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On the equivalence of Gaussian Sobolev norms
and some weighted Wiener-Chaos norms

Sobre la equivalencia de normas de Sobolev gaussianas y normas de
Wiener-caos con pesos

Juan Galvis1,a

Abstract. When working with Gaussian measures, in some applications, reg-
ularity of functions needs to be evaluated. In order to measure the regularity
of a function in a mean square sense, Weiner-Chaos weighted norms and also
Gaussian-Sobolev norms have been introduced. Some family of weights used
in the Chaos norms generate norms equivalent to the Gaussian Sobolev norms.
In this short paper we review this fact and a recent proof of it presented in
[5, 6] that sharpened the equivalence to and equality of one of the norms in
terms of the other. We note that we review the case of spaces of functions of
infinity many variables.
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Resumen. Cuando trabajamos con medidas gausianas, en algunas aplica-
ciones, se necesita evaluar la regularidad de la solución. Para medir la regu-
laridad de la solución en el sentido medio cuadrático, normas del tiempo de
Weiner-caos con peso y normas de Sobolev gaussianas han sido introducidas.
Algunas familias de pesos usados en las normas de caos generan normas equiv-
alentes a las normas de Sobolev gaussianas. En este art́ıculo corto revisamos
esta equivalencia y una demostración reciente que obtiene igualdad entre estas
normas. Notamos que se revisa el caso de espacios de funciones en infinitas
variables.
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1. Introduction

In this short paper we review the known fact that Gaussian-Sobolev norms are
equivalent to a particular weighted Weiner-chaos norm. The weighted chaos
norms depend on the choice of a sequence of weights. The corresponding norm
measures the decay of the coefficients in the chaos expansion of a random func-
tion. We recall that the chaos expansion of a random function is its expansion
in terms of Fourier-Hermite orthogonal polynomials. A main issue is that the
computation of the weighted chaos norms turns out to be difficult when the
chaos expansion are not available explicitly. On the other hand, Gaussian
Sobolev spaces have been also used in the literature, [4, 10, 12]. The Gaus-
sian Sobolev norms involve (L2) norms of derivatives of random functions. We
prove that a particular weighted chaos can be characterized using Sobolev type
norms for Gaussian measure as in [4, 12, 10]. In particular we prove that using
partial derivatives, we can compute this particular norm ‖ ·‖ k

2
defined by using

a decay of the Chaos expansion of z with particular sequence of weights with
power k

2 . More precisely we establish that for every k ∈ N we have

||z||2k
2

= ||z||2(L2) +

k∑
i=1

∑
R∈Pk,i

‖Diz||2R(θ1k)
. (1)

where P k,i is a finite subset (of indexes) of Ri that will be described below. On
the right there is a computation of norms of derivatives up to order k of the
field z.

This equivalence of norms is useful to obtain regularity results for some
stochastic partial differential equations for these norms. It might be easier to
obtain bounds for partial derivatives than obtaining bounds for the coefficients
of the chaos expansions of solutions.

2. White noise analysis

In order to comfortably work with infinite many variables we use the White
noise analysis. We review the main facts related to this infinity dimensional
(stochastic) calculus in this section. Let H be a real Hilbert space with inner
product (·, ·)H and norm ‖ · ‖H , and let A be an operator on H such that there
exists an H-orthonormal basis {ηj}∞j=1 satisfying

1. Aηj = λjηj , j = 1, 2, . . . .

2. 1 < λ1 ≤ λ2 ≤ · · · , and

3.
∑∞
j=1 λ

−2θ
j <∞ for some constant θ > 0.

For p > 0 let

Sp := {ξ ∈ H; |ξ|p <∞}
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where

|ξ|2p := ‖Apξ‖2H =

∞∑
j=0

λ2pj (ξ, ηj)
2
H ,

and for p < 0 let Sp be defined as the dual space of S−p. It is easy to see that
for p < 0 we also have ‖ · ‖p = ‖Ap · ‖H and the duality pairing between Sp and
S−p is an extension of the H inner product. We also define

S = ∩p≥0Sp

(with the projective limit topology) and let S ′ be defined as the dual space of
S, i.e., by considering the standard countably Hilbert space constructed from
(H,A); see [9, 11].

