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A Class of Abelian Rings

Una clase de anillos abelianos

Sait Halicioglu1,a, Abdullah Harmanci2,b, Burcu Ungor1,c

Abstract. Let R be a ring with identity and J(R) denote the Jacobson radical
of R. A ring R is called J-abelian if ae − ea ∈ J(R) for any a ∈ R and any
idempotent e in R. In this paper, many characterizations of J-abelian rings
are given. We prove that every J-Armendariz ring is J-abelian. We show that
the class of J-abelian rings lies strictly between the class of abelian rings and
the class of directly finite rings.
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Resumen. Sea R un anillo dotado de la identidad y sea J(R) el radical de
Jacobson de R. Un anillo R se llama J-abeliano si ae− ea ∈ J(R) para todo
a ∈ R y algún e idempotente en R. En este art́ıculo, se dan muchas caracteri-
zaciones de anillos J-abelianos. Demostramos que cada anillo J-Armendariz es
J-abeliano. Mostramos que la clase de los anillos J-abelianos se ubica estricta-
mente entre la clase delos anillos abelianos y la clase de los anillos directamente
finitos.
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1. Introduction

Throughout this paper, all rings considered are associative with an identity
unless otherwise stated. In what follows, Z and Q denote the ring of integers
and the ring of rational numbers and for a positive integer n, Zn is the ring
of integers modulo n. We write Mn(R) for the ring of all n × n matrices and
Tn(R) for the ring of all n × n upper triangular matrices over R. Also we
write R[x], R[[x]], U(R) and J(R) for the polynomial ring, the power series
ring over a ring R, the set of all invertible elements and the Jacobson radical
of R, respectively.
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A ring is said to be abelian [1] if all of its idempotents are central. A
ring (possibly without identity) is called reduced if it has no nonzero nilpotent
elements. Reduced rings are easily shown to be abelian, but there are many
commutative (hence abelian) rings which are not reduced.

In this paper, we introduce a class of rings so-called J-abelian rings which
generalizes abelian rings. A ring R is called J-abelian if ae− ea ∈ J(R) for any
a ∈ R and any idempotent e in R. Clearly, abelian rings are J-abelian, but the
converse is not true in general. We supply an example to show that J-abelian
rings need not be abelian (Example 2.2). We investigate characterizations of
J-abelian rings and present some families of J-abelian rings. J-abelian rings
are abundant. It is well known that all commutative rings, reduced rings,
symmetric rings, reversible rings, semicommutative rings are abelian and so J-
abelian. We show that all J-clean rings, Armendariz rings, J-quasipolar rings
and local rings are J-abelian.

2. J-Abelian Rings

In this section we introduce a class of rings, called J-abelian rings, which is
a generalization of abelian rings. We investigate which properties of abelian
rings hold for this general setting. We give relations between J-abelian rings
and some related rings.

We now give our main definition.

Definition 2.1. A ring R is called J-abelian if for any a ∈ R and e2 = e ∈ R,
ae− ea ∈ J(R).

One may suspect that J-abelian rings are abelian, but the following example
erases this possibility.

Example 2.2. Let F be a field and consider the ring R =

 F F F
0 F F
0 0 F

.

Then J(R) =

 0 F F
0 0 F
0 0 0

. For any A,B ∈ R, the main diagonal entries of

AB − BA are zero and so AB − BA ∈ J(R). Hence R is J-abelian. It is well
known that R is not abelian.

In [13], Rege and Chhawchharia introduced the notion of an Armendariz
ring. A ring R is called Armendariz if for any f(x) =

∑n
i=0 aix

i, g(x) =∑s
j=0 bjx

j ∈ R[x], f(x)g(x) = 0 implies that aibj = 0 for all i and j. The
name of the ring was given due to Armendariz who proved that reduced rings
satisfy this condition. Recently, J-Armendariz rings were defined by the present
authors in [5], that is, a ring R is called J-Armendariz if for any f(x) =
n∑

i=0

aix
i, g(x) =

m∑
j=0

bjx
j ∈ R[x], f(x)g(x) = 0 implies that aibj ∈ J(R) for all
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0 ≤ i ≤ n, 0 ≤ j ≤ m. In [6, Lemma 7], Kim and Lee proved that Armendariz
rings are abelian. Then we obtain the similar result for J-abelian rings.

