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On (k, n)-closed second submodules

Sobre sub-módulos (k,n)-cerrados de segunda clase

H. Ansari-Toroghy1,a, F. Farshadifar2,b, S. Maleki-Roudposhti3,c

Abstract. In this paper we introduce the concepts of semi n-absorbing second
and (k, n)-closed second submodules of modules over a commutative ring and
obtain some related results.
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Resumen. En este art́ıculo, introducimos los conceptos de sub-módulos semi-
ausorbentes segundos y (k, n)-cerrados segundos de módulos sobre un anillo
conmutativo y obtenemos algunos resultados relacionados.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity and n,
k are positive integers. Further, Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime
if for any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M)
[11]. A non-zero submodule S of M is said to be second if for each a ∈ R, the

homomorphism S
a→ S is either surjective or zero [14].

The concept of 2-absorbing ideals was introduced in [7] and then extended
to n-absorbing ideals in [1]. A proper ideal I of R is a 2-absorbing ideal of R
if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. Let I be a
proper ideal of R and n a positive integer. I is called an n-absorbing ideal of
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R if whenever x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R, then there are n of the xi’s
whose product is in I. A proper ideal I of R is said to be a (k, n)-closed ideal
of R if xk ∈ I for x ∈ R implies xn ∈ I [2].

A proper submodule N of M is called n-absorbing submodule of M if when-
ever a1 . . . anm ∈ N for a1, . . . , an ∈ R and m ∈ M , then either a1 . . . an ∈
(N :R M) or there are n−1 of ai’s whose product with m is in N [10]. A proper
submodule N of M is called a (k, n)-closed submodule of M if whenever r ∈ R,
m ∈ M with rkm ∈ N , then rn ∈ (N :R M) or rn−1m ∈ N . In particular,
we call N as a semi n-absorbing submodule of M if whenever r ∈ R, m ∈ M
with rnm ∈ N , then rn ∈ (N :R M) or rn−1m ∈ N [15]. It is clear that a semi
n-absorbing submodule is (n, n)-closed.

In [3], the authors introduced the notion of strongly 2-absorbing second
submodules as a the dual notion of 2-absorbing submodules and then extended
to strongly n-absorbing second submodules in [6]. A non-zero submodule N
of M is said to be a strongly 2-absorbing second submodule of M if whenever
a, b ∈ R, K is a submodule of M , and abN ⊆ K, then aN ⊆ K or bN ⊆ K
or ab ∈ AnnR(N). A non-zero submodule N of M is said to be a strongly n-
absorbing second submodule of M if whenever a1 . . . anN ⊆ K for a1, . . . , an ∈
R and a submodule K of M , then either a1 . . . an ∈ AnnR(N) or there are
n− 1 of ai’s whose product with N is a subset of K.

The purpose of this paper is to introduce the concepts of semi n-absorbing
second and (k, n)-closed second submodules of modules over a commutative
ring as dual notions of the concepts of semi n-absorbing and (k, n)-closed sub-
modules, respectively and investigate their basic properties.

2. Main Results

Let M be an R-module. A proper submodule N of M is said to be completely
irreducible if N =

⋂
i∈I Ni, where {Ni}i∈I is a family of submodules of M ,

implies that N = Ni for some i ∈ I. It is easy to see that every submodule of
M is an intersection of completely irreducible submodules of M [13].

We frequently use the following basic fact without further comment.

Remark 2.1. Let N and K be two submodules of an R-module M . To prove
N ⊆ K, it is enough to show that if L is a completely irreducible submodule
of M such that K ⊆ L, then N ⊆ L.

Definition 2.2. Let M be an R-module and N be a non-zero submodule of M .
We say that N is a (k, n)-closed second submodule of M if whenever r ∈ R and
K is a submodule of M with rkN ⊆ K, then rn ∈ AnnR(N) or rn−1N ⊆ K.
We say that M is a (k, n)-closed second module if M is a (k, n)-closed second
submodule of itself.

Clearly, every non-zero submodule is (k, n)-closed for 1 ≤ k < n; so we
often assume that 1 ≤ n ≤ k.
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Definition 2.3. Let M be an R-module and N be a non-zero submodule of
M . We say that N is a semi n-absorbing second submodule of M if whenever
r ∈ R and K is a submodule of M with rnN ⊆ K, then rn ∈ AnnR(N) or
rn−1N ⊆ K.

It is clear that every submodule of M is a semi n-absorbing second sub-
module if and only if it is a (n, n)-closed second submodule.