Let us consider S ′ as a probability space with the sigma-field B(S ′) of
Borel subsets of S ′. The probability measure µ is given by the Bochner-Minlos
theorem and characterized by

Eµe
i〈·,ξ〉 :=

∫
S′
ei〈ω,ξ〉dµ(ω) = e−

1
2‖ξ‖

2
H , for all ξ ∈ S.1 (2)

Here, the pairing 〈ω, ξ〉 = ω(ξ) is the action of ω ∈ S ′ on ξ ∈ S, and Eµ denotes
the expectation with respect to the measure µ. We work in the probability
space (S ′;B(S ′), µ). The measure µ is often called the (normalized) Gaussian
measure on S ′.

Equation (2) says that: for any test function ξ ∈ S, the random variable
〈·, ξ〉 is normally distributed with zero mean and variance ‖ξ‖2H . If ξ1, . . . , ξj ∈
S are orthonormal in H then the random variables 〈·, ξ1〉, . . . , 〈·, ξj〉 are inde-
pendent and normally distributed with mean zero and variance equal to one;
see [8, 9, 11]. We also have that for any function ξ ∈ H, the random variable
ω 7→ 〈ω, ξ〉 can be defined in the L2(µ) sense and it is normally distributed with
zero mean and variance ‖ξ‖2H . See [1, 7, 13, 8, 9, 11] and references therein for
details on the Bochner-Minlos theorem, the measure µ and (2).

3. Weighted chaos norms

We always interpret properties in the “almost surely” sense with respect to µ
(even when not stated textually). We introduce the space

(L2) := L2(S ′, dµ(ω)) (3)

with norm

‖z‖2(L2) :=

∫
S′
|z(ω)|2dµ.

In this section we introduce subspaces of (L2) consisting of smooth functions.
These subspaces of smooth functions are of interest in applications involving
stochastic equations or partial differential equations with random coefficients.
See [5, 6].
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3.1. Wiener-chaos expansion

We characterize the space (L2) defined in (3). We need to consider multi-
index of arbitrary length. To simplify the notation, we regard multi-indices as
elements of the space (NN

0 )c of all sequences α = (α1, α2, . . . ) with elements
αj ∈ N0 = N ∪ {0} and with compact support, i.e., with only finitely many
αj 6= 0. We write J = (NN

0 )c. Given α ∈ J define the order and length of α,
denoted by d(α) and |α| respectively, by

d(α) = max {j : αj 6= 0} and |α| = α1 + α2 + · · ·+ αd(α).

We also introduce the Hermite polynomials, hn, n = 0, 1, 2, . . . . These polyno-
mials can be defined by the generating function identity

etx−
1
2 t

2

=

∞∑
n=0

tn

n!
hn(x). (4)

Note that h′n(x) = nhn−1(x). The Hermite polynomials are an orthogonal

basis for L2(R, e− 1
2x

2

dx). Now we define the Fourier-Hermite polynomials for
α = (α1, α2, . . . ) ∈ J by

Hα(ω) :=

d(α)∏
j=1

hαj
(〈ω, ηj〉) ω ∈ S ′.

We now state the Wiener-Chaos expansion theorem; see [4, 7, 13, 8, 11].

Theorem 3.1. The Fourier-Hermite polynomials are orthogonal in (L2). More-
over, ‖Hα‖2(L2) = α!, α ∈ J . In addition, every polynomial in ω belongs to

(L2) and every z ∈ (L2) can be represented as a Wiener-Chaos expansion
z =

∑
α∈J zαHα with ‖z‖2(L2) =

∑
α∈J α!z2α.