Lemma 2.3. If R is a J-Armendariz ring, then it is J-abelian.

Proof. Let a, e2 = e ∈ R. Consider the polynomials f1(x) = e − ea(1 − e)x,
g1(x) = (1−e)+ea(1−e)x, f2(x) = (1−e)−(1−e)ax and g2(x) = e+(1−e)aex ∈
R[x]. Then f1(x)g1(x) = f2(x)g2(x) = 0. Since R is J-Armendariz, we have
ea− eae ∈ J(R) and ae− eae ∈ J(R). Therefore ea− ae ∈ J(R).

Clean rings were introduced by Nicholson in [10] as a class of exchange
rings. A ring R is called strongly clean if every element of R is the sum of a
unit and an idempotent which commute. The notion of clean ring is studied by
many authors. In [3], strongly J-clean rings are introduced, that is, a ring R
is called strongly J-clean if for every x ∈ R, there exists an idempotent e ∈ R
such that x = e + j and ej = je with j ∈ J(R). Similar to the definition of
strongly J-clean rings, one can define J-clean rings. A ring R is called J-clean
if for every x ∈ R, there exist an idempotent e ∈ R and j ∈ J(R) such that
x = e+ j. Then we have the following result.

Lemma 2.4. Every J-clean ring is J-abelian.

Proof. Assume that R is J-clean. Let a ∈ R and e be an idempotent in R.
The ring R being J-clean implies a = f + b where b ∈ J(R) and f2 = f ∈ R.
Then ae − eae = (fe − efe) + (be − ebe). Note that be − ebe ∈ J(R). On
the other hand, (fe− efe)2 = 0 and fe− efe = g + j for some j ∈ J(R) and
g2 = g ∈ R. Hence (fe−efe)2 = (g+j)2 = g+gj+jg+j2 = 0 yields g ∈ J(R).
So we can conclude that fe−efe ∈ J(R). Thus ae−eae ∈ J(R). Analogously,
ea− eae ∈ J(R). Therefore ae− ea ∈ J(R) and so R is J-abelian.

Let R be a ring. According to Koliha and Patricio [7], the commutant and
double commutant of a ∈ R are defined by comm(a) = {x ∈ R | xa = ax},
comm2(a) = {x ∈ R | xy = yx for all y ∈ comm(a)}, respectively. In [4],
the element a is called J-quasipolar if there exists p2 = p ∈ comm2(a) such
that a + p ∈ J(R). Then R is called J-quasipolar if every element of R is
J-quasipolar.

Proposition 2.5. Let R be a ring. If R is J-quasipolar, then it is J-abelian.

Proof. The proof is similar to the proof of Lemma 2.4.

Let J#(R) denote the subset {x ∈ R | ∃ n ∈ N such that xn ∈ J(R)} of
R. It is obvious that J(R) ⊆ J#(R), but the converse is not true in general.
Consider the ring R = M2(Z2). Then

J#(R) =

{[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
1 1
1 1

]}
,

while J(R) = 0.
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Recall that a ring R is called local if it has only one maximal left ideal
(equivalently, maximal right ideal). It is well known that a ring R is local if
and only if a+ b = 1 in R implies that either a or b is invertible if and only if
R/J(R) is a division ring. In [12, Lemma 1], it is proved that if R is a local
ring, then J(R) = J#(R). From the following result we can say that every
local ring is J-abelian.

Proposition 2.6. Let R be a ring. If J(R) = J#(R), then R is J-abelian.