Theorem 2.4. Let N be a non-zero submodule of an R-module M . Then the
following statements are equivalent:

(a) N is a (k, n)-closed second submodule of M ;

(b) If r ∈ R and L is a completely irreducible submodule of M with rkN ⊆ L,
then rn ∈ AnnR(N) or rn−1N ⊆ L; In particular, a non-zero submodule
N of M is a semi n-absorbing second submodule of M if and only if
whenever r ∈ R, L a completely irreducible submodule of M with rnN ⊆
L, then rn ∈ AnnR(N) or rn−1N ⊆ L.

Proof. (a)⇒ (b) This is clear.
(b) ⇒ (a) Let N be a non-zero submodule of M , r ∈ R, and K be a

submodule of M with rkN ⊆ K. Assume on the contrary that rn−1N 6⊆ K
and rn 6∈ AnnR(N). Then there exists a completely irreducible submodule L of
M such that K ⊆ L but rn−1N 6⊆ L. Thus rkN ⊆ L. By part (b), rn−1N ⊆ L
or rn ∈ AnnR(N) which are contradictions.

Theorem 2.5. Let N be a non-zero submodule of an R-module M and k ≥ n.
Then the following statements are equivalent:

(a) N is a (k, n)-closed second submodule of M ;

(b) (K :R rkN) = (K :R rn−1N) or rn ∈ AnnR(N), where r ∈ R and K is
a submodule of M ;

(c) rkN = rn−1N or rn ∈ AnnR(N), where r ∈ R.

Proof. (a) ⇒ (b) Let r ∈ R and K be a submodule of M . Assume that
rn 6∈ AnnR(N) and s ∈ (K :R rkN). Then rkN ⊆ (K :R s). Since N is (k, n)-
closed second and rn 6∈ AnnR(N), we have rn−1N ⊆ (K :M s). It follows that
s ∈ (K :R rn−1N). Thus (K :R rkN) ⊆ (K :R rn−1N). The inverse inclusion
is always hold since k ≥ n.

(b) ⇒ (a) Let r ∈ R and K be a submodule of M with rkN ⊆ K. If
rn ∈ AnnR(N), then we are done. So assume that rn 6∈ AnnR(N). Then by
part (b), (K :R rkN) = (K :R rn−1N). Thus 1 ∈ (K :R rkN) implies that
1 ∈ (K :R rn−1N). Hence rn−1N ⊆ K, as needed.

(b) ⇒ (c) Let r ∈ R and rn 6∈ AnnR(N). Since k ≥ n, we have rkN ⊆
rn−1N . Now let L be a completely irreducible submodule of M such that
rkN ⊆ L. Then 1 ∈ (L :R rkN). By part (b), (L :R rkN) = (L :R rn−1N).
Hence 1 ∈ (L :R rn−1N) and so rn−1N ⊆ L, Thus rn−1N ⊆ rkN as needed.

(c)⇒ (b) This is clear.
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Theorem 2.6. Let N be a submodule of an R-module M . Then we have the
following.

(a) If N is a (k, n)-closed second submodule of M , then (K :R N) is a (k, n)-
closed ideal of R for each submodule K of M with N 6⊆ K.

(b) If (K :R N) is a (k, n)-closed ideal of R for each each submodule K of
M with N 6⊆ K, then N is a (k, n + 1)-closed second submodule of M .

Proof. (a) Assume on the contrary that rk ∈ (K :R N) and rn 6∈ (K :R N)
for some submodule K of M with N 6⊆ K. Then rkN ⊆ K but rnN 6⊆ K
and so rnN 6= 0. Now since N is a (k, n)-closed submodule of M , we have
rn−1 ∈ (K :R N) and so rn ∈ (K :R N), a contradiction. Thus (K :R N) is a
(k, n)-closed ideal of R for each submodule K of M with N 6⊆ K.

(b) Let rkN ⊆ K for some r ∈ R and a submodule K of M . If N ⊆ K,
we are done. So suppose that N 6⊆ K. Assume that rn+1 6∈ AnnR(N). Since
rk ∈ (K :R N) and (K :R N) is a (k, n)-closed ideal of R for each submodule
K of M with N 6⊆ K, we conclude that rn ∈ (K :R N). It follows that N is a
(k, n + 1)-closed second submodule of M .

Corollary 2.7. Let N be a (k, n)-closed second submodule of an R-module M .
Then AnnR(N) is a (k, n)-closed ideal of R.

Proof. Take K = 0 in Theorem 2.6 (a).

The following example shows that the converse of Corollary 2.7 (a) is not
true in general.