3.2. A family of weighted chaos norms

Now we introduce weighted chaos norms that are used to define subspaces of
(L2) consisting of smooth functions. The resulting spaces are in analogy with
classical Sobolev spaces with finite independent variables.

Given a multi-index α and r ∈ R we denote

〈α,λr〉 :=

d(α)∑
j=1

αjλ
r
j .

Note that we have 〈α,λr〉 ≥ 0. In (L2) we can introduce the system of Hilbert
norms (see [4, Chapter 10], and also [2, 13])

||z||2p :=
∑
α∈J

(1 + 〈α,λ2θ〉2p)α!z2α, (5)
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where z =
∑
α∈J zαHα. Alternatively, the we can use the weight (1 +

〈α,λ2θ〉)p, instead of 1 + 〈α,λ2θ〉p.
In principle, the norm ‖z‖p measures the speed of the decay of the expansion

of the field z in terms of Fourier-Hermite polynomials. We will see that they do
measure regularity in the sense of having derivatives in (L2). For p > 0 define
the spaces Sp of smooth fields by

(S)p = {z ∈ (L2) : ‖z‖p <∞}. (6)

For p < 0 define Sp as the dual space of S−p. We define S0 = (L2) and the
inclusion Sq ⊂ Sp holds for all q > p.

Next, we recall that the weighted norms (5) can be written as square inte-
grals using an operator acting on functions in (L2). We can write

||z||2p =
∑
α∈J

(1 + 〈α,λ2θ〉2p)α!z2α = ||z||2(L2) + ||Γ⊕(A2θ)pz||2(L2) (7)

where Γ⊕(Aq) is the operator defined by

Γ⊕(Aq)Hσ2,α = 〈α,λq〉Hα. (8)

We point out that Γ⊕(Aq) 6= Γ⊕(A)q since Γ⊕(A)pHα = 〈α,λ〉qHα and
Γ⊕(Aq)Hα = 〈α,λq〉Hα. We observe that ||Γ⊕(A)q · ||2(L2) is a norm in the

space of functions in (L2) with u0 = 0 in its Fourier-Hermite expansion.
We note that a general weighted chaos norms involves arbitrary weights and

it is of the form
||z||2p;ρ =

∑
α∈J

ρ(α, p)2α!z2α.

It is assumed that ρ(α, q) ≥ ρ(α, p) > 0 for all q > p ≥ 0 and that ρ(α, 0)
is a constant independent of α ∈ J . Usually, the weights ρ(α, p) are the
eigenvalues of some nonnegative operator in (L2) with the σ(s)-Fourier-Hermite
polynomials as eigenfunctions. For examples of other weights ρ(α, p) we refer
to [2, 4, 5, 7, 8, 9, 11, 10, 12].

The wighted chaos norm measure the decay of the coefficients in the ex-
pansion z =

∑
α∈J zαHα. In many applications the interest focus in weighted

chaos norms that imply decay of coefficients when |α| → ∞ and also when
d(α) → ∞. This is the reason for the choice of the weight ρ in (5) that de-
pends on λ2θ. We will show in Section 5 that the decay in the coefficients in
the expansion implies that some partial derivatives are square integrable with
respect to µ.

4. Gaussian-Sobolev norms

In this section we prove that the chaos weighted norms introduced in Section
3.2 can be computed using (L2) norms of partial derivatives; see Section 5. In
particular we review the analysis presented in [6]. We use derivative in the
sense of Friedrichs as in [4, Chapter 10].
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4.1. Derivatives and their norms

We follow the analysis presented in [6]. Using partial derivative (in the sense
of Friedrichs as in [4, Chapter 10] we want to be able to compute a norm
equivalent to the norm (5). In this section we work with differential operators
acting on (L2) and define Sobolev type norms for Gaussian measures. We refer
the reader to [12, Section 2.1.5] and/or [4, Section 10.1] for details. Denote by
∂`z the directional derivative of z in the direction of the `−th basis function
η` ∈ S. Given z ∈ (L2)s we define ∂`z : S ′ → R

∂`z(ω) :=
d

dt
z(ω + tη`)

∣∣∣
t=0

. (9)

Analogous definitions hold for higher-order partial derivatives. The definition
of partial derivative in (9), and the definition of k−th derivative, Definition 4.1
below, are valid for functions z in a properly chosen dense subset of (L2), e.g.,
the subset of exponentials of the form

z(ω) =

N∏
j=1

exp(〈ω, ηj〉).

