a traditional liquid; they
had to exhibit some form of order, as in crystalline solids. Initially he thought
that the substances were composed of crystals that were flowing in a liquid, as
suggested by his famous 1889 article entitled ‘On Flowing Crystals’. Conclu-
sive experiments and early theories between 1910 and 1930, in particular the
work of Georges Friedel, finally confirmed that the substances were not just a
mixture of solid and liquid components but an entirely new phase of matter.

1.4. Applications to medicine, biology, astrophysics, and
topology

Far for being rare materials, liquid crystals are part of our daily life. Not only
they are present in our flat-screen TV’s, laptops, and mobiles: cholesterol, soap,
cosmetics, the myelin that electrically insulates the axon of some nerve cells,
viruses such as the tobacco mosaic virus, and human blood also have liquid
crystal phases (though not at room temperature as the synthetic LC used in
displays). Our DNA has also been found recently to have a liquid crystalline
structure [3].

A captivating example of an application of LC to medicine is the recent
patent of Popov et al. [22] of a non-invasive sensor capable of rapidly detecting
if a patient is infected with, e.g., ebola or other given viruses. In this sensor
a common liquid cyrstal is coated with an antibody against ebola, inducing a
parallel alignment of the LC molecules on the top surface. If a drop of blood
infected with ebola enters in contact with the LC sample, the antibody coating
reacts with the virus in the blood at the coat is removed from the LC, leaving
it exposed to air. This induces a perpendicular aligment on the top surface,
completely changing the orientation of the molecules throughout the sample
and producing well-defined optical signatures. In contrast, if the virus is not
present in the drop of blood, the antibody remains and no change is perceived
in the optical textures produced by the LC.

Regarding biology, it is of fundamental importance to understand what
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holds together the delicate and mobile structure of a cell membrane and how
does it form [25], as well as the formation and the governing mechanism for the
ion channels in the membranes which are responsible for many of the biological
functions. Liquid crystals are commonly regarded as a first necessary step
towards a proper understanding of biological membranes, not only because
the membranes are liquid crystalline themselves, also because both in liquid
crystals and in membranes the fundamental question is how do their molecules
attain diverse degrees of order (and compared to the order exhibited by the
passive LC, the problem of studying membranes and living organisms is much
more complex).

Special mention ought to be made of the fertile interaction between the
fields of liquid crystals and topology. One of the most attractive features of
liquid crystals is the presence of very small regions inside which the average
orientation of the molecules changes dramatically, as will be discussed in the
following sections. These topological defects, which appear in various parts of
an LC sample and are not independent but interact with each other, are not
exclusive to LC systems but can be found also in superconductors, in superflu-
ids, in dislocations and disclinations in metals, just to mention a few examples.
However, due to their unique optical properties, in liquid crystal systems it is
possible to easily visualize and study topological defects, so that, for instance,
experiments with LC may lead to predictions about the cosmic strings formed
on the boundaries of regions that spread at the speed of light upon the cooling
and expansion of the early universe [8]. Also, open problems from knot theory
can now be studied through liquid crystalline optical realizations, such as in
the work of I. Smalyukh and his co-workers, e.g. [1, 2, 28, 18, 26, 27].

2. Mathematical modelling

Part of the impressive development of the LCD industry has been made pos-
sible and/or accompanied by the analytical and numerical understanding of
the behaviour of liquid crystals in response to various external electromagnetic
stimuli or, for example, changes in the design of the specimens where they are
deposited. As already explained, the interaction with light and other electro-
magnetic fields characteristic of liquid crystals is due to the ability of their
molecules to sustain highly ordered states. There are various ways to measure
the amount of order; this exposition will focus on the 1991 Nobel Prize winner
approach by Landau & de Gennes. Consider a material point x in the region Ω
occupied by the liquid crystal. Let δ > 0 be small compared to the macroscopic
length-scale, but large enough to contain enough molecules for a statistical de-
scription to be valid. Let N(x) be the number of molecules entirely contained
in B(x, δ) and pi ∈ S2 be the orientation of the i-th molecule at a given fixed
time (here S2 denotes the unit sphere in R3). By the statistical head-to-tail
symmetry of the molecules, it is physically more significant to represent the
orientation by the pair ±pi of antipodal unit vectors, or with the tensor prod-
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uct pi⊗pi, which corresponds to the projection along that direction (regarded
as a linear transformation from R3 → R3). Since it is prohibitive to follow
every single molecule, this collection of orientations will be described macro-
scopically by a (Borel) probability measure µx on S2 that is to be regarded as

an approximation of
1

N

N∑
i=1

1

2
(δpi

+ δ−pi
). This probability measure µx is still

very complex to study, so only a finite-dimensional approximation of it, con-
sisting of a finite number of its moments, will be chosen as the order parameter.
Now, the measure µx will be required to respect the head-to-tail symmetry, so
that µx(E) = µx(−E) for every Borel E ⊂ S2; due to this, the first moment∫
S2 p dµx(p) vanishes and, hence, does not contribute in the description of the

LC. For the isotropic distribution 1
4π dA(p) (in which all orientations occur

with the same probability; here A(E) is the area of E for every Borel E ⊂ S2)
the second moment is 1

4π

∫
S2 p⊗p dA(p) = 1

31 (here 1 denotes the 3×3 identity
matrix). The de Gennes Q-tensor

Q(x) :=

∫
S2

(
p⊗ p− 1

3
1

)
dµx(p) (1)

is then a measure of the deviation of the second moment of µx from that of the
isotropic state.