Example 2.8. Consider N = tZ as a submodule of the Z-module Z, where t is
a positive integer. Then clearly, AnnZ(tZ) = 0 is a (2, 1)-closed ideal of Z. But
since 22tZ ⊆ 4tZ, 20tZ 6⊆ 4tZ, and 21tZ 6= 0, we have tZ is not (2, 1)-closed
submodule of Z.

Proposition 2.9. Let N a submodule of an R-module M . If N is a semi n-
absorbing second submodule of M , then N is a (k, n)-closed second submodule
of M for all positive integer k.

Proof. If k ≤ n, the the claim is clear. So suppose that k > n. Let rkN ⊆ K
for some r ∈ R and a submodule K of M . Assume that rn 6∈ AnnR(N). Then
since rnN ⊆ (K :M rk−n) and N is semi n-absorbing second, we get that
rn−1N ⊆ (K :M rk−n). This implies that rk−1N ⊆ K. So we continue with
this argument and obtain that rn−1N ⊆ K and so N is a (k, n)-closed second
submodule of M .

Corollary 2.10. Let N be a submodule of an R-module M and k > n. Then N
is a (k, n)-closed second submodule of M if and only if N is a semi n-absorbing
second submodule of M .
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Proof. Let N be a (k, n)-closed second submodule of M and rnN ⊆ K for
r ∈ R and a submodule K of M . Then since k > n, we have rkN ⊆ K, and
this implies that either rn ∈ AnnR(N) or rn−1N ⊆ K. Thus N is a semi
n-absorbing second submodule of M . The reverse implication follows from
Proposition 2.9.

An R-module M is said to be semi-second if rM = r2M for each r ∈ R [4].

Theorem 2.11. Let M be an R-module. Then we have the following.

(a) If N is a semi-second submodule of M . Then N is a (k, n)-closed second
submodule of M for all positive integers k and n > 1. Moreover, N is a
semi n-absorbing second submodule of M for all positive integer n > 1.

(b) If {Ni}i∈I is a family of semi-second submodules of M , then
∑

i∈I Ni is
a (k, n)-closed submodule of M for all positive integers k and n > 1.

(c) If N is a strongly n-absorbing second submodule of M , then N is a semi
n-absorbing second submodule of M .

(d) If N is a (k, n)-closed second submodule of M , then N is a (k1, n1)-closed
second submodule of M for all k1 ≤ k and n1 ≥ n.

(e) If N is a semi n-absorbing second submodule of M , then N is a semi
n1-absorbing second submodule of M for all n1 ≥ n.

Proof. (a), (c), and (d) are clear from the definitions.
(b) Suppose that rk

∑
i∈I Ni ⊆ K for some r ∈ R and a submodule K of M .

Then rkNi ⊆ K for all i ∈ I. Since each Ni is semi-second, we conclude that
rNi ⊆ K for all i ∈ I. Thus r

∑
i∈I Ni ⊆ K which means that rn−1

∑
i∈I Ni ⊆

K for all n > 1, as needed.
(e) Let t = n1−n and rn1N ⊆ K for some r ∈ R and a submodule K of M .

Then rnN ⊆ (K :M rt). Thus by assumption, rnN = 0 or rn−1N ⊆ (K :M rt).
Thus rn1N = 0 or rn1−1N ⊆ K, as needed.

For a submodule N of an R-module M the the second radical (or second
socle) of N is defined as the sum of all second submodules of M contained in
N and it is denoted by sec(N) (or soc(N)). In case N does not contain any
second submodule, the second radical of N is defined to be (0) (see [9] and [5]).

Corollary 2.12. Let N be a non-zero submodule of an R-module M . Then
sec(N) and SocR(N) are (k, n)-closed second submodule of M for all integers
k and n. (Here SocR(N) denotes the sum of all minimal submodules of N .)

Proof. Since every minimal and every second submodule is a semi-second sub-
module, the results follows from part (b) of Theorem 2.11.

The following example shows that the converse of part (c) in Theorem 2.11
is not true in general.
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Example 2.13. Let M = Z30 as a Z-module. Since M ∼= Z2⊕Z3⊕Z5 is sum
of semi-second Z-modules, it is semi 2-absorbing second submodule of M by
Theorem 2.11 (b). However, M is not strongly 2-absorbing second submodule of
M . In fact 2×3Z30 ⊆ 6Z30 but 2Z30 6⊆ 6Z30 and 3Z30 6⊆ 6Z30 and 2×3Z30 6= 0.