The definition of the derivative is then extended to a subset of (L2) using
density arguments. Equation (9) is also valid for functions of the form

z(ω) = F (〈ω, ηj1〉, . . . , 〈ω, ηjJ 〉)

where J is an integer and F : RJ → R is differentiable.
We compute the (L2)-norms of some partial derivatives. For any Fourier-

Hermite polynomial Hα with α` > 0 we have that

∂`Hα(ω) = ∂`

d(α)∏
j=1

hαj
(〈ω, ηj〉) = α`Hα−ξ`(ω) (10)

where ξ` is the multi-index with one in the `−entry and zero in the other
positions so that

α− ξ` = (α1, . . . , α`−1, α` − 1, α`+1, . . . ).

Here we have used that h′n = nhn−1, see (4). For α` = 0 define ∂`Hα(ω) = 0.
Then for z =

∑
α∈J zαHα such that ∂`z ∈ (L2) we have

∂`z(ω) =
∑
α∈J

α`zαHα−ξ`(ω)

and therefore

||∂`z||2(L2) =
∑
α∈J

α2
`z

2
α(α− ξ`)! =

∑
α∈J

α`z
2
αα!, (11)
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where we have used that α`(α−ξ`)! = α!. Analogously, for any Fourier-Hermite
polynomial the γ partial derivative ∂γ can be computed as

∂γHα(ω) =

d(α)∏
j=1

αj !

(αj − γj)!
hαj−γj (〈ω, ηj〉) =

α!

(α− γ)!
Hα−γ

for every multi-index γ and α with γ ≤ α. Then for z =
∑
α∈J zαHα we

have

∂γz(ω) =
∑
α≥γ

α!

(α− γ)!
zαHα−γ(ω)

and the (L2) norm of ∂γz is given by

‖∂γz‖2(L2) =
∑
α≥γ

α!2

(α− γ)!2
z2α(α− γ)! =

∑
α≥γ

α!

(α− γ)!
u2αα!.

We define the k−th derivative.

Definition 4.1. Denote by Lin(S) the set of linear functionals on S. For
k ∈ N, p ∈ R and z : S ′ → R we define Dkz : S ′ → Lin(S)⊗k by

Dkz(ω) :=
∑

`1,`2,...,`k

∂`1 . . . ∂`kz(ω)η`1 ⊗ · · · ⊗ η`k

We also use the convention D0z = z.

Here and below we will use the iterated summation notation∑
`1,`2,...,`k

:=
∑
`1∈N

∑
`2∈N
· · ·
∑
`k∈N

.

As we will see in the next section, adding (L2)-norms of derivatives yields
weighted chaos norms. We are interested in weights that inherit a dependence
on the eigenvalues {λj}∞j=1. For this reason, we compute Sp−like norms of
derivatives according to the next definition.

Definition 4.2. For k ∈ N and q = (q1, . . . , qk) ∈ Rk define

‖Dkz‖2q = ‖Aq1⊗· · ·⊗AqkDkz‖2L2(S′,(L2)⊗k) =
∑

`1,`2,...,`k

λ2q1`1
. . . λ2qk`k

‖∂`1 . . . ∂`kz‖2(L2).

We also set ||D0z||2 = ||z||2(L2).

