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A Universal Homogeneous Simple Matroid of
Rank 3

Una matroide simple homogénea universal de rango 3

Gianluca Paolini1,a

Abstract. We construct a ∧-homogeneous universal simple matroid of rank
3, i.e. a countable simple rank 3 matroid M∗ which ∧-embeds every finite
simple rank 3 matroid, and such that every isomorphism between finite ∧-
subgeometries of M∗ extends to an automorphism of M∗. We also construct a
∧-homogeneous matroid M∗(P ) which is universal for the class of finite simple
rank 3 matroids omitting a given finite projective plane P . We then prove that
these structures are not ℵ0-categorical, they have the independence property,
they admit a stationary independence relation, and that their automorphism
group embeds the symmetric group Sym(ω). Finally, we use the free projec-
tive extension F (M∗) of M∗ to conclude the existence of a countable projective
plane embedding all the finite simple matroids of rank 3 and whose automor-
phism group contains Sym(ω), in fact we show that Aut(F (M∗)) ∼= Aut(M∗).

Keywords: homogeneous structures, matroids, incidence structures, auto-
morphism groups.

Resumen. Construimos una matroide ∧-homogénea universal de rango 3,
i.e. una matroide M∗ contable simple de rango 3 en el que que se ∧-sumerge
toda matroide finita simple de rango 3, y tal que todo isomorfismo entre ∧-
subgeometŕıas finitas de M∗ se extienden a un automorfismo de M∗. Constru-
imos además una matroide M∗(P ) ∧-homogénea que es universal para la clase
de las matroides finitas simples de rango 3 que omiten un plano proyecto finito
P dado. Entonces demostramos que estas estructuras no son ℵ0-categóricas,
tienen la propiedad de independencia y admiten una relación de independencia
estacionaria, y que su grupo de automorfismos sumerge el grupo de simetŕıas
Sym(ω). Finalmente, usamos la extensión productiva libre F (M∗) de M∗ para
concluir la existencia de un plano proyecto contable que sumerge todas las
matroides finitas simples de rango 3 y cuyo grupo de automorfismos contiene
Sym(ω), de hecho demostramos que Aut(F (M∗)) ∼= Aut(M∗).
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cia, grupos de automorfismos.
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1. Introduction

A countably infinite structure M is said to be homogeneous if every isomor-
phism between finitely generated substructures of M extends to an automor-
phism of M . The study of homogeneous combinatorial structures such as graph,
digraphs and hypergraphs is a very rich field of study (see e.g. [2], [3], [6], [7],
[17], [16]). On the other hand, matroids are objects of fundamental importance
in combinatorial theory, but very little is known on homogeneous matroids.
In this short note we propose a new approach to the study of homogeneous
matroids, focusing on the case in which the matroid is of rank 3 and simple.
In this case the matroidal structure can be defined in a very simple manner as
a 3-hypergraph1, as follows:

Definition 1.1. A simple matroid 2 of rank ≤ 3 is a 3-hypergraph (V,R) whose
adjacency relation is irreflexive, symmetric and satisfies the following exchange
axiom:

(Ax) if R(a, b, c) and R(a, b, d), then {a, b, c, d} is an R-clique.
We say that the matroid has rank 3 if it contains three non-adjacent points.

As well-known (see e.g. [15, pg. 148]), simple matroids of rank ≤ 3 are in
canonical correspondence (cf. Convention 1) with certain incidence structures
known as linear spaces:

Definition 1.2. A linear space is a system of points and lines satisfying:

(A) every pair of distinct points determines a unique line;

(B) every pair of distinct lines intersects in at most one point;

(C) every line contains at least two points.

In [5] Devellers provides a complete classification of the countable homoge-
neous linear spaces. In this work it is shown that (as formulated) the theory is
very poor, and in fact the only infinite homogeneous linear space is the trivial
one, i.e. infinitely many points and infinitely many lines incident with exactly
two points.

This situation is reflected in the context of matroid theory with the well-
known observation (see e.g. [21, Example 7.2.3]) that the class of finite simple
matroids of rank 3 does not have the amalgamation property, and so the con-
struction of a homogeneous (with respect to the notion of subgeometry) simple
matroid of rank 3 containing all the finite simple matroids of rank 3 as subge-
ometries is hopeless.