Theorem 2.14. Let {Ni}i∈I be a chain of (k, n)-closed second submodules of
an R-module M . Then

∑
i∈I Ni is a (k, n)-closed second submodule of M .

Proof. Set N =
∑

i∈I Ni. Let rkN ⊆ K for some r ∈ R and a submodule K
of M . If rn ∈ AnnR(Ni) for all i ∈ I, then rn ∈ ∩i∈IAnnR(Ni) = AnnR(N)
and we are done. So suppose that rn 6∈ AnnR(Nj) for some j ∈ I. Then
rn 6∈ AnnR(Nt) for all Nj ⊆ Nt. Hence rn−1Nt ⊆ K for all Nj ⊆ Nt since each
Nt is (k, n)-closed second. Therefore rn−1

∑
i∈I Ni ⊆ K which means that N

is a (k, n)-closed second submodule of M .

The following example shows that the sum of two semi n-absorbing second
submodules may not be a semi n-absorbing second submodule in general.

Example 2.15. Consider M = Zpn ⊕ Zqn as Z-module. Clearly Zpn ⊕ 0
and 0 ⊕ Zqn both are strongly n-absorbing second submodules and so semi
n-absorbing second submodules of M by Theorem 2.11 (c). However pnM ⊆
0⊕Zqn , pn−1M 6⊆ 0⊕Zqn , and pnM 6= 0 implies that M is not semi n-absorbing
second submodule of M .

Definition 2.16. We say that a (k, n)-closed second submodule N of an R-
module M is a maximal (k, n)-closed second submodule of a submodule K of
M , if N ⊆ K and there does not exist a (k, n)-closed second submodule L of
M such that N ⊂ L ⊂ K.

Lemma 2.17. Let M be an R-module. Then every (k, n)-closed second sub-
module of M is contained in a maximal (k, n)-closed second submodule of M .

Proof. This proved easily by using Zorn’s Lemma and Theorem 2.14.

Theorem 2.18. Every Artinian R-module has only a finite number of maximal
(k, n)-closed second submodules.

Proof. Suppose that there exists a non-zero submodule N of M such that it
has an infinite number of maximal (k, n)-closed second submodules. Let S be a
submodule of M chosen minimal such that S has an infinite number of maximal
(k, n)-closed second submodules. Then S is not (k, n)-closed second submodule.
Thus there exist r ∈ R and a submodule K of M such that rkS ⊆ K but
rn−1S 6⊆ K and rnS 6= 0. Let V be a maximal (k, n)-closed second submodule
of M contained in S. Then rn−1V ⊆ K or rnV = 0. Thus V ⊆ (K :M rn−1)
or V ⊆ (0 :M rn). Therefore, V ⊆ (K :S rn−1) or V ⊆ (0 :S rn). By the choice
of S, the modules (K :S rn−1) and (0 :S rn) have only finitely many maximal
(k, n)-closed second submodules. Therefore, there is only a finite number of
possibilities for the module S, which is a contradiction.
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Theorem 2.19. Let M be an R-module. If N1 is a semi n1-absorbing second
and N2 is a semi n2-absorbing second submodule of M , then N1 + N2 is semi
(n + 1)-absorbing second submodule of M , where n = max{n1, n2}.

Proof. Let r ∈ R and K be a submodule of M such that rn+1(N1 + N2) ⊆
K. First observe by Corollary 2.10, N1 and N2 are (n + 1, n1)-closed second
and (n + 1, n2)-closed second submodules of M , respectively. Hence we have
rn1 ∈ AnnR(N1) or rn1−1N1 ⊆ K and rn2 ∈ AnnR(N2) or rn2−1N2 ⊆ K. If
rn1 ∈ AnnR(N1) and rn2 ∈ AnnR(N2), then rn ∈ AnnR(N1) ∩ AnnR(N2) =
AnnR(N1+N2). If rn1 ∈ AnnR(N1) and rn2−1N ⊆ K, then rn(N1+N2) ⊆ K.
Similarly, if rn2 ∈ AnnR(N2) and rn1−1N ⊆ K, then rn(N1 + N2) ⊆ K. For
the last, if rn1−1N1 ⊆ K and rn2−1N2 ⊆ K, then rn−1(N1 + N2) ⊆ K. Thus
we conclude either rn+1 ∈ AnnR(N1+N2) or rn(N1+N2) ⊆ K, as needed.

Proposition 2.20. Let M be a finitely cogenerated R-module such that ∩ni=1Li =
0, where each Li is a completely irreducible submodule of M for i = 1, . . . , n.
If N is a non-zero submodule of M , k > n, and (Li :R N) is a (k, n)-closed
ideal of R for all i = 1, . . . , n, then AnnR(N) is a (k, n)-closed ideal of R.