Proof. Assume that J(R) = J#(R) and a, e2 = e ∈ R. Since (ae− eae)2 = 0
and (ea− eae)2 = 0, ae− eae, ea− eae ∈ J#(R). Being J(R) = J#(R) implies
ae− ea ∈ J(R).

Note that R/J(R) is J-abelian if and only if R/J(R) is abelian, since
J(R/J(R)) = 0. Then we have the following result.

Lemma 2.7. If R/J(R) is an abelian ring, then R is J-abelian. The converse
holds if idempotents lift modulo J(R).

Proof. One direction is clear. Assume that R is J-abelian. Let a ∈ R/J(R)
and e be an idempotent in R/J(R). By hypothesis, there exists f2 = f ∈ R
such that e = f . Since R is J-abelian, af −fa ∈ J(R), and so ae = af = fa =
ea. Therefore R/J(R) is abelian.

Recall that a ring R is called directly finite whenever a, b ∈ R, ab = 1 implies
ba = 1. Then we have the following.

Lemma 2.8. Every J-abelian ring is directly finite.

Proof. Let R be a J-abelian ring and assume that ab = 1 for a, b ∈ R and e =
1− ba. Since R is J-abelian, ea−ae = a− ba2 ∈ J(R). Then ab− ba2b ∈ J(R),
and so 1− ba ∈ J(R). Hence 1− ba = 0, so ba = 1.

Every J-abelian ring is directly finite, but directly finite rings may not be
J-abelian as the following example shows. On the other hand, this example
also shows that the class of J-abelian rings is not closed under homomorphic
images.

Example 2.9. Let S = Z(3) be the localization of Z at 3Z and let Q be the set
of quaternions over the ring S. It is well-known that Q is a noncommutative
domain. So it is J-abelian and directly finite. Further, J(Q) = 3Q and R =
Q/J(Q) is isomorphic to 2 × 2 full matrix ring over Z3. It is clear that R is
not abelian. Since J(R) = 0, R is not J-abelian.

In [11], Nicholson asked whether a strongly clean ring is directly finite.
Since every J-clean ring is clean, we provide a partial answer for this question,
namely, we prove that every J-clean ring is directly finite.

Theorem 2.10. If R is a J-clean ring, then it is directly finite.
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Proof. It follows from Lemma 2.4 and Lemma 2.8.

A left R-module M has finite exchange property if for every left R-module
A and any two decompositions A = M ′ ⊕N = ⊕i∈IAi with M ′ ∼= M and I a
finite set, there exists A′i ⊆ Ai such that A = M ′ ⊕ (⊕i∈IA

′
i). In [14], a ring

R is called exchange if RR has a finite exchange property. This definition is
left-right symmetric. In [10], Nicholson studied exchange rings and introduced
clean rings. He showed that clean rings are exchange. Later, some authors
investigate under which conditions exchange rings are clean. It is well known
that abelian exchange rings are clean. We now give a more general result.

Theorem 2.11. Let R be a ring. If R is clean, then it is exchange. The
converse holds if R is J-abelian.

Proof. One direction is clear. Assume that R is exchange and J-abelian. Since
the exchange property implies that idempotents lift modulo J(R) (see [10,
Corollary 2.4]), and R is J-abelian, R/J(R) is abelian by Lemma 2.7. Thus
R/J(R) is clean from [10]. Therefore R is clean, by [2, Proposition 7].

Let I be an ideal of a ring R. One may suspect that if R/I is J-abelian,
then R is J-abelian. But the following example shows that this is not true in
general.

Example 2.12. Let R be a ring, S = M2(R) and I denote the ideal generated
by the commutators of S. Then S/I is commutative and so it is J-abelian. On
the other hand, by Example 3.7, S is not J-abelian.

We will prove that if I is a nil ideal of a ring R and R/I is J-abelian, then
so is R.

Lemma 2.13. Let R be a ring and I a nil ideal of R. If R/I is J-abelian,
then R is J-abelian.