One might wonder if this is all there is to it, and no further mathemat-
ical theory is possible. In this short note we give evidence that this is not

1To the reader familiar with matroid theory it will be clear that in (V,R) the hyper-edges
are nothing but the dependent sets of size 3 of the unique simple matroid of rank 3 coded by
(V,R).
2For a general introduction to matroid theory see e.g. the classical references [4] and [15].
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the case, and that there might be a very interesting combinatorial theory for
homogeneous matroids, if the problem (viz. choice of language) is correctly
formulated.

The crucial observation that underlies our approach is that (with respect to
questions of homogeneity) the choice of substructure that we are considering
is too weak, and does not take into account enough of the geometric structure
encoded by these objects, i.e. their associated geometric lattices3. This inspires:

Definition 1.3. Let P be a linear space (cf. Definition 1.2). On P we define
two partial functions p1 ∨ p2 and `1 ∧ `2 denoting, respectively, the unique line
passing through the points p1 and p2, and the unique point p at the intersection
of the lines `1 and `2, if such a point exists, and 0 otherwise (where 0 is a new
symbol). If we extend P to P̂ adding a largest element 1 and a smallest
element 0 and we extend the interpretation of ∨ and ∧ in the obvious way,
then the structure (P̂ ,∨,∧, 0, 1) is a so-called geometric lattice. For details on
this see [4, Chapter 2] or [15, pg. 148].

Convention 1. When convenient, we will be sloppy in distinguishing between
a simple rank 3 matroid and it associated linear space/geometric lattice (cf.
Definition 1.3). This is justified by the following canonical correspondence be-
tween the two classes of structures. Given a linear space P consider the simple
rank 3 matroid MP whose dependent sets of size 3 are the triples of collinear
points of P . Given a simple rank 3 matroid (V,R) consider the linear space
PM whose points p are the elements of V and whose lines ` are the sets of the
form {a, b} ∪ {c ∈ V : R(a, b, c)}, together with the incidence relation p ∈ `.
Also, we will use freely the partial functions ∨ and ∧ introduced in Definition
1.3 in the context of linear spaces.

Definition 1.4. A simple ∧-matroid of rank ≤ 3 is a structure M = (V,R,∧)
such that (V,R) is a simple matroid of rank ≤ 3 (cf. Definition 1.1) and ∧ is a
4-ary function defined as follows4 (cf. Definition 1.3):

∧M (a, b, c, d) =

{
(a ∨ b) ∧ (c ∨ d) if (a ∨ b) ∧ (c ∨ d) /∈ {0, a, b, c, d, a ∨ b, c ∨ d},
a otherwise.

In this study we will see that with respect to the new notion of substructure
introduced in Definition 1.4 there is hope for a rich mathematical theory, which
is potentially analogous to the situation for homogeneous graphs (see e.g. [17]).
In fact, we prove:

Theorem 1.5. There exists a homogeneous simple rank 3 ∧-matroid M∗ which
is universal for the class of finite simple ∧-matroids of rank ≤ 3.
3A geometric lattice is a semi-modular point lattice without infinite chains. For more on this
see e.g. [12, Section 2], [4, Chapter 2] and [15].
4Clearly, in the definition of ∧(a, b, c, d), the only case in which we are interested is the first
case of the disjunction, i.e. when a ∨ b and c ∨ d are two distinct lines intersecting in a fifth
point p, in which case the vale of ∧(a, b, c, d) is indeed p. The way the definition of ∧(a, b, c, d)
is written is just a technical way to express this natural condition.
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Theorem 1.6. Let P be a finite projective plane, and MP the corresponding
simple rank 3 matroid. Then there exists a homogeneous simple ∧-matroid
M∗(P ) which is universal for the class of finite simple ∧-matroids of rank ≤ 3
omitting5 MP .

It might be argued that in the context of simple rank 3 matroids the homo-
geneous structure of Theorem 1.5 plays the role played by the random graph
[22] for the class of finite graphs, while the homogeneous structure of Theorem
1.5 plays the role played by the random Kn-free6 graph [9] for the class of finite
graph omitting Kn.

We then prove several facts of interest on the automorphism groups of the
homogeneous structures from Theorems 1.5 and 1.6.