Proof. Assume that (Li :R N) is a (k, n)-closed ideal of R for all i = 1, . . . , n.
Suppose that rk ∈ AnnR(N) and rn 6∈ AnnR(N) for some r ∈ R. Then rn 6∈
(Lj :R N) for some j = 1, . . . , n. Hence rk 6∈ (Lj :R N), and so rk 6∈ AnnR(N),
which is a contradiction. Thus AnnR(N) is a (k, n)-closed ideal of R.

Definition 2.21. Let N be a non-zero submodule of an R-module M . We say
that N is a strongly semi n-absorbing second submodule of M if whenever I is
an ideal of R and K is a submodule of M with InN ⊆ K, then In ∈ AnnR(N)
or In−1N ⊆ K.

Definition 2.22. Let N be a non-zero submodule of an R-module M . We say
that N is a strongly (k, n)-closed second submodule of M if whenever I is an
ideal of R and K is a submodule of M with IkN ⊆ K, then In ∈ AnnR(N) or
In−1N ⊆ K.

Note that every strongly (k, n)-closed second submodule is a (k, n)-closed
second submodule of M . Clearly a (k, 1)-closed second submodule is also a
strongly (k, 1)-closed second submodule of M . Also observe that a strongly
semi n-absorbing second submodule is a semi n-absorbing second submodule
of M .

Theorem 2.23. Let N be a non-zero submodule of an R-module M . Then the
following statements are equivalent:

(a) N is a strongly (k, n)-closed second submodule of M ;

(b) If I is an ideal of R and L is a completely irreducible submodule of M
with IkN ⊆ L, then In ∈ AnnR(N) or In−1N ⊆ L;
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(c) For any ideal I of R and H ⊆ N a submodule of M with IkN ⊆ H
implies that In ∈ AnnR(N) or In−1N ⊆ H.

Proof. (a)⇒ (b) This is clear.
(b) ⇒ (a) Suppose that IkN ⊆ K for an ideal I of R and a submodule K

of M . Assume that In−1N 6⊆ K. Then there exists a completely irreducible
submodule L of M such that K ⊆ L but In−1N 6⊆ L. Since IkN ⊆ L, we
have In ∈ AnnR(N) by part (b). Thus N is a strongly (k, n)-closed second
submodule of M .

(a)⇒ (c) This is clear.
(c) ⇒ (a) Let K be a submodule of M and I an ideal of R such that

IkN ⊆ K. Hence IkN ⊆ K ∩ N . Put H = K ∩ N . Since N is strongly
(k, n)-closed second, we conclude that either In ∈ AnnR(N) or In−1N ⊆ H by
part (c). Thus In ∈ AnnR(N) or In−1N ⊆ K as needed.

Proposition 2.24. Let R be a principal ideal domain and N be a submodule
of an R-module M . Then the following statements are equivalent:

(a) N is a (k, n)-closed second submodule of M ;

(b) N is a strongly (k, n)-closed second submodule of M .

Proof. This is clear.

Proposition 2.25. Let N be a submodule of an R-module M . If N is a (k, n)-
closed second submodule of M , then IN is a (k, n)-closed second submodule of
M for all ideals I of R with I 6⊆ AnnR(N). Moreover; if N is a strongly
(k, n)-closed second submodule of M , then IkN = In−1N , where k ≥ n.

Proof. Suppose that rkIN ⊆ K for r ∈ R and a submodule K of M . Hence
rkN ⊆ (K :M I), which implies that either rn ∈ AnnR(N) or rn−1N ⊆
(K :M I). Thus rn ∈ AnnR(IN) or rn−1IN ⊆ K. Thus IN is a (k, n)-
closed second submodule of M for all ideals I of R. Now suppose that N is a
strongly (k, n)-closed second submodule of M . Since IkN ⊆ In−1N is always
true, it is sufficient to show the inverse inclusion. Let IkN ⊆ L for some
completely irreducible submodule L of M . Then we have In ∈ AnnR(N) or
In−1N ⊆ L by Theorem 2.23. If In−1N ⊆ L, then we are done. So suppose
that In ∈ AnnR(N). Thus Ik ∈ AnnR(N), as needed.

An R-module M is said to be a multiplication module if for every submodule
N of M there exists an ideal I of R such that N = IM [8].

Corollary 2.26. Let M be a multiplication (k, n)-closed second R-module.
Then every non-zero submodule of M is a (k, n)-closed second submodule of
M .