It is easy to see that the projection matrices p⊗p are symmetric. Since Q
is, then, the limit of (Lebesgue) sums of symmetric matrices, it is symmetric
itself. Therefore, by the spectral theorem, it admits a decomposition of the
form

Q(x) = λ1(x)n1(x)⊗ n1(x) + λ2(x)n2(x)⊗ n2(x) + λ3(x)n3(x)⊗ n3(x),

where {n1,n2,n3} is an orthonormal basis of eigenvectors of Q with corre-
sponding eigenvalues λ1, λ2, λ3. Furthermore,

tr Q =

∫
S2

(tr p⊗ p− 1) dµx(p) = 0,

hence λ1+λ2+λ3 = 0. Assuming, without loss of generality, that λ1 ≥ λ2 ≥ λ3,
the above decomposition is unique if and only if the three eigenvalues are
different. If this is the case, the molecules around x are said to be in the biaxial
state. There is a preferred orientation n1 but knowing this is insufficient to
describe the state of order of the molecules; it must be taken into account that
among the orientations of their projections onto the plane n⊥1 orthogonal to n1

there is also a preferred direction n2. If, at the other end, the three eigenvalues
are equal, then Q(x) = 0 and the second moment of µx is unable to detect
any alignment of the molecules around x. This is to say, the second moment
is the same of that of a regular liquid; around that point the liquid crystal is
said to have melted, or to be in its isotropic state. The last possibility is that
two of the eigenvalues are equal and the other differs. If the equal eigenvalues
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are the smallest two then Q = 3λ1

2

(
n1 ⊗ n1 − 1

31
)

and the molecules tend to
align along the direction of ±n1, but their projections onto n⊥1 point equally
likely in every direction. If, on the other hand, it is the two largest eigenvalues
that are equal, then the representation Q = s

(
n⊗ n− 1

31
)

continues to be
valid and the projection of the orientation of the individual molecules onto n⊥

continues to point equally likely in every direction, but s is now negative and
rather than having a preferred direction what the molecules now prefer is to
align along a plane (the plane n⊥). They are, respectively, the positive uniaxial
and the negative uniaxial states.

Equilibrium states of a liquid crystal sample are sought via the principle
of minimum energy, which postulates that in any closed system the thermody-
namic free energy tends to decrease and attain a minimum value. Phenomeno-
logical models usually consider the following contributions to the total free
energy:

• A term corresponding to any distortion to the structure of the material
(spatial variations of the molecular alignment, i.e. of the Q-tensor). It
makes it possible to capture the elastic response of the LC.

• The so-called thermotropic potential which determines the state (the
amount of order) preferred by the liquid crystal at different tempera-
tures.

• The energy coming from externally applied electric and/or magnetic fields.

• Surface energy terms representing the interaction energy between the
bounding surface and the LC molecules on that surface.

The simplest (and simplistic) form of the elastic energy is∫
Ω

L

2
|∇Q(x)|2 dx, (2)

where L > 0 is an elastic constant. Regarding the thermotropic potential, the
special form proposed by de Gennes [9] in order to study the transition from
the isotropic phase to the nematic phase (in which at every material point
molecules start to align along a preferred direction) is

ψB(Q, θ) = a(θ) tr Q2 − 2b

3
tr Q3 + c tr Q4, (3)

where a(θ) = α(θ−θ∗) for some constants α > 0 and θ∗ > 0, and where b, c > 0
are constants independent of the temperature θ. Above the critical temperature
θ∗ the isotropic state Q∗ is a global minimizer of this quartic form of the ther-
motropic potential. In contrast, when θ < θ∗ the minimum of the polynomial is
attained only at uniaxial states Q = s

(
n⊗ n− 1

31
)

and only when scalar order

parameter s takes the special value s+ := b+
√
b2−24ac
4c . The surface energies con-

sidered are typically of the form −1

2

∫
∂Ω

K

(
s−1Q(x)n̄(x) · n̄(x) +

1

3

)
dS(x),
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a consequence being that the free energy is reduced when the molecules at the
surface align parallel to the prescribed direction n̄(x). The presence of the sur-
face energy turns into a Dirichlet condition (referred to as the strong anchoring
condition) when the anchoring constant K → +∞. Refer to [19] for numerical
simulations of the minimization of this phenomenological free energy in the
case of a real life LC device.