Proof. Let a ∈ R and e be an idempotent in R. Then (ae− ea) + I ∈ J(R/I).
1− (ea− ae)x+ I ∈ U(R/I), for any x ∈ R. So there exists y + I ∈ R/I such
that (1 − (ea − ae)x)y + I = 1 + I. Then, 1 − (1 − (ea − ae)x)y ∈ I. Since
I is nil, (1 − (ea − ae)x)y ∈ U(R). Hence, 1 − (ea − ae)x is right invertible.
Similarly, it can be shown that 1 − (ea − ae)x is left invertible. So we have
1−(ea−ae)x ∈ U(R). Therefore ea−ae ∈ J(R), which completes the proof.

Note that a direct product of J-abelian ring is again J-abelian.

Proposition 2.14. Let {Ri}i∈I be a class of rings for an index set I. Then∏
i∈I

Ri is J-abelian if and only if for each i ∈ I, Ri is J-abelian.

Proof. Let Ri be J-abelian for all i ∈ I, (ai)i∈I ∈
∏
i∈I

Ri and (ei)i∈I be an

idempotent of
∏
i∈I

Ri. By hypothesis eiai − aiei ∈ J(Ri) for all i ∈ I. Hence
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(ei)(ai) − (ai)(ei) ∈ J(
∏
i∈I

Ri) =
∏
i∈I

J(Ri). Therefore
∏
i∈I

Ri is J-abelian. The

converse is clear.

The following result is a direct consequence of Proposition 2.14.

Corollary 2.15. Let R be a ring. Then eR and (1 − e)R are J-abelian for
some central idempotent e ∈ R if and only if R is J-abelian.

If R is J-abelian and e2 = e ∈ R, we now show that the corner ring eRe is
again J-abelian.

Lemma 2.16. If R is a J-abelian ring, then the corner ring eRe is J-abelian
for any e2 = e ∈ R.

Proof. Let eae ∈ eRe and efe be an idempotent in eRe. By hypothesis
a(efe) − (efe)a ∈ J(R) for a ∈ R. Then (eae)(efe) − (efe)(eae) ∈ eJ(R)e.
Since eJ(R)e = J(eRe), (eae)(efe) − (efe)(eae) ∈ J(eRe). Thus eRe is J-
abelian.

Let R be a ring and I an ideal of R. Then I is called J-abelian if for any
a, e2 = e ∈ I, ea− ae ∈ J(I). Then we have the following result.

Proposition 2.17. Let R be a ring and I an ideal of R. If R is J-abelian,
then I is J-abelian.

Proof. Let a ∈ I and e an idempotent in I. Since R is J-abelian, ea − ae ∈
J(R). So ea− ae ∈ J(I) = J(R) ∩ I.

Theorem 2.18. Let I be an ideal of a J-abelian ring T and R a subring of T
with I ⊆ R. If R/I is J-abelian, then R is J-abelian.

Proof. Assume that a, e2 = e ∈ R. This implies that ae − ea ∈ J(T ). Then
for every r ∈ R, 1 − (ae − ea)r ∈ U(T ). Hence there exists t ∈ T such
that t(1 − (ae − ea)r) = 1. Since e is idempotent in R/I and R/I is J-
abelian, ae − ea ∈ J(R/I) and 1 − (ae − ea)r ∈ U(R/I). Thus there exists
s ∈ R/I such that (1 − (ae − ea)r)s = 1. Therefore 1 − (1 − (ae − ea)r)s ∈
I. So t(1 − (1 − (ae− ea)r)s) = t − s ∈ I. It follows that t ∈ R. Being
t(1 − (ae − ea)r) = 1 implies 1 − (ae − ea)r is left invertible in R. Similarly,
1− (ae− ea)r is also right invertible in R. Finally 1− (ae− ea)r ∈ U(R) and
so ae− ea ∈ J(R).