For instance, Dz : S ′ → Lin(S). For ω ∈ S ′ and ξ ∈ S, the action of Dz(ω)
on ξ is given by

〈Dz(ω), ξ〉 =

∞∑
`=1

∂`z(ω)(η`, ξ)H .

Also, ‖Dz‖2q1 =
∑∞
`=1 λ

2q1
` ‖∂`z‖2(L2).
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5. Equivalence of norms

We define the the action of Γ⊕(A) on derivatives as follows.

Definition 5.1. For k ∈ N and p ∈ R define

Γ⊕(A)
p
2Dkz(ω) :=

∑
`1,`2,...,`k

Γ⊕(A)
p
2 ∂`1 . . . ∂`kz(ω)η`1 ⊗ · · · ⊗ η`k .

Now we prove some basic relations between derivatives in the ω variable and
the operator Γ⊕(A) defined in (8). See [12, Proposition 4.1] for related inter-
twining property of derivatives and the Ornstein-Uhlenbeck operator (instead
of the Γ⊕(Aq) operator).

Lemma 5.2. For all p, q ∈ R we have the following relations

(Γ⊕(Aq) + λq`)
p
2 ∂`z = ∂`Γ⊕(Aq)

p
2 z, (12)(

Γ⊕(Aq) + λq`1 + · · ·+ λq`k
) p

2 ∂`1∂`2 · · · ∂`kz = ∂`1∂`2 · · · ∂`kΓ⊕(Aq)
p
2 z, (13)

and
(Γ⊕(Aq) + 〈β,λq〉)

p
2 ∂βz = ∂βΓ⊕(Aq)

p
2 z. (14)

Proof. Since ∂`z =
∑
α∈J α`zαHα−ξ` , then

(Γ⊕(Aq) + λq`)
p
2 ∂`z =

∑
α∈J

(〈α− ξ`,λ
q〉+ λq`)

p
2 α`zαHα−ξ`

=
∑
α∈J

(〈α,λq〉 − λq` + λq`)
p
2 α`zαHα−ξ`

=
∑
α∈J
〈α,λq〉

p
2α`zαHα−ξ` = ∂`Γ⊕(Aq)

1
2 z,

which prove (12). Note that (13) follows easily from (12) and (14) is conse-

quence of (13) and the notation 〈β,λq〉 =
∑d(α)
j=1 βjλ

q
j .

Lemma 5.3. For k ∈ N and q ∈ Rk we have∑
`k

λ2qk`k
‖Dk−1∂`kz‖2(q1,...,qk−1)

= ‖Dkz‖2(q1,...,qk), (15)

‖DΓ⊕(A2q2)
1
2 z‖2q1 = ‖Γ⊕(A2q2)

1
2Dz‖2q1 + ‖Dz‖2q1+q2 (16)

and for q = (q1, . . . , qk) ∈ Rk and t ∈ R we have

‖DkΓ⊕(A2t)
1
2 z‖2q = ‖Γ⊕(A2t)

1
2Dkz‖2q +

k∑
i=1

‖Dkz‖2q+tξi (17)

where q + tξi = (q1, . . . , qi + t, . . . , qk).
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Proof. Equation (15) follows directly from Definition 4.2. We prove (16).
Using Definitions 4.1 and 4.2 together with Equation (12),

‖DΓ⊕(A2q2)
1
2 z‖2q1 =

∑
`=1

λ2q1` ‖∂`Γ⊕(A2q2)
1
2 z‖2(L2)

=
∑
`=1

λ2q1` ‖
(

Γ⊕(A2q2) + λ2q2`

) 1
2

∂`z‖2(L2)

=
∑
`=1

λ2q1`

(
‖Γ⊕(A2q2)

1
2 ∂`z‖2(L2) + λ2q2` ‖∂`z‖

2
(L2)

)
= ‖Γ⊕(A2q2)

1
2Dz‖2q1 + ‖Dz‖2q2+q1 .