Theorem 1.7. Let M∗ be as in Theorem 1.5 or Theorem 1.6. Then:

1. M∗ is not ℵ0-categorical;

2. M∗ has the independence property;

3. M∗ admits a stationary independence relation;

4. Aut(M∗) embeds the symmetric group Sym(ω);

5. if the age of M∗ has the extension property for partial automorphisms,
then Aut(M∗) has ample generics, and in particular it has the small index
property.

Finally, we give an application to projective geometry proving:

Corollary 1.8. Let M∗ be as in Theorem 1.5, and let F (M∗) be the free pro-
jective extension of M∗ (cf. [8]). Then:

1. F (M∗) embeds all the finite simple rank 3 matroids as subgeometries;

2. every f ∈ Aut(M∗) extends to an f̂ ∈ Aut(F (M∗));

3. f 7→ f̂ is an isomorphism from Aut(M∗) onto Aut(F (M∗));

4. Aut(F (M∗)) embeds the symmetric group Sym(ω).

We leave the following open questions:
Question 1. Let M∗ be as in Theorem 1.5 or Theorem 1.6.

1. Does Aut(M∗) have the small index property?

2. Does Aut(M∗) have ample generics?

Question 2.

5By this we mean that there is no injective map f : MP → N such that MP
∼= f(MP ).

6Kn denotes the complete graph on n vertices.
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1. Does the class of simple ∧-matroids of rank 3 have the extension property
for partial automorphisms?

2. Does the class of freely linearly ordered simple ∧-matroids of rank 3 have
the Ramsey property?

The only infinite homogeneous simple ∧-matroids of rank 3 known to the
author are the ones from Theorems 1.5 and 1.6, and the trivial one, i.e. in-
finitely many points and infinitely many lines incident with exactly two points.

Problem 1. Classify the countable homogeneous simple ∧-matroids of rank
3.

Concerning F (M∗), in [13] Kalhoff constructs a projective plane of Lenz-
Barlotti class V embedding all the finite simple rank 3 matroids. In [1] Baldwin
constructs some almost strongly minimal projective planes of Lenz-Barlotti
class I.1. We leave as an open problem the determination of the Lenz-Barlotti
class of F (M∗).

2. Preliminaries

For background on Fräıssé theory and homogeneous structures we refer to [10,
Chapter 6]. In particular, given a homogeneous structure M we refer to the
closure up to isomorphisms of the collection of finitely generated substructures
of M as the age of M and denote it by K(M). For background on the notions
on automorphism groups occurring in Theorem 1.7 see e.g. [14]. Concerning
free projective extensions see [8] and [11, Chapter XI]. Concerning the notion
of stationary independence:

Definition 2.1 ([23] and [19]). Let M be a homogeneous structure. We say
that a ternary relation A |̂ C B between finitely generated substructures of M
is a stationary independence relation if the following axioms are satisfied:

(A) (Invariance) if A |̂ C B and f ∈ Aut(M), then f(A) |̂ f(C) f(B);

(B) (Symmetry) if A |̂ C B, then B |̂ C A;

(C) (Monotonicity) if A |̂ C 〈BD〉 and A |̂ C B, then A |̂ 〈BC〉 D;

(D) (Existence) there exists A′ ≡B A such that A′ |̂ B C;

(E) (Stationarity) if A ≡C A′, A |̂ C B and A′ |̂ C B, then A ≡〈BC〉 A
′.

Definition 2.2. A projective plane is a linear space (cf. Definition 1.2) such
that:

(A’) every pair of distinct lines intersects in a unique point;

(B’) there exist at least four points no three of which are collinear.

For a definition of the notion of independence property of a first-order theory
see e.g. [20, Exercise 8.2.2].
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3. Proofs

We will prove a series of claims from which Theorems 1.5, 1.6 and 1.7 follow.

Lemma 3.1. The class of simple ∧-matroids of rank ≤ 3 is a Fräıssé class.

Proof. The hereditary property is clear. The joint embedding property is
easy and the amalgamation property is proved in [12, Theorem 4.2]. Notice
that the context of [12] is the study of geometric lattices in a language L′ =
{0, 1,∨,∧}, but keeping in mind Definition 1.3, Convention 1, and the fact that
we are considering ∧-matroids it is easy to see that the two context are indeed
equivalent.