3. Rigorous analysis

3.1. Orientability and comparison between models

The Landau-de Gennes theory is able to capture non-orientable topological
defects and half-integer indices (as in the case study in [19]), as well as truly
biaxial states. However, most studies of liquid crystals are made either with
the simpler model of Ericksen, which describes the amount of order by means
of a preferred direction n(x) and a scalar order parameter s(x) only, or with
the Oseen-Frank model in which s(x) is furthermore assumed to be constant.
Regarding orientability, the main result is due to Ball & Zarnescu [5, 6]:

If Ω ⊂ R3 is a bounded simply-connected domain of class C0 and
Q ∈W 1,2(Ω,R3×3) is such that for almost every x ∈ Ω there exists
n(x) ∈ S2 such that

Q(x) = s

(
n(x)⊗ n(x)− 1

3
1

)
, (4)

for some constant s > 0, then there exists a unit vector field n ∈
W 1,1(Ω,S2) for which (4) holds.

Thus, for simply-connected domains, the Oseen-Frank model can be re-
garded as the minimization of the Landau-de Gennes energy functional in the
restricted class of Q-tensor-valued maps that are uniaxial at almost every x ∈ Ω
and have a prescribed constant scalar order parameter.

For the one-constant approximation (2) it was proved in [17] that as L→ 0
minimizers of the full Landau-de Gennes functional do converge (in the strong
topology of the Hilbert space H1(Ω;R3×3)) to minimizers of the simplified
Oseen-Frank model. Nevertheless, for other asymptotic regimes such as the
low temperature limit, it has been proved [12, 16, 14, 15] that the approxima-
tion ceases to be valid near the defects’ cores since there points with maximal
biaxiality and points with negative uniaxiality necessarily exist. Understanding
the internal structure of the defects remains an open problem.

3.2. Numerical analysis

In work by Nochetto, Walker & Zhang [20] a piecewise-linear finite element
scheme is proposed for the orientable Ericksen model with a variable scalar
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order parameter. They are able to rigorously prove that their numerical dis-
cretization Γ-converges to the continuum variational problem. For the required
energy lower bound, the convexity of the energy on each variable is exploited.
For the construction of recovery sequences necessary for the energy upper
bounds, they require a result of approximation of Sobolev maps by smooth
maps such as the one by Pakzad & Rivière [21]. The difficulty in the density
result is that the smooth maps that approximate the director n ∈W 1,2(Ω,S2)
must satisfy the unit-length constraint. The result of Pakzad & Rivière can
be used provided that the liquid crystal is far from melting (that the scalar
order parameter s(x) is bounded away from zero), but in Ericksen’s model
this fails around defects (which the model accommodates via melting). No-
chetto, Walker & Zhang overcome this obstacle in the orientable case but for
non-orientable fields the problem remains open.

3.3. Derivation of the de Gennes potential

The commonly used quartic thermotropic potential (3) was originally conceived
as what should intuitively be a Taylor expansion, around the isotropic state, of
the true thermodynamic bulk potential. A rigorous justification only appeared
recently (40 years later), and is due to Ball & Majumdar [4]. First, the bulk
potential ψB(Q, θ) is identified with the minimum of the free energy per particle
at temperature θ > 0 given by

Iθ(ρ) = U(ρ)− θη(ρ),

where U is an interaction term given by

U(ρ) =
1

2

∫
S2

∫
S2
K(p,q)ρ(p)ρ(q) dp dq

and η(ρ) is the entropy term given by

η(ρ) = −kB
∫
S2
ρ(p) ln ρ(p) dp,

among all probability density functions ρ = ρ(p) ∈ L1(S2) giving rise to a
macroscopic probability measure µ whose second moment produces exactly
the Q-tensor Q. The regularity and other analytical properties of ψB are
thoroughly studied for the mean-field Maier-Saupe theory where the interaction
kernel is postulated to be of the form

K(p,q) = 2κ

(
1

3
− (p · q)2

)
for some constant κ independent of temperature. This enables a rigorous Tay-
lor expansion around Q = 0 which almost coincides with (3), showing that
some corrections are necessary regarding the dependance on the temperature
of the coefficients of the polynomial (which, in particular, changes the predicted
nematic initiation temperature).
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3.4. Harmonic maps

The study of liquid crystals has proved to be a fertile meeting point between
continuum mechanics and differential geometry, the most spectacular result
being probably the following, due to Schoen & Uhlenbeck [23] and to Brezis,
Coron & Lieb [7]:

Any minimizer of

∫
Ω

|∇n(x)|2 dx over all n ∈ H1(Ω; S2) with pre-

scribed boundary values n|∂Ω = n̄ is smooth in Ω except for a finite
number of point defects located at points xi ∈ Ω. Moreover,

n(x) ∼ ±Ri
x− xi
|x− xi|

as x→ xi

for some Ri ∈ SO(3).

In the more physical case of an elastic energy involving different energetic
costs for the twist, bend, splay, and saddle-splay of the director field, Hardt,
Kinderlehrer & Lin [13] have the impressive result that minimizers over all
n ∈ H1(Ω;S2) with prescribed boundary data are analytic outside a closed
subset of Ω whose Hausdorff dimension is less than one.
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