On (k, n)-closed second submodules

Sobre sub-módulos (k,n)-cerrados de segunda clase

H. Ansari-Toroghy^{1,a}, F. Farshadifar^{2,b}, S. Maleki-Roudposhti^{3,c}

Abstract. In this paper we introduce the concepts of semi n-absorbing second and (k, n)-closed second submodules of modules over a commutative ring and obtain some related results.

Keywords: Strongly 2-absorbing second submodule, semi n-absorbing second submodule, (k, n)-closed second submodule.

Resumen. En este artículo, introducimos los conceptos de sub-módulos semiausorbentes segundos y (k, n)-cerrados segundos de módulos sobre un anillo conmutativo y obtenemos algunos resultados relacionados.

Palabras claves: submódulos fuertemente 2-absorventes de segunda clase, submódulos semi n-absorventes de segunda clase, submódulos (k, n)-cerrados de segunda clase.

Mathematics Subject Classification: 13C13, 13C99.

Recibido: octubre de 2017

Aceptado: julio de 2018

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and n, k are positive integers. Further, \mathbb{Z} will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be *prime* if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [11]. A non-zero submodule S of M is said to be *second* if for each $a \in R$, the homomorphism $S \xrightarrow{a} S$ is either surjective or zero [14].

The concept of 2-absorbing ideals was introduced in [7] and then extended to *n*-absorbing ideals in [1]. A proper ideal I of R is a 2-absorbing ideal of Rif whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. Let I be a proper ideal of R and n a positive integer. I is called an *n*-absorbing ideal of

¹Department of pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.

²Assistant Professor, Department of Mathematics, Farhangian University, Tehran, Iran.

³Department of pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.

^aansari@guilan.ac.ir

^bf.farshadifar@cfu.ac.ir

^cSepidehmaleki.r@gmail.com

R if whenever $x_1 \cdots x_{n+1} \in I$ for $x_1, \ldots, x_{n+1} \in R$, then there are *n* of the x_i 's whose product is in *I*. A proper ideal *I* of *R* is said to be a (k, n)-closed ideal of *R* if $x^k \in I$ for $x \in R$ implies $x^n \in I$ [2].

A proper submodule N of M is called n-absorbing submodule of M if whenever $a_1 \ldots a_n m \in N$ for $a_1, \ldots, a_n \in R$ and $m \in M$, then either $a_1 \ldots a_n \in$ $(N :_R M)$ or there are n-1 of a_i 's whose product with m is in N [10]. A proper submodule N of M is called a (k, n)-closed submodule of M if whenever $r \in R$, $m \in M$ with $r^k m \in N$, then $r^n \in (N :_R M)$ or $r^{n-1}m \in N$. In particular, we call N as a semi n-absorbing submodule of M if whenever $r \in R$, $m \in M$ with $r^n m \in N$, then $r^n \in (N :_R M)$ or $r^{n-1}m \in N$ [15]. It is clear that a semi n-absorbing submodule is (n, n)-closed.

In [3], the authors introduced the notion of strongly 2-absorbing second submodules as a the dual notion of 2-absorbing submodules and then extended to strongly *n*-absorbing second submodules in [6]. A non-zero submodule Nof M is said to be a strongly 2-absorbing second submodule of M if whenever $a, b \in R, K$ is a submodule of M, and $abN \subseteq K$, then $aN \subseteq K$ or $bN \subseteq K$ or $ab \in Ann_R(N)$. A non-zero submodule N of M is said to be a strongly *n*absorbing second submodule of M if whenever $a_1 \dots a_n N \subseteq K$ for $a_1, \dots, a_n \in$ R and a submodule K of M, then either $a_1 \dots a_n \in Ann_R(N)$ or there are n-1 of a_i 's whose product with N is a subset of K.

The purpose of this paper is to introduce the concepts of semi *n*-absorbing second and (k, n)-closed second submodules of modules over a commutative ring as dual notions of the concepts of semi *n*-absorbing and (k, n)-closed submodules, respectively and investigate their basic properties.

2. Main Results

Let M be an R-module. A proper submodule N of M is said to be *completely irreducible* if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [13].

We frequently use the following basic fact without further comment.