Proof. This follows from Proposition 2.25.
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Theorem 2.27. Let M be an R-module, N an (k, 2)-closed second submodule
of M , and I an ideal of R. Then we have the following.

(a) If Ik ⊆ AnnR(N), then 2I2 ⊆ AnnR(N).

(b) Suppose that 2 ∈ U(R) (here U(R) denotes the set of all units of R).
If Ik ⊆ AnnR(N), then I2 ⊆ AnnR(N) (i.e., AnnR(N) is a strongly
(k, 2)-closed ideal of R).

Proof. By Corollary 2.7, AnnR(N) is an (k, 2)-closed ideal of R. Thus the
result follows from [2, 2.6].

Let R be an integral domain. Recall that if for every element r of its field
of fractions F , at least one of r or r−1 belongs to R, then R is called valuation
domain.

Proposition 2.28. Let R be a valuation domain with quotient field F . Let
M be an R-module and N a non-zero submodule of M . Then N is a semi n-
absorbing second submodule of M if and only if whenever r ∈ F , H a submodule
of M with rn+1N ⊆ H implies that rnN ⊆ H or rn+1 ∈ AnnR(N).

Proof. Suppose that N is a semi n-absorbing second submodule of M . Assume
that rn+1N ⊆ H, but rn+1 6∈ AnnR(N), where r ∈ F , H a submodule of M . If
r ∈ R, then we are done. So assume that r 6∈ R. Since R is a valuation domain,
r−1 ∈ R. Hence we have r−1rn+1N = rnN ⊆ H. The converse is clear.

Theorem 2.29. Let f : M → Ḿ be a monomorphism of R-modules. Then we
have the following.

(a) If N is a (k, n)-closed (resp. semi n-absorbing) second submodule of M ,
then f(N) is a (k, n)-closed (resp. semi n-absorbing) second submodule
of Ḿ .

(b) If Ń is a (k, n)-closed (resp. semi n-absorbing) second submodule of Ḿ
and Ń ⊆ f(M), then f−1(Ń) is a (k, n)-closed (resp. semi n-absorbing)
second submodule of M .

Proof. (a) Let N be a (k, n)-closed second submodule of M . Since N 6= 0
and f is a monomorphism, we have f(N) 6= 0. Let r ∈ R, Ḱ be a submodule
of Ḿ , and rkf(N) ⊆ Ḱ. Then rkN ⊆ f−1(Ḱ). As N is (k, n)-closed second
submodule, rn−1N ⊆ f−1(Ḱ) or rnN = 0. Therefore,

rn−1f(N) ⊆ f(f−1(Ḱ)) = f(M) ∩ Ḱ ⊆ Ḱ

or rnf(N) = 0, as needed. For semi n-absorbing second, the proof can be easily
verified similar.

(b) If f−1(Ń) = 0, then f(M) ∩ Ń = ff−1(Ń) = f(0) = 0. Thus Ń = 0, a
contradiction. Therefore, f−1(Ń) 6= 0. Now let r ∈ R, K be a submodule of
M , and rkf−1(Ń) ⊆ K. Then

rkŃ = rk(f(M) ∩ Ń) = rkff−1(Ń) ⊆ f(K).
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As Ń is (k, n)-closed second submodule, rn−1Ń ⊆ f(K) or rnŃ = 0. Hence
rn−1f−1(Ń) ⊆ f−1f(K) = K or rnf−1(Ń) = 0, as desired. Similarly, for semi
n-absorbing second, the proof can be easily verified.

Corollary 2.30. Let M be an R-module and N ⊆ K be two submodules of M .
Then we have the following.

(a) If N is a (k, n)-closed (resp. semi n-absorbing) second submodule of K,
then N is a (k, n)-closed (resp. semi n-absorbing) second submodule of
M .

(b) If N is a (k, n)-closed (resp. semi n-absorbing) second submodule of M ,
then N is a (k, n)-closed (resp. semi n-absorbing) second submodule of
K.

Proof. This follows from Theorem 2.29 by using the natural monomorphism
K →M .

Proposition 2.31. Let M1, M2 be R-modules with M = M1 ⊕M2, and let
N1, N2 be non-zero submodules of M1, M2, respectively. N1 is a (k1, n1)-closed
second submodule of M1 if and only if N1⊕0 is a (k, n)-closed second submodule
of M1 ⊕M2 for all positive integers k1 ≤ k and n ≥ n1.

Proof. This is straightforward.