To prove (17) observe that using (13) we get

‖DkΓ⊕(A2t)
1
2 z‖2q =

∑
`1,...,`k

λ2q1`1
· · ·λ2qk`k

‖∂`1 · · · ∂`kΓ⊕(A2t)
1
2 z‖2(L2)

=
∑

`1,...,`k

λ2q1`1
· · ·λ2qk`k

‖
(
Γ⊕(A2t) + λ2t`1 + · · ·+ λ2t`k

) 1
2 ∂`1 · · · ∂`kz‖2(L2)

=
∑

`1,...,`k

λ2q1`1
· · ·λ2qk`k

‖Γ⊕(A2t)
1
2 ∂`1 · · · ∂`kz‖2(L2)

+
∑

`1,...,`k

λ2q1`1
· · ·λ2qk`k

(λ2t`1 + · · ·+ λ2t`k)‖∂`1 · · · ∂`kz‖2(L2)

= ‖Γ⊕(A2t)
1
2Dkz‖2q +

k∑
i=1

‖Dkz‖2q+tξi .

The following result reveals the basic relation between norms of derivatives
and the norm ||u||2p defined in (5) for the values p = 1/2 and p = 1. This
result will be used as the initial induction step in the proof of the equivalence
of norms for any value of p half a positive integer; see Theorem 5.6.

Theorem 5.4. For any k ∈ N and q = (q1, . . . qk) ∈ Rk we have

‖Γ⊕(A2q1)
1
2 z‖2(L2) =

∞∑
`=1

λ2q1` ||∂`z||
2 = ‖Dz‖2q1 , (18)

‖Γ⊕(A2qk)
1
2Dk−1z‖2(q1,...,qk−1)

= ‖Dkz‖2(q1,q2,...,qk) (19)

and we have the identities

‖Γ⊕(A2q1)
1
2 Γ⊕(A2q2)

1
2 z‖2(L2) = ‖D2z||2(q1,q2) + ‖Γ⊕(A2(q1+q2))

1
2 z‖2(L2)

= ‖D2z||2(q1,q2) + ‖Dz‖2q1+q2 . (20)
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and

‖Γ⊕(A2q1)
1
2 Γ⊕(A2q2)

1
2 Γ⊕(A2q3)

1
2 z‖2(L2) = ‖D3z||2(q1,q2,q3)

+‖D2z||2(q1+q3,q2) + ‖D2z||2(q1,q2+q3) + ‖D2z||2(q1+q2,q3)
+‖Dz||2(q1+q2+q3) (21)

Proof. From Equation (11) we have that

‖Dz‖2q1 =

∞∑
`=1

λ2q1` ‖∂`z‖
2
(L2) =

∞∑
`=1

∑
α`≥1

α`λ
2q1
` z2αα!

=
∑
α∈J

d(α)∑
`=1

α`λ
2q1
`

 z2αα!

=
∑
α∈J
〈α,λ2q1〉z2αα! = ||Γ⊕(A2q1)

1
2 z||2(L2),

and hence (18) holds. To prove (19) observe that from (18) and (15) we get

‖Γ⊕(A2qk)
1
2Dk−1z‖2(q1,...,qk−1)

=
∑

`1,...,`k−1

λ2q1`1
. . . λ

2qk−1

`k−1
‖Γ⊕(A2qk)

1
2 ∂`1 . . . ∂`k−1

z‖2(L2)s

=
∑

`1,...,`k

λ2q1`1
. . . λ2qk`k

‖∂`1 . . . ∂`kz‖2(L2)s = ‖Dkz‖2(q1,...,qk).

To prove (20) observe that from (18), (16) and (19) we have

‖Γ⊕(A2q1)
1
2 Γ⊕(A2q2)

1
2 z‖2(L2) = ‖DΓ⊕(A2q2)

1
2 z||2q1

= ‖Γ⊕(A2q2)
1
2Dz‖2q1 + ‖Dz‖2q1+q2

= ‖D2z||2(q1,q2) + ‖Γ⊕(A2(q1+q2))
1
2 z‖2(L2).