Remark 2.1. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

Definition 2.2. Let M be an R-module and N be a non-zero submodule of M. We say that N is a (k, n)-closed second submodule of M if whenever $r \in R$ and K is a submodule of M with $r^k N \subseteq K$, then $r^n \in Ann_R(N)$ or $r^{n-1}N \subseteq K$. We say that M is a (k, n)-closed second module if M is a (k, n)-closed second submodule of itself.

Clearly, every non-zero submodule is (k, n)-closed for $1 \le k < n$; so we often assume that $1 \le n \le k$.

Definition 2.3. Let M be an R-module and N be a non-zero submodule of M. We say that N is a *semi* n-absorbing second submodule of M if whenever $r \in R$ and K is a submodule of M with $r^n N \subseteq K$, then $r^n \in Ann_R(N)$ or $r^{n-1}N \subseteq K$.

It is clear that every submodule of M is a semi *n*-absorbing second submodule if and only if it is a (n, n)-closed second submodule.

Theorem 2.4. Let N be a non-zero submodule of an R-module M. Then the following statements are equivalent:

- (a) N is a (k, n)-closed second submodule of M;
- (b) If $r \in R$ and L is a completely irreducible submodule of M with $r^k N \subseteq L$, then $r^n \in Ann_R(N)$ or $r^{n-1}N \subseteq L$; In particular, a non-zero submodule N of M is a semi n-absorbing second submodule of M if and only if whenever $r \in R$, L a completely irreducible submodule of M with $r^n N \subseteq$ L, then $r^n \in Ann_R(N)$ or $r^{n-1}N \subseteq L$.

Proof. $(a) \Rightarrow (b)$ This is clear.

 $(b) \Rightarrow (a)$ Let N be a non-zero submodule of $M, r \in R$, and K be a submodule of M with $r^k N \subseteq K$. Assume on the contrary that $r^{n-1}N \not\subseteq K$ and $r^n \notin Ann_R(N)$. Then there exists a completely irreducible submodule L of M such that $K \subseteq L$ but $r^{n-1}N \not\subseteq L$. Thus $r^k N \subseteq L$. By part (b), $r^{n-1}N \subseteq L$ or $r^n \in Ann_R(N)$ which are contradictions.

Theorem 2.5. Let N be a non-zero submodule of an R-module M and $k \ge n$. Then the following statements are equivalent:

- (a) N is a (k, n)-closed second submodule of M;
- (b) $(K:_R r^k N) = (K:_R r^{n-1}N)$ or $r^n \in Ann_R(N)$, where $r \in R$ and K is a submodule of M;
- (c) $r^k N = r^{n-1}N$ or $r^n \in Ann_R(N)$, where $r \in R$.

Proof. (a) \Rightarrow (b) Let $r \in R$ and K be a submodule of M. Assume that $r^n \notin Ann_R(N)$ and $s \in (K :_R r^k N)$. Then $r^k N \subseteq (K :_R s)$. Since N is (k, n)-closed second and $r^n \notin Ann_R(N)$, we have $r^{n-1}N \subseteq (K :_M s)$. It follows that $s \in (K :_R r^{n-1}N)$. Thus $(K :_R r^k N) \subseteq (K :_R r^{n-1}N)$. The inverse inclusion is always hold since $k \geq n$.

 $(b) \Rightarrow (a)$ Let $r \in R$ and K be a submodule of M with $r^k N \subseteq K$. If $r^n \in Ann_R(N)$, then we are done. So assume that $r^n \notin Ann_R(N)$. Then by part (b), $(K :_R r^k N) = (K :_R r^{n-1}N)$. Thus $1 \in (K :_R r^k N)$ implies that $1 \in (K :_R r^{n-1}N)$. Hence $r^{n-1}N \subseteq K$, as needed.

 $(b) \Rightarrow (c)$ Let $r \in R$ and $r^n \notin Ann_R(N)$. Since $k \ge n$, we have $r^k N \subseteq r^{n-1}N$. Now let L be a completely irreducible submodule of M such that $r^k N \subseteq L$. Then $1 \in (L :_R r^k N)$. By part (b), $(L :_R r^k N) = (L :_R r^{n-1}N)$. Hence $1 \in (L :_R r^{n-1}N)$ and so $r^{n-1}N \subseteq L$, Thus $r^{n-1}N \subseteq r^k N$ as needed. $(c) \Rightarrow (b)$ This is clear.