Theorem 2.32. Let R be an integral domain and N be a non-zero submodule
of an R-module M . Let AnnR(N) = ptR, where p is prime element of R
and t > 0. If N is a (k, n)-closed second submodule of M , then we have the
following.

(a) t = ka + r, where a and r are integers such that a ≥ 0, 1 ≤ r ≤ n,
a(k mod n) + r ≤ n, and if a 6= 0, then k = n + c for an integer c with
1 ≤ c ≤ n− 1.

(b) If k = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n − 1, then
t ∈ {1, . . . , n}. If k = n + c for an integer c with 1 ≤ c ≤ n − 1, then
t ∈ ∪nh=1{ki + h : i ∈ Z and 0 ≤ ic ≤ n− h}.

Proof. Suppose that N is a (k, n)-closed second submodule of M . Then
AnnR(N) is a (k, n)-closed ideal of R by Corollary 2.7. Thus the result follows
from [2, 3.1].

Corollary 2.33. Let R be an integral domain and N be a non-zero submodule
of an R-module M . Let AnnR(N) = ptR, where p is prime element of R and
t > 0. If N is a semi n-absorbing second submodule of M , then t = na + r,
where a and r are integers such that a ≥ 0, 1 ≤ r < n, that is t ∈ ∪nh=1{ni+h :
i ∈ Z and 0 ≤ i ≤ n− h}.

Proof. Since a semi n-absorbing second submodule is a (n+1, n)-closed second
submodule of M by Proposition 2.9, the result follows from Theorem 2.32.
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Corollary 2.34. Let R be an integral domain and N be a non-zero submodule
of an R-module M . Let AnnR(N) = ptR where p is prime element of R and
k > 0. Then if N is a semi 2-absorbing second submodule of M , then t ∈ {1, 2}.

Proof. This follows from Corollary 2.33.

Example 2.35. Consider the Z-module M = Z8. Then M is not a semi
2-absorbing second submodule of M since t = 3 by Corollary 2.34.

An element m of an R-module M is called a torsion element if rm = 0 for
some non-zero element r ∈ R. The set of all torsion elements of M is denoted
by T (M) := {m ∈M |rm = 0 for some nonzero r ∈ R}.

Proposition 2.36. Let M be an R-module. If every proper ideal of R is (k, n)-
closed (resp. semi n-absorbing), then every non-zero submodule of M is (k, n)-
closed (resp. semi n-absorbing) second. The converse holds if T (M) 6= M .

Proof. First suppose that every proper ideal of R is (k, n)-closed. Let N be
a non-zero submodule of M , r ∈ R, and K be a submodule of M such that
rkN ⊆ K. If (K :R N) = R, then we are done. So suppose that (K :R N) 6= R.
Then by assumption, rn ∈ (K :R N) and so rn−1N ⊆ K. For the converse,
suppose that T (M) 6= M . Then there exists m ∈M such that AnnR(Rm) = 0.
Now let I 6= R be an ideal of R. Then I = (Im :R Rm) by [12, 3.1]. Assume
that rk ∈ I for some r ∈ R. Then rk ∈ (Im :R Rm). Hence rk(Rm) ⊆ Im.
By assumption, Rm is a (k, n)-closed second submodule. Thus rnRm = 0 or
rn−1Rm ⊆ Im. If rnRm = 0, then rn = 0 ∈ I since AnnR(Rm) = 0 and
we are done. If rn−1Rm ⊆ Im, then rn−1 ∈ I as needed. The proof for
semi-n-absorbing is similar.

Theorem 2.37. Let M be an R-module. If E is an injective R-module and
N is a (k, n)-closed submodule of M such that HomR(M/N,E) 6= 0, then
HomR(M/N,E) is a (k, n)-closed second R-module, where k ≥ n.

Proof. Let r ∈ R. Since N is a (k, n)-closed submodule of M , we can assume
that (N :M rk) = (N :M rn−1) or (N :M rn) = M by using [15, 2.7]. Since E
is an injective R-module, by replacing M with M/N in [4, 3.13 (a)], we have
HomR(M/(N :M r), E) = rHomR(M/N,E). Therefore,

rkHomR(M/N,E) = HomR(M/(N :M rk), E) =

HomR(M/(N :M rn−1), E) = rn−1HomR(M/N,E)

or

rnHomR(M/N,E) = HomR(M/(N :M rn), E) =

HomR(M/M,E) = 0,

as needed
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Theorem 2.38. Let M be a (k, n)-closed second R-module, where k ≥ n and F
be a right exact linear covariant functor over the category of R-modules. Then
F (M) is a (k, n)-closed second R-module if F (M) 6= 0.

Proof. This follows from [4, 3.14] and Theorem 2.5 (a)⇒ (c).

Corollary 2.39. Let M be an R-module, S be a multiplicative subset of R and
N be a (k, n)-closed second submodule of M , where k ≥ n. Then S−1N is a
(k, n)-closed second submodule of S−1M if S−1N 6= 0.

Proof. This follows from Theorem 2.38.

A proper submodule N of an R-module M is said to be a primary submodule
of M if for each r ∈ R the homothety M/N

r→ M/N is either injective or
nilpotent. In this case P =

√
(N :R M) is a prime ideal of R, and we call N a

P -primary submodule of M .

Theorem 2.40. Let N be a primary submodule of an R-module M . If K is a
semi n-absorbing second submodule of M such that N + K 6= M , then N + K
is a primary submodule of M .

Proof. Let N be a P -primary submodule of M , r ∈ R, and r(n+ k) ∈ N +K
for some n ∈ N and k ∈ K. If r ∈ P =

√
(N :R M), then clearly r ∈√

(N + K :R M). So assume that r 6∈ P . As r(n + k) ∈ N + K, we have
r(n + k) = n1 + k1 for some n1 ∈ N and k1 ∈ K. It follows that rnn +
rnk − rn−1k1 ∈ N . Since K is a semi n-absorbing second submodule of M ,
we have rnK = 0 or rnK = rn−1K by Theorem 2.5. If rnK = 0, then
rnn + rnk − rn−1k1 = rn−1(rn − k1) ∈ N . This implies that rn − k1 ∈ N
because N is a P -primary submodule of M and rn−1 6∈ P . So that k1 ∈ N .
Therefore, rn+rk = n1+k1 ∈ N . Thus n+k ∈ N as needed. If rnK = rn−1K,
then rn−1k1 = rnk2 for some k2 ∈ K. Thus rnn+rnk−rnk2 ∈ N . This implies
that n + k − k2 ∈ N because N is a P -primary submodule of M and rn 6∈ P .
Thus n + k = n + k − k1 + k2 ∈ N + K, as desired.

Corollary 2.41. Let N and K be two non-zero submodules of an R-module
M with N ⊆ K 6= M . If N is a primary and K is a semi n-absorbing second
submodule of M , then K is a primary submodule of M .

Proof. This follows from Theorem 2.40.

Theorem 2.42. Let M1, M2 be R-modules, N1 be a (k1, n1)-closed second
submodule of M1, and N2 be a (k2, n2)-closed second submodule of M2. Then
N1⊕N2 is a (k, n)-closed second submodule of M1⊕M2 for all positive integers
k ≤ min{k1, k2} and n ≥ max{n1, n2}+ 1.

Proof. By Theorem 2.11 (d), N1, N2 are both (k, n)-closed second submodules
of M1 and M2, respectively. Let r ∈ R. Then rkN1 = rn−1N1 or rnN1 = 0
and rkN2 = rn−1N2 or rnN2 = 0. If rkN1 = rn−1N1 and rkN2 = rn−1N2
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(resp. rnN1 = 0 and rnN2 = 0), then rk(N1 ⊕ N2) = rn−1(N1 ⊕ N2) (resp.
rn(N1 ⊕ N2) = 0) so we are done. If rkN1 = rn−1N1 and rnN2 = 0, then
rkN2 = 0 because n ≤ k. Thus rk(N1 ⊕ N2) = rkN1 ⊕ 0 = rn−1(N1 ⊕ N2).
Similarly, we are done if rkN2 = rn−1N2 and rnN1 = 0.

References

[1] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative
rings, Comm. Algebra 39 (2011), 1646–1672.

[2] , On n-closed ideals of commutative rings, Journal of Al-
gebra and Its Application 16 (2017), no. 01, [21 pages] DOI:
http://dx.doi.org/10.1142/S021949881750013X.

[3] H. Ansari-Toroghy and F. Farshadifar, Some generalizations of second sub-
modules, Palestine Journal of Mathematics, to appear.

[4] , The dual notion of some generalizations of prime submodules,
Comm. Algebra 39 (2011), 2396–2416.

[5] , On the dual notion of prime submodules, Algebra Colloq. 19
(2012), no. (Spec 1), 1109–1116.

[6] H. Ansari-Toroghy, F. Farshadifar, and S. Maleki-Roudposhti, n-
absorbing and strongly n-absorbing second submodules, Boletim Sociedade
Paranaense de Matemática, to appear.
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