For the proof of (21), see Theorem 5.6 where we prove the general case.

In order to write down the general version of formula (20) we shall introduce
some notation. Consider the set of indexes {1, 2, . . . , k} and its set of partitions
P k; see [3]. Recall that, given i ∈ N, an i−partition of {1, 2, . . . , k} is a
decomposition of this set into i nonempty and disjoint subsets. We denote by
P k,i the set of all i−partitions of {1, 2, . . . , k}. It is well known that #(P k,i) =
S(k, i), the Stirling number of the second kind (which is also the number of
distributions of k distinguishable balls into i indistinguishable urns). Let each
i-partition R = (R1, . . . , Ri) ∈ P k,i, be ordered in such a way that

minR1 < minR2 < · · · < minRi.
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To each i-partition and q = (q1, . . . , qk) ∈ Rk we associate a multi-index R(q) =
(R1(q), . . . , Ri(q)) ∈ Ri defined by

Ri′(q) =
∑
i′′∈Ri′

qi′′ , i′ = 1, . . . , i.

Example 5.5. Let q = (q1, q2, q3) and consider the 2-partition R = {R1 =
{1}, R2 = {2, 3}}. Then R(q) = (q1, q2 + q3).

Let q = (q, q, q, q) and consider the 3-partition R = {R1 = {1}, R2 =
{2, 3}, R3 = {4}}. Then R(q) = (q, 2q, q).

The following result gives a closed formula that allows us to compute the
norm || · ||2p using ω-partial derivatives1. It shows the equivalence between
the weighted chaos norms in (5), and the Gaussian Sobolev norms, defined
using (L2) norms of derivatives. Similar result for the case k = 1 and k = 2
can be found in [4]. The corresponding spaces are denoted by W 1,2(H,µ)
and W 2,2(H,µ), respectively. See Theorem 10.15 in page 147 and Equations
(10.54)-(10.57) in page 162.

Theorem 5.6. Let k ∈ N and q = (q1, q2, . . . , qk) ∈ Rk. We have

‖Γ⊕(A2q1)
1
2 . . .Γ⊕(A2qk)

1
2 z‖2(L2) =

k∑
i=1

∑
R∈Pk,i

‖Diz||2R(q). (22)

In particular, if we take q = θ1k where 1k := (1, . . . , 1) ∈ Nk

‖Γ⊕(A2θ)
k
2 z‖2(L2) =

k∑
i=1

∑
R∈Pk,i

‖Diz||2R(θ1k)

and

||z||2k
2

= ||z||2(L2) + ||Γ⊕(A2θ)
k
2 z||2(L2) = ||z||2(L2) +

k∑
i=1

∑
R∈Pk,i

‖Diz||2R(θ1k)
.

Proof. We proceed by induction on k. For k = 1 and k = 2 we already proved
the result, see (18) and (20) of Theorem 5.4.

Assume that (22) is valid for the first k ∈ N. Then we have

‖Γ⊕(A2q1)
1
2 . . .Γ⊕(A2qk+1)

1
2 z‖2(L2) =

k∑
i=1

∑
R∈P (i)

‖DiΓ⊕(A2qk+1)
1
2 z||2R(q)

=

k∑
i=1

∑
R∈P (i)

(
‖Γ⊕(A2qk+1)

1
2Diz‖2R(q1,...,qk)

+

i∑
i′=1

‖Diz‖2R(q1,...,qk)+qk+1ξi′

)
1We use derivative in the sense of Friedrichs as in [4, Chapter 10].
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where we have used formula (17). Then, from (19) we get

‖Γ⊕(A2q1)
1
2 . . .Γ⊕(A2qk+1)

1
2 z‖2(L2)

=

k∑
i=1

∑
R∈Pk,i

(
‖Diz‖2(R(q1,...,qk),qk+1)

+

i∑
i′=1

‖Diz‖2R(q1,...,qk)+qk+1ξi′

)

=

k+1∑
i=1

∑
R∈Pk+1,i

‖Diz||2R(q1,...,qk+1)
.