Corollary 2.19. Every finite subdirect product of J-abelian rings is J-abelian.

Proof. Let R be a ring such that R/I and R/K are J-abelian where I, K
are ideals of R and I ∩ K = 0. To show that R is J-abelian consider the
map f : R → R/I ⊕ R/K which is defined by f(r) = (r + I, r + K). Then,
R ∼= Im(f) since I∩K = 0. By hypothesis, R/I⊕R/K and Im(f)/f(I) ∼= R/I
are J-abelian. Since f(I) ⊆ Im(f) ⊆ R/I ⊕R/K, R is J-abelian by Theorem
2.18.
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Corollary 2.20. Let R be a J-abelian ring, I be an ideal of R. If S is a
J-abelian subring of R, then I + S is J-abelian.

Proof. We have I ⊆ I+S ⊆ R. Since (I+S)/I is J-abelian, I+S is J-abelian
by Theorem 2.18.

Corollary 2.21. Let I and K be ideals of a ring R. If R/I and R/K are
J-abelian, then R/(I ∩K) is J-abelian.

Proof. Let f : R/(I∩K)→ R/I and g : R/(I∩K)→ R/K with f(r+I∩K) =
r + I and g(r + I ∩ K) = r + K. Thus f and g are epimorphisms where
ker(f) ∩ ker(g) = 0. Then R/(I ∩ K) is the subdirect product of R/I and
R/K. Also it is known that R/I ∼= (R/(I ∩K))/(I/(I ∩K)) and I/(I ∩K) ⊆
R/(I ∩K) ⊆ R/I. From Corollary 2.19, R/(I ∩K) is J-abelian.

Let R be a ring. Then S = {(x, y) ∈ R × R : x − y ∈ J(R)} is a subring
of R × R with (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and (x1, y1)(x2, y2) =
(x1x2, y1y2).

Theorem 2.22. The following are equivalent for a ring R.

1. R is J-abelian.

2. S = {(x, y) ∈ R×R : x− y ∈ J(R)} is J-abelian.

Proof. (1) ⇒ (2) It is clear that S is a subring of R×R. Consider the ideals
I = 0 × J(R) and J = J(R) × 0 of S. Then, I ∩ J = 0 and S/I ∼= R ∼= S/J .
Hence, S is a subdirect product of R and so the proof is completed by Corollary
2.19.

(2) ⇒ (1) Let e be an idempotent in R and a ∈ R. Since S is J-abelian,
(x, y)(f, g) − (f, g)(x, y) ∈ J(S) for any (x, y) ∈ S and (f, g)2 = (f, g) ∈ S.
In particular, for (a, a) ∈ S and (e, e)2 = (e, e) ∈ S, we have (a, a)(e, e) −
(e, e)(a, a) ∈ J(S). Hence, for every x ∈ R, (1, 1) − (ae − ea, ae − ea)(x, x) ∈
U(S). Thus, we have (1− (ae− ea)x, 1− (ae, ea)x) ∈ U(S). This implies that
1− (ae− ea)x ∈ U(R). Consequently, ae− ea ∈ J(R), as asserted.

3. Extensions of J-abelian rings

In this section, we study some extensions of J-abelian rings. In particular, we
investigate under what conditions the polynomial ring R[x], the power series
ring R[[x]], the Dorroh extension of R, the formal triangular matrix ring and
some subrings of the ring of all n× n matrices Mn(R) are J-abelian.

By [6, Lemma 8], a ring R is abelian if and only if the polynomial ring R[x]
is abelian. It is clear that if R is abelian, then R[x] is abelian and so R[x] is
J-abelian. For the converse we have the following.

Proposition 3.1. Let R be a ring. If R[x] is J-abelian, then R is J-abelian.
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Proof. Assume that R[x] is J-abelian. Let e2 = e ∈ R and a ∈ R be an
arbitrary element of R. Since R[x] is J-abelian, ae − ea ∈ J(R[x]). Then
1 − (ae − ea)r is invertible in R[x] for all r ∈ R and so ae − ea ∈ J(R).
Therefore R is J-abelian.