Definition 3.2 ([?, Definition 6]). Let M be a homogeneous structure and
K = K(M) its age. We say that M has canonical amalgamation if there exists
an operation B1 ⊕A B2 on triples from K satisfying the following conditions:

(a) B1 ⊕A B2 is defined when A ⊆ Bi (i = 1, 2) and B1 ∩B2 = A;

(b) B1 ⊕A B2 is an amalgam of B1 and B2 over A;

(c) if B1 ⊕A B2 and B′1 ⊕A′ B
′
2 are defined, and there exist fi : Bi

∼= B′i
(i = 1, 2) with f1 � A = f2 � A, then there is:

f : B1 ⊕A B2
∼= B′1 ⊕A′ B

′
2

such that f � B1 = f1 and f � B2 = f2.

Remark 3.3. Notice that the amalgamation from [12, Theorem 4.2] used to
prove Lemma 3.1 is canonical in the sense of Definition 3.2. We will denote
the canonical amalgam of M1 and M2 over M0 from [12, Theorem 4.2] as
M1 ⊕M0 M2 (when we use this notation we tacitly assume that M0 ⊆ M1,
M0 ⊆ M2 and M1 ∩M2 = M0). Notice that the amalgam M3 := M1 ⊕M0 M2

can be characterized as the following ∧-matroid:

1. M3 = M1 ∪M2 (i.e. M1 ∪M2 is the domain of M3);

2. RM3 = RM1∪RM2∪{{a, b, c} : a∨b = a∨c = b∨c = a′∨b′ and {a′, b′} ⊆
M0};

3. ∧M3
(a, b, c, d) = a, unless a∨b = a′∨b′, c∨d = c′∨d′ and ∧M`

(a′, b′, c′, d′) 6=
a′, for some ` = 1, 2 and {a′, b′, c′, d′} ⊆M`, in which case:

∧M3
(a, b, c, d) = ∧M`

(a′, b′, c′, d′).

The intuition behind (3) is that the value of the function symbol ∧M3(a, b, c, d)
is trivial unless a ∨ b and c ∨ d are two intersecting lines from one of the M`

(` = 1, 2).
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Lemma 3.4. Let P be a finite projective plane, and MP the corresponding
matroid. The class of simple ∧-matroids N of rank ≤ 3 omitting7 MP is a
Fräıssé class.

Proof. Also in this case, the only non-trivial part of the proof is amalgamation.
Let M0,M1,M2 be ∧-matroids omitting MP and such that M0 ⊆M1, M0 ⊆M2

and M1 ∩M2 = M0. Let M3 := M1 ⊕M0
M2 be as in Remark 3.3. We want to

show that M3 does not embed MP , but this is clear noticing that by Remark
3.3 we have:

(i) if j ∈ {1, 2} and ` is a line from Mj such that there are no a0, a1 in M0

with ` = a0∨a1, then the number of points incident with ` in Mj is equal
to the number of points incident with ` in M3;

(ii) if ` is a line of M3 which is incident with at most one point of M1 and
at most one point of M2, respectively, then ` is incident with exactly two
points.

We can now prove Theorems 1.5 and 1.6.

Proof of Theorems 1.5 and 1.6. This follows from Lemmas 3.1 and 3.4 using
Fräıssé theory (see e.g. [10, Chapter 6]).

The following lemma establishes the non ℵ0-categoricity of the homogeneous
structures of Theorems 1.5 and 1.6.

Lemma 3.5. For every n < ω there exists a finite simple rank 3 ∧-matroid
M(n) of size 6 + (n + 1), and 6 distinct points p1, .., p6 ∈ M(n) such that
〈p1, ..., p6〉M(n) = M(n), where 〈A〉B denotes the substructure generated by
A in B. Furthermore, M(n) can be taken such that it does not contain any
projective plane.

Proof. By induction on n < ω, we construct a finite simple rank 3 ∧-matroid
M(n) such that:

(a) the domain of M(n) is {p−1 , p
−
2 , p

+
1 , p

+
2 , p

∗
1, p
∗
2, q0, ..., qn};

(b) |{p−1 , p
−
2 , p

+
1 , p

+
2 , p

∗
1, p
∗
2, q0, ..., qn}| = 6 + (n + 1);

(c) if n is even, then p−1 ∨ qn and p−2 ∨ p∗1 are parallel in M(n);

(d) if n is odd, then p+1 ∨ qn and p+2 ∨ p∗2 are parallel in M(n);

(e) 〈p−1 , p
−
2 , p

+
1 , p

+
2 , p

∗
1, p
∗
2〉M(n) = M(n).