To obtain the last equality we observe that the i-partitions P k+1,i of the
set {1, . . . , k + 1} are of the form {R, {k + 1}} where R ∈ P k,i−1 or R =
(R1, . . . , Ri′ ∪ {k + 1}, . . . , Ri) for 1 ≤ i′ ≤ i and R ∈ P k,i.

Note that, given r = (r`)
i
`=1 ∈ Ni, (see [3])

#({R ∈ P k,i : θr = R(θ1k)} =

i−1∏
j=1

(∑i
`=j r` − 1

rj − 1

)
.

6. On Kondratiev like norms

In this section we study another classical weighted norm. See [8, 9, 11] for
more details on these norms. We also show that this norm can be computed
by adding norm of derivatives, but this time we need all partial derivatives of
all orders to be finite. Given a multi-index α we denote

λα :=

d(α)∏
j=1

λ
αj

j .

Take ν ∈ [0, 1) and

ρ(α, p) = (α!)νλ̃
pα

= (α!)ν(λ2θ)pα = (α!)νλ2pθα, α ∈ J (23)

in (5). Here and below we denote λ̃ = λ2θ (λ̃j = λ2θj ). The weight

ρ(α, p)2 = (α!)νλ2pα

can be used as well. Let us denote by |||u|||2p the resulting weighted norm. Note
that we can write

|||u|||2p = ||Γ⊗,ν(A2θ)pu||2(L2)

where Γ⊗,ν(A2θ) is the operator defined by

Γ⊗,ν(A)Hα = (α!)νλ̃
α
Hα.
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Now we show how to compute the norm ‖|·‖|p defined above for the case ν = 0.
We use the notation

(λ̃
p
− 1)γ =

d(γ)∏
j=1

(λ̃pj − 1)γj .

Recall that 1 < λ1 ≤ λ2 ≤ . . . . We have

λ̃
2pα

=

d(α)∏
j=1

(λ̃2pj − 1 + 1)αj =

d(α)∏
j=1

 ∑
γj≤αj

(
αj
γj

)
(λ̃2pj − 1)γj


=
∑
γ≤α

(
α

γ

)
(λ̃

2p
− 1)γ .

Then, from (12), we have

∑
γ∈J

(λ̃
2p
− 1)γ

γ!
‖∂γu‖2(L2) =

∑
γ∈J

(λ̃
2p
− 1)γ

γ!

∑
α≥γ

α!

(α− γ)!
u2αα!

=
∑
α∈J

∑
γ≤α

α!

γ!(α− γ)!
(λ̃

2p
− 1)γ

u2αα!

=
∑
α∈J

λ̃
2pα

u2αα! = |||u|||2p.

Summarizing we have

|||u|||2p =
∑
γ∈J

(λ̃
2p
− 1)γ

γ!
‖∂γu‖2(L2).

We conclude that in order to have |||u|||p <∞ we need all partial derivative of
all orders to be (L2) functions with the series above being finite. Moreover, we

need a bound for the weighted sum
∑
γ∈J

(λ̃
2p

−1)γ

γ! ‖∂γu‖2(L2). In general is

then, easier to consider the norm ||u||2p (introduced in Section 3.2) to analyze
and measure the stochastic regularity of a field.

7. Conclusions

We review the fact that Gaussian-Sobolev norms are equivalent to a particular
weighted Weiner-chaos norms. We have shown that for particular set of weights
in the Chaos norms the computation of the norm can be done by combining
norms of partial derivatives up to certain oder. This allows the computation
of Chaos norms when the chaos expansion are not available explicitly. This
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equivalence of norms is useful to obtain regularity results for some stochastic
partial differential equations for these norms.
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