Theorem 2.6. Let N be a submodule of an R-module M. Then we have the following.

- (a) If N is a (k, n)-closed second submodule of M, then $(K :_R N)$ is a (k, n)closed ideal of R for each submodule K of M with $N \not\subseteq K$.
- (b) If $(K :_R N)$ is a (k, n)-closed ideal of R for each each submodule K of M with $N \not\subseteq K$, then N is a (k, n + 1)-closed second submodule of M.

Proof. (a) Assume on the contrary that $r^k \in (K :_R N)$ and $r^n \notin (K :_R N)$ for some submodule K of M with $N \not\subseteq K$. Then $r^k N \subseteq K$ but $r^n N \not\subseteq K$ and so $r^n N \neq 0$. Now since N is a (k, n)-closed submodule of M, we have $r^{n-1} \in (K :_R N)$ and so $r^n \in (K :_R N)$, a contradiction. Thus $(K :_R N)$ is a (k, n)-closed ideal of R for each submodule K of M with $N \not\subseteq K$.

(b) Let $r^k N \subseteq K$ for some $r \in R$ and a submodule K of M. If $N \subseteq K$, we are done. So suppose that $N \not\subseteq K$. Assume that $r^{n+1} \notin Ann_R(N)$. Since $r^k \in (K :_R N)$ and $(K :_R N)$ is a (k, n)-closed ideal of R for each submodule K of M with $N \not\subseteq K$, we conclude that $r^n \in (K :_R N)$. It follows that N is a (k, n+1)-closed second submodule of M.

Corollary 2.7. Let N be a (k, n)-closed second submodule of an R-module M. Then $Ann_R(N)$ is a (k, n)-closed ideal of R.

Proof. Take K = 0 in Theorem 2.6 (a).

The following example shows that the converse of Corollary 2.7 (a) is not true in general.

Example 2.8. Consider $N = t\mathbb{Z}$ as a submodule of the \mathbb{Z} -module \mathbb{Z} , where t is a positive integer. Then clearly, $Ann_{\mathbb{Z}}(t\mathbb{Z}) = 0$ is a (2, 1)-closed ideal of \mathbb{Z} . But since $2^{2}t\mathbb{Z} \subseteq 4t\mathbb{Z}$, $2^{0}t\mathbb{Z} \not\subseteq 4t\mathbb{Z}$, and $2^{1}t\mathbb{Z} \neq 0$, we have $t\mathbb{Z}$ is not (2, 1)-closed submodule of Z.

Proposition 2.9. Let N a submodule of an R-module M. If N is a semi nabsorbing second submodule of M, then N is a (k, n)-closed second submodule of M for all positive integer k.

Proof. If $k \leq n$, the the claim is clear. So suppose that k > n. Let $r^k N \subseteq K$ for some $r \in R$ and a submodule K of M. Assume that $r^n \notin Ann_R(N)$. Then since $r^n N \subseteq (K :_M r^{k-n})$ and N is semi *n*-absorbing second, we get that $r^{n-1}N \subseteq (K :_M r^{k-n})$. This implies that $r^{k-1}N \subseteq K$. So we continue with this argument and obtain that $r^{n-1}N \subseteq K$ and so N is a (k, n)-closed second submodule of M.

Corollary 2.10. Let N be a submodule of an R-module M and k > n. Then N is a (k, n)-closed second submodule of M if and only if N is a semi n-absorbing second submodule of M.

Proof. Let N be a (k, n)-closed second submodule of M and $r^n N \subseteq K$ for $r \in R$ and a submodule K of M. Then since k > n, we have $r^k N \subseteq K$, and this implies that either $r^n \in Ann_R(N)$ or $r^{n-1}N \subseteq K$. Thus N is a semi *n*-absorbing second submodule of M. The reverse implication follows from Proposition 2.9.

An *R*-module *M* is said to be *semi-second* if $rM = r^2M$ for each $r \in R$ [4].

Theorem 2.11. Let M be an R-module. Then we have the following.