Proposition 3.2. Let R be a ring. Then the power series ring R[[x]] is J-
abelian if and only if R is J-abelian.

Proof. It can be easily seen by the fact that J(R[[x]]) = J(R)+ < x >.

Let R be a ring and D(Z, R) denote the Dorroh extension of R by the ring
of integers Z. Then D(Z, R) is the ring defined by the direct sum Z⊕ R with
componentwise addition and multiplication (n, r)(m, s) = (nm, ns + mr + rs)
where (n, r), (m, s) ∈ D(Z, R). By [9], J(D(Z, R)) = (0, J(R)).

Theorem 3.3. Let R be a ring. Then R is J-abelian if and only if D(Z, R) is
J-abelian.

Proof. Assume that R is J-abelian. Let (n, r) ∈ D(Z, R) and (m, s) be an
idempotent in D(Z, R). Then (m, s)2 = (m, s) implies m2 = m and 2ms+s2 =
s. Hence m = 0 or m = 1. The case m = 0 implies s is an idempotent. If
m = 1, then −s is an idempotent and (n, r)(1, s)− (1, s)(n, r) = (0, s2r− rs2).
Since s2r− rs2 ∈ J(R), (n, r)(m, s)− (m, s)(n, r) ∈ J(D(Z, R)). Thus D(Z, R)
is J-abelian.

Conversely, suppose that D(Z, R) is J-abelian. Since R is isomorphic to
the ideal {(0, r) | r ∈ R} ⊆ D(Z, R), R is J-abelian.

Let R be a ring and S a subring of R. Consider the set

T [R,S] = {(r1, r2, · · · , rn, s, s, · · · ) : ri ∈ R, s ∈ S, n ∈ Z+, 1 ≤ i ≤ n}.

Then T [R,S] is a ring under the componentwise addition and multiplication.
In [8], it is shown that J(T [R,S]) = T [J(R), J(R)∩ J(S)]. In the following we
give necessary and sufficient conditions for T [R,S] to be J-abelian.

Proposition 3.4. Let R be a ring and S a subring of R. Then the following
are equivalent.

1. T [R,S] is J-abelian.

2. R and S are J-abelian.

Proof. (1) ⇒ (2) Let a ∈ R, e2 = e ∈ R. Set X = (a, 0, 0, · · · ) and Y =
(e, 0, 0, · · · ). Then Y 2 = Y . By (1), AE − EA ∈ J(T [R,S]). Hence ae− ea ∈
J(R) and R is J-abelian. Let s, f2 = f ∈ S. Set X1 = (0, 0, s, s, s, s, · · · ) ∈
T [R,S] and Y1 = (0, 0, f, f, f, · · · ) ∈ T [R,S]. Then Y1 is an idempotent in
T [R,S]. By (1) X1Y1 − Y1X1 ∈ J(T [R,S]) = T [J(R), J(R) ∩ J(S)]. It follows
that sf − fs ∈ J(S). Hence R and S are J-abelian.
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(2) ⇒ (1) Let a = (a1, a2, · · · , an, b, b, · · · ) be an element of T [R,S] and
c = (c1, c2, · · · , cm, d, d, · · · ) be an idempotent in T [R,S]. Then all components
c1, c2,. . . , cm of c are idempotents in R and d is an idempotent in S.

We divide the proof into some cases:
Case I: n ≤ m. By (2) aici − ciai ∈ J(R) for 1 ≤ i ≤ n, bcj − cjb ∈ J(R)

for n+ 1 ≤ j ≤ m and bd− db ∈ J(R) ∩ J(S). Then ac− ca ∈ J(T [R,S]).
Case II: n > m. By (2) aici−ciai ∈ J(R) for 1 ≤ i ≤ m, ajd−daj ∈ J(R)

for m+ 1 ≤ j ≤ n and bd− db ∈ J(R) ∩ J(S). So ac− ca ∈ J(T [R,S]).

Let S and T be any rings, M an S-T -bimodule and R the formal triangular

matrix ring

[
S M
0 T

]
. It is well-known that J(R) =

[
J(S) M

0 J(T )

]
.

Proposition 3.5. Let R =

[
S M
0 T

]
. Then R is J-abelian if and only if S

and T are J-abelian.

Proof. The necessity is obvious by Lemma 2.16. Assume that S and T are

J-abelian. Let A =

[
a m
0 b

]
, E =

[
e n
0 f

]
∈ R such that E2 = E. Then

e and f are idempotent elements of S and T , respectively. Hence we have
ae − ea ∈ J(S) and bf − fb ∈ J(T ). Hence AE − EA ∈ J(R). Thus R is
J-abelian.

The following result is a direct consequence of Proposition 3.5.

Corollary 3.6. Let R be a ring. R is J-abelian if and only if T2(R) is J-
abelian.

For any positive integer n, the ring of all n × n matrices Mn(R) need not
be J-abelian as the following example shows.

Example 3.7. Consider the ring R = M2(Z), let A =

[
1 1
0 1

]
∈ R and

E =

[
0 0
0 1

]
be an idempotent in R. Since AE −EA =

[
0 1
0 0

]
6∈ J(R), R

is not a J-abelian ring.

In spite of the fact that Mn(R) is not J-abelian for any positive integer n,
we end this paper to show that there are J-abelian subrings of Mn(R). For
any ring R, let Tn(R) be the ring of n × n upper triangular matrices over R,
and Dn(R) the subring {(aij) ∈ Tn(R) | all diagonal entries of (aij) are equal}
and Vn(R) the subring of Tn(R) where n is a positive integer:

Vn(R) =





a1 a2 a3 . . . an−1 an
0 a1 a2 . . . an−2 an−1
0 0 a1 . . . an−3 an−2
...

...
...

. . .
...

...
0 0 0 . . . a1 a2
0 0 0 . . . 0 a1


| ai ∈ R, 1 ≤ i ≤ n


.
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The Jacobson radicals of Vn(R), Dn(R) and Tn(R) are given by

J(Vn(R)) = {(ai) ∈ Vn(R) | a1 ∈ J(R)} ,
J(Dn(R)) = {(aij) ∈ Dn(R) | aii ∈ J(R)} ,
J(Tn(R)) = {(aij) ∈ Tn(R) | aii ∈ J(R)} ,

respectively.

Theorem 3.8. Let R be a ring. For any positive integer n, the following
statements are equivalent.

(1) R is J-abelian.

(2) Tn(R) is J-abelian.

(3) Dn(R) is J-abelian.

(4) Vn(R) is J-abelian.

Proof. (1) ⇒ (2) Suppose that R is J-abelian. In order to prove Tn(R) is
J-abelian, let A = (aij), E

2 = E = (eij) ∈ Tn(R). Then AE−EA ∈ J(Tn(R))
since aiieii − eiiaii ∈ J(R) for all i with 0 ≤ i ≤ n by (1).

(2) ⇒ (3) and (3) ⇒ (4) are clear.
(4) ⇒ (1) Let a ∈ R and e be an idempotent in R. Assume that A is the

matrix having main diagonal entries a elsewhere 0 and E is the matrix having
main diagonal entries e elsewhere 0. Then AE − EA ∈ J(Vn(R)). Hence
ae− ea ∈ J(R).

Corollary 3.9. The following are equivalent for a ring R.

1. R is J-abelian.

2. R[x]/(xn) is J-abelian for any n ≥ 2.

Proof. It is well-known that R[x]/(xn) ∼= Vn(R). So the proof is clear, by
Theorem 3.8.
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