7Recall that by this we mean that there is no injective map f : MP → N such that MP
∼=

f(MP ).
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n = 0. Let M be the simple rank 3 ∧-matroid with domain {p−1 , p
−
2 , p

+
1 p

+
2 , p

∗
1, p
∗
2}

such that are no hyper-edges (i.e. every line is incident with exactly two points).
Add to M the point q0 which is incident only with the lines p+1 ∨p

+
2 and p∗1∨p∗2

(which are parallel in M), and let M(0) be the resulting ∧-matroid.
n = 2k + 1. Let M(n− 1) be constructed, then M(n− 1) contains the lines

p−1 ∨q2k and p−2 ∨p∗1, and, by induction hypothesis, they are parallel in M(n−1).
Add to M(n − 1) the point qn which is incident only with the lines p−1 ∨ q2k
and p−2 ∨ p∗1 which are parallel in M(n − 1)), and let M(n) be the resulting
∧-matroid.

n = 2k > 0. Let M(n − 1) be constructed, then M(n − 1) contains the
lines p+1 ∨ q2k−1 and p+2 ∨ p∗2, and, by induction hypothesis, they are parallel in
M(n− 1). Add to M(n− 1) the point qn which is incident only with the lines
p+1 ∨ q2k−1 and p+2 ∨ p∗2, and let M(n) be the resulting ∧-matroid.

Lemma 3.6. Let M∗ be as in Theorem 1.5 or Theorem 1.6. Then M∗ has the
independence property.

Proof. As in [12, Theorem 4.6].

Lemma 3.7. Let M∗ be as in Theorem 1.5 or Theorem 1.6. For every finite
substructures A,B,C of M∗, define A |̂ C B if and only if 〈A,B,C〉M∗ ∼=
〈A,C〉M∗ ⊕C 〈B,C〉M∗ . Then A |̂ C B is a stationary independence relation.

Proof. Easy to see using Remark 3.3.

Lemma 3.8. Let M∗ be as in Theorem 1.5 or Theorem 1.6. If f ∈ Sym(M∗)
induces an automorphism of Aut(M∗) (i.e. g 7→ fgf−1 ∈ Aut(Aut(M∗))), then
f ∈ Aut(M∗).

Proof. First of all, notice that if M is a simple rank 3 ∧-matroid and M− is
the reduct of M to the language L = {R} then we have that f ∈ Aut(M) if
and only if f ∈ Aut(M−). Thus if f /∈ Aut(M∗), then f /∈ Aut(M−∗ ), i.e. there
exists a set {a, b, c} ⊆ M∗ such that either {a, b, c} is dependent in M∗ and
{f(a), f(b), f(c)} is independent in M∗, or {a, b, c} is independent in M∗ and
{f(a), f(b), f(c)} is dependent in M∗. Modulo replacing f with f−1, we can
assume, that {a, b, c} is independent in M∗ and {f(a), f(b), f(c)} is dependent
in M∗. Suppose now that in addition f induces an automorphism of Aut(M∗).
Since M∗ is homogeneous, it is easy to see that f has to send dependent sets
of size 3 to independent sets of size 3. Now, by Definition 1.1, if R(a, b, c) and
R(a, b, d), then {a, b, c, d} is an R-clique. On the other hand, trivially in M∗
we can find distinct points {a, b, c, d} such that {a, b, c} is an independent set,
{a, b, d} is an independent set, and {b, c, d} is not an independent set. Hence,
we easily reach a contradiction.

Remark 3.9. Notice that the linear space P consisting of infinitely many points
and infinitely many lines incident with exactly two points satisfies Aut(P ) ∼=
Sym(ω).
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Proof of Theorem 1.7. Item (1) follows from Lemma 3.5. Item (2) is Lemma
3.6. Item (3) follows from Lemma 3.7. Item (4) follows from item (3), the
main result of [19] and Remark 3.9. Item (5) follows from Remark 3.3 (JEP
for partial automorphisms is easy to see), [14, Theorem 1.6], and [14, Theorem
6.2].

Proof of Corollary 1.8. Notice that every point and every line of M∗ is con-
tained in a copy of the Fano plane (which is a confined configuration, in the
terminology of [11, pg. 220]). Thus, the result follows from [11, Theorem 11.18]
or [18, Lemma 1].
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