- (a) If N is a semi-second submodule of M. Then N is a (k, n)-closed second submodule of M for all positive integers k and n > 1. Moreover, N is a semi n-absorbing second submodule of M for all positive integer n > 1.
- (b) If $\{N_i\}_{i \in I}$ is a family of semi-second submodules of M, then $\sum_{i \in I} N_i$ is a (k, n)-closed submodule of M for all positive integers k and n > 1.
- (c) If N is a strongly n-absorbing second submodule of M, then N is a semi n-absorbing second submodule of M.
- (d) If N is a (k, n)-closed second submodule of M, then N is a (k_1, n_1) -closed second submodule of M for all $k_1 \leq k$ and $n_1 \geq n$.
- (e) If N is a semi n-absorbing second submodule of M, then N is a semi n_1 -absorbing second submodule of M for all $n_1 \ge n$.

Proof. (a), (c), and (d) are clear from the definitions.

(b) Suppose that $r^k \sum_{i \in I} N_i \subseteq K$ for some $r \in R$ and a submodule K of M. Then $r^k N_i \subseteq K$ for all $i \in I$. Since each N_i is semi-second, we conclude that $rN_i \subseteq K$ for all $i \in I$. Thus $r \sum_{i \in I} N_i \subseteq K$ which means that $r^{n-1} \sum_{i \in I} N_i \subseteq K$ for all n > 1, as needed.

(e) Let $t = n_1 - n$ and $r^{n_1}N \subseteq K$ for some $r \in R$ and a submodule K of M. Then $r^n N \subseteq (K :_M r^t)$. Thus by assumption, $r^n N = 0$ or $r^{n-1}N \subseteq (K :_M r^t)$. Thus $r^{n_1}N = 0$ or $r^{n_1-1}N \subseteq K$, as needed.

For a submodule N of an R-module M the the second radical (or second socle) of N is defined as the sum of all second submodules of M contained in N and it is denoted by sec(N) (or soc(N)). In case N does not contain any second submodule, the second radical of N is defined to be (0) (see [9] and [5]).

Corollary 2.12. Let N be a non-zero submodule of an R-module M. Then sec(N) and $Soc_R(N)$ are (k, n)-closed second submodule of M for all integers k and n. (Here $Soc_R(N)$ denotes the sum of all minimal submodules of N.)

Proof. Since every minimal and every second submodule is a semi-second submodule, the results follows from part (b) of Theorem 2.11. \Box

The following example shows that the converse of part (c) in Theorem 2.11 is not true in general.

Example 2.13. Let $M = \mathbb{Z}_{30}$ as a \mathbb{Z} -module. Since $M \cong \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$ is sum of semi-second \mathbb{Z} -modules, it is semi 2-absorbing second submodule of M by Theorem 2.11 (b). However, M is not strongly 2-absorbing second submodule of M. In fact $2 \times 3\mathbb{Z}_{30} \subseteq \overline{6\mathbb{Z}_{30}}$ but $2\mathbb{Z}_{30} \notin \overline{6\mathbb{Z}_{30}}$ and $3\mathbb{Z}_{30} \notin \overline{6\mathbb{Z}_{30}}$ and $2 \times 3\mathbb{Z}_{30} \neq 0$.

Theorem 2.14. Let $\{N_i\}_{i \in I}$ be a chain of (k, n)-closed second submodules of an *R*-module *M*. Then $\sum_{i \in I} N_i$ is a (k, n)-closed second submodule of *M*.

Proof. Set $N = \sum_{i \in I} N_i$. Let $r^k N \subseteq K$ for some $r \in R$ and a submodule K of M. If $r^n \in Ann_R(N_i)$ for all $i \in I$, then $r^n \in \bigcap_{i \in I} Ann_R(N_i) = Ann_R(N)$ and we are done. So suppose that $r^n \notin Ann_R(N_j)$ for some $j \in I$. Then $r^n \notin Ann_R(N_t)$ for all $N_j \subseteq N_t$. Hence $r^{n-1}N_t \subseteq K$ for all $N_j \subseteq N_t$ since each N_t is (k, n)-closed second. Therefore $r^{n-1} \sum_{i \in I} N_i \subseteq K$ which means that N is a (k, n)-closed second submodule of M.

The following example shows that the sum of two semi n-absorbing second submodules may not be a semi n-absorbing second submodule in general.

Example 2.15. Consider $M = \mathbb{Z}_{p^n} \oplus \mathbb{Z}_{q^n}$ as \mathbb{Z} -module. Clearly $\mathbb{Z}_{p^n} \oplus 0$ and $0 \oplus \mathbb{Z}_{q^n}$ both are strongly *n*-absorbing second submodules and so semi *n*-absorbing second submodules of M by Theorem 2.11 (c). However $p^n M \subseteq 0 \oplus \mathbb{Z}_{q^n}$, $p^{n-1}M \not\subseteq 0 \oplus \mathbb{Z}_{q^n}$, and $p^n M \neq 0$ implies that M is not semi *n*-absorbing second submodule of M.

Definition 2.16. We say that a (k, n)-closed second submodule N of an R-module M is a maximal (k, n)-closed second submodule of a submodule K of M, if $N \subseteq K$ and there does not exist a (k, n)-closed second submodule L of M such that $N \subset L \subset K$.

Lemma 2.17. Let M be an R-module. Then every (k, n)-closed second submodule of M is contained in a maximal (k, n)-closed second submodule of M.

Proof. This proved easily by using Zorn's Lemma and Theorem 2.14. \Box

Theorem 2.18. Every Artinian R-module has only a finite number of maximal (k, n)-closed second submodules.

Proof. Suppose that there exists a non-zero submodule N of M such that it has an infinite number of maximal (k, n)-closed second submodules. Let S be a submodule of M chosen minimal such that S has an infinite number of maximal (k, n)-closed second submodules. Then S is not (k, n)-closed second submodule. Thus there exist $r \in R$ and a submodule K of M such that $r^k S \subseteq K$ but $r^{n-1}S \not\subseteq K$ and $r^n S \neq 0$. Let V be a maximal (k, n)-closed second submodule of M contained in S. Then $r^{n-1}V \subseteq K$ or $r^nV = 0$. Thus $V \subseteq (K :_M r^{n-1})$ or $V \subseteq (0 :_M r^n)$. Therefore, $V \subseteq (K :_S r^{n-1})$ or $V \subseteq (0 :_S r^n)$. By the choice of S, the modules $(K :_S r^{n-1})$ and $(0 :_S r^n)$ have only finitely many maximal (k, n)-closed second submodules. Therefore, there is only a finite number of possibilities for the module S, which is a contradiction.

Theorem 2.19. Let M be an R-module. If N_1 is a semi n_1 -absorbing second and N_2 is a semi n_2 -absorbing second submodule of M, then $N_1 + N_2$ is semi (n + 1)-absorbing second submodule of M, where $n = max\{n_1, n_2\}$.

Proof. Let $r \in R$ and K be a submodule of M such that $r^{n+1}(N_1 + N_2) \subseteq K$. First observe by Corollary 2.10, N_1 and N_2 are $(n+1, n_1)$ -closed second and $(n+1, n_2)$ -closed second submodules of M, respectively. Hence we have $r^{n_1} \in Ann_R(N_1)$ or $r^{n_1-1}N_1 \subseteq K$ and $r^{n_2} \in Ann_R(N_2)$ or $r^{n_2-1}N_2 \subseteq K$. If $r^{n_1} \in Ann_R(N_1)$ and $r^{n_2} \in Ann_R(N_2)$, then $r^n \in Ann_R(N_1) \cap Ann_R(N_2) = Ann_R(N_1 + N_2)$. If $r^{n_1} \in Ann_R(N_1)$ and $r^{n_2-1}N \subseteq K$, then $r^n(N_1 + N_2) \subseteq K$. Similarly, if $r^{n_2} \in Ann_R(N_2)$ and $r^{n_1-1}N \subseteq K$, then $r^n(N_1 + N_2) \subseteq K$. For the last, if $r^{n_1-1}N_1 \subseteq K$ and $r^{n_2-1}N_2 \subseteq K$, then $r^{n-1}(N_1 + N_2) \subseteq K$. Thus we conclude either $r^{n+1} \in Ann_R(N_1 + N_2)$ or $r^n(N_1 + N_2) \subseteq K$, as needed. \Box

Proposition 2.20. Let M be a finitely cogenerated R-module such that $\bigcap_{i=1}^{n} L_i = 0$, where each L_i is a completely irreducible submodule of M for i = 1, ..., n. If N is a non-zero submodule of M, k > n, and $(L_i :_R N)$ is a (k, n)-closed ideal of R for all i = 1, ..., n, then $Ann_R(N)$ is a (k, n)-closed ideal of R.

Proof. Assume that $(L_i :_R N)$ is a (k, n)-closed ideal of R for all $i = 1, \ldots, n$. Suppose that $r^k \in Ann_R(N)$ and $r^n \notin Ann_R(N)$ for some $r \in R$. Then $r^n \notin (L_j :_R N)$ for some $j = 1, \ldots, n$. Hence $r^k \notin (L_j :_R N)$, and so $r^k \notin Ann_R(N)$, which is a contradiction. Thus $Ann_R(N)$ is a (k, n)-closed ideal of R. \Box

Definition 2.21. Let N be a non-zero submodule of an R-module M. We say that N is a strongly semi n-absorbing second submodule of M if whenever I is an ideal of R and K is a submodule of M with $I^n N \subseteq K$, then $I^n \in Ann_R(N)$ or $I^{n-1}N \subseteq K$.

Definition 2.22. Let N be a non-zero submodule of an R-module M. We say that N is a strongly (k, n)-closed second submodule of M if whenever I is an ideal of R and K is a submodule of M with $I^k N \subseteq K$, then $I^n \in Ann_R(N)$ or $I^{n-1}N \subseteq K$.

Note that every strongly (k, n)-closed second submodule is a (k, n)-closed second submodule of M. Clearly a (k, 1)-closed second submodule is also a strongly (k, 1)-closed second submodule of M. Also observe that a strongly semi n-absorbing second submodule is a semi n-absorbing second submodule of M.

Theorem 2.23. Let N be a non-zero submodule of an R-module M. Then the following statements are equivalent:

- (a) N is a strongly (k, n)-closed second submodule of M;
- (b) If I is an ideal of R and L is a completely irreducible submodule of M with $I^k N \subseteq L$, then $I^n \in Ann_R(N)$ or $I^{n-1}N \subseteq L$;

(c) For any ideal I of R and $H \subseteq N$ a submodule of M with $I^k N \subseteq H$ implies that $I^n \in Ann_R(N)$ or $I^{n-1}N \subseteq H$.

Proof. $(a) \Rightarrow (b)$ This is clear.

 $(b) \Rightarrow (a)$ Suppose that $I^k N \subseteq K$ for an ideal I of R and a submodule K of M. Assume that $I^{n-1}N \not\subseteq K$. Then there exists a completely irreducible submodule L of M such that $K \subseteq L$ but $I^{n-1}N \not\subseteq L$. Since $I^k N \subseteq L$, we have $I^n \in Ann_R(N)$ by part (b). Thus N is a strongly (k, n)-closed second submodule of M.

 $(a) \Rightarrow (c)$ This is clear.

 $(c) \Rightarrow (a)$ Let K be a submodule of M and I an ideal of R such that $I^k N \subseteq K$. Hence $I^k N \subseteq K \cap N$. Put $H = K \cap N$. Since N is strongly (k, n)-closed second, we conclude that either $I^n \in Ann_R(N)$ or $I^{n-1}N \subseteq H$ by part (c). Thus $I^n \in Ann_R(N)$ or $I^{n-1}N \subseteq K$ as needed.

Proposition 2.24. Let R be a principal ideal domain and N be a submodule of an R-module M. Then the following statements are equivalent:

- (a) N is a (k, n)-closed second submodule of M;
- (b) N is a strongly (k, n)-closed second submodule of M.

Proof. This is clear.

Proposition 2.25. Let N be a submodule of an R-module M. If N is a (k, n)closed second submodule of M, then IN is a (k, n)-closed second submodule of M for all ideals I of R with $I \not\subseteq Ann_R(N)$. Moreover; if N is a strongly (k, n)-closed second submodule of M, then $I^k N = I^{n-1}N$, where $k \ge n$.

Proof. Suppose that $r^k IN \subseteq K$ for $r \in R$ and a submodule K of M. Hence $r^k N \subseteq (K :_M I)$, which implies that either $r^n \in Ann_R(N)$ or $r^{n-1}N \subseteq (K :_M I)$. Thus $r^n \in Ann_R(IN)$ or $r^{n-1}IN \subseteq K$. Thus IN is a (k, n)-closed second submodule of M for all ideals I of R. Now suppose that N is a strongly (k, n)-closed second submodule of M. Since $I^k N \subseteq I^{n-1}N$ is always true, it is sufficient to show the inverse inclusion. Let $I^k N \subseteq L$ for some completely irreducible submodule L of M. Then we have $I^n \in Ann_R(N)$ or $I^{n-1}N \subseteq L$ by Theorem 2.23. If $I^{n-1}N \subseteq L$, then we are done. So suppose that $I^n \in Ann_R(N)$. Thus $I^k \in Ann_R(N)$, as needed.

An *R*-module *M* is said to be a *multiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM [8].

Corollary 2.26. Let M be a multiplication (k, n)-closed second R-module. Then every non-zero submodule of M is a (k, n)-closed second submodule of M.

Proof. This follows from Proposition 2.25.

Theorem 2.27. Let M be an R-module, N an (k, 2)-closed second submodule of M, and I an ideal of R. Then we have the following.

- (a) If $I^k \subseteq Ann_R(N)$, then $2I^2 \subseteq Ann_R(N)$.
- (b) Suppose that $2 \in U(R)$ (here U(R) denotes the set of all units of R). If $I^k \subseteq Ann_R(N)$, then $I^2 \subseteq Ann_R(N)$ (i.e., $Ann_R(N)$ is a strongly (k, 2)-closed ideal of R).

Proof. By Corollary 2.7, $Ann_R(N)$ is an (k, 2)-closed ideal of R. Thus the result follows from [2, 2.6].

Let R be an integral domain. Recall that if for every element r of its field of fractions F, at least one of r or r^{-1} belongs to R, then R is called *valuation domain*.

Proposition 2.28. Let R be a valuation domain with quotient field F. Let M be an R-module and N a non-zero submodule of M. Then N is a semi n-absorbing second submodule of M if and only if whenever $r \in F$, H a submodule of M with $r^{n+1}N \subseteq H$ implies that $r^nN \subseteq H$ or $r^{n+1} \in Ann_R(N)$.

Proof. Suppose that N is a semi n-absorbing second submodule of M. Assume that $r^{n+1}N \subseteq H$, but $r^{n+1} \notin Ann_R(N)$, where $r \in F$, H a submodule of M. If $r \in R$, then we are done. So assume that $r \notin R$. Since R is a valuation domain, $r^{-1} \in R$. Hence we have $r^{-1}r^{n+1}N = r^nN \subseteq H$. The converse is clear. \Box

Theorem 2.29. Let $f: M \to M$ be a monomorphism of *R*-modules. Then we have the following.

- (a) If N is a (k,n)-closed (resp. semi n-absorbing) second submodule of M, then f(N) is a (k,n)-closed (resp. semi n-absorbing) second submodule of M.
- (b) If \hat{N} is a (k, n)-closed (resp. semi n-absorbing) second submodule of \hat{M} and $\hat{N} \subseteq f(M)$, then $f^{-1}(\hat{N})$ is a (k, n)-closed (resp. semi n-absorbing) second submodule of M.

Proof. (a) Let N be a (k, n)-closed second submodule of M. Since $N \neq 0$ and f is a monomorphism, we have $f(N) \neq 0$. Let $r \in R$, K be a submodule of M, and $r^k f(N) \subseteq K$. Then $r^k N \subseteq f^{-1}(K)$. As N is (k, n)-closed second submodule, $r^{n-1}N \subseteq f^{-1}(K)$ or $r^n N = 0$. Therefore,

$$r^{n-1}f(N) \subseteq f(f^{-1}(\acute{K})) = f(M) \cap \acute{K} \subseteq \acute{K}$$

or $r^n f(N) = 0$, as needed. For semi *n*-absorbing second, the proof can be easily verified similar.

(b) If $f^{-1}(\hat{N}) = 0$, then $f(M) \cap \hat{N} = ff^{-1}(\hat{N}) = f(0) = 0$. Thus $\hat{N} = 0$, a contradiction. Therefore, $f^{-1}(\hat{N}) \neq 0$. Now let $r \in R$, K be a submodule of M, and $r^k f^{-1}(\hat{N}) \subseteq K$. Then

$$r^k \acute{N} = r^k (f(M) \cap \acute{N}) = r^k f f^{-1} (\acute{N}) \subseteq f(K).$$

As \hat{N} is (k, n)-closed second submodule, $r^{n-1}\hat{N} \subseteq f(K)$ or $r^n\hat{N} = 0$. Hence $r^{n-1}f^{-1}(\hat{N}) \subseteq f^{-1}f(K) = K$ or $r^nf^{-1}(\hat{N}) = 0$, as desired. Similarly, for semi *n*-absorbing second, the proof can be easily verified.

Corollary 2.30. Let M be an R-module and $N \subseteq K$ be two submodules of M. Then we have the following.

- (a) If N is a (k,n)-closed (resp. semi n-absorbing) second submodule of K, then N is a (k,n)-closed (resp. semi n-absorbing) second submodule of M.
- (b) If N is a (k,n)-closed (resp. semi n-absorbing) second submodule of M, then N is a (k,n)-closed (resp. semi n-absorbing) second submodule of K.

Proof. This follows from Theorem 2.29 by using the natural monomorphism $K \to M$.

Proposition 2.31. Let M_1 , M_2 be *R*-modules with $M = M_1 \oplus M_2$, and let N_1 , N_2 be non-zero submodules of M_1 , M_2 , respectively. N_1 is a (k_1, n_1) -closed second submodule of M_1 if and only if $N_1 \oplus 0$ is a (k, n)-closed second submodule of $M_1 \oplus M_2$ for all positive integers $k_1 \leq k$ and $n \geq n_1$.

Proof. This is straightforward.

Theorem 2.32. Let R be an integral domain and N be a non-zero submodule of an R-module M. Let $Ann_R(N) = p^t R$, where p is prime element of R and t > 0. If N is a (k, n)-closed second submodule of M, then we have the following.

- (a) t = ka + r, where a and r are integers such that $a \ge 0, 1 \le r \le n$, $a(k \mod n) + r \le n$, and if $a \ne 0$, then k = n + c for an integer c with $1 \le c \le n - 1$.
- (b) If k = bn + c for integers b and c with $b \ge 2$ and $0 \le c \le n 1$, then $t \in \{1, \ldots, n\}$. If k = n + c for an integer c with $1 \le c \le n 1$, then $t \in \bigcup_{h=1}^{n} \{ki + h : i \in \mathbb{Z} \text{ and } 0 \le ic \le n h\}.$

Proof. Suppose that N is a (k, n)-closed second submodule of M. Then $Ann_R(N)$ is a (k, n)-closed ideal of R by Corollary 2.7. Thus the result follows from [2, 3.1].

Corollary 2.33. Let R be an integral domain and N be a non-zero submodule of an R-module M. Let $Ann_R(N) = p^t R$, where p is prime element of R and t > 0. If N is a semi n-absorbing second submodule of M, then t = na + r, where a and r are integers such that $a \ge 0$, $1 \le r < n$, that is $t \in \bigcup_{h=1}^n \{ni+h : i \in \mathbb{Z} \text{ and } 0 \le i \le n-h\}$.

Proof. Since a semi *n*-absorbing second submodule is a (n+1, n)-closed second submodule of M by Proposition 2.9, the result follows from Theorem 2.32. \Box

Corollary 2.34. Let R be an integral domain and N be a non-zero submodule of an R-module M. Let $Ann_R(N) = p^t R$ where p is prime element of R and k > 0. Then if N is a semi 2-absorbing second submodule of M, then $t \in \{1, 2\}$.

Proof. This follows from Corollary 2.33.

Example 2.35. Consider the \mathbb{Z} -module $M = \mathbb{Z}_8$. Then M is not a semi 2-absorbing second submodule of M since t = 3 by Corollary 2.34.

An element m of an R-module M is called a *torsion element* if rm = 0 for some non-zero element $r \in R$. The set of all torsion elements of M is denoted by $T(M) := \{m \in M | rm = 0 \text{ for some nonzero } r \in R\}.$

Proposition 2.36. Let M be an R-module. If every proper ideal of R is (k, n)closed (resp. semi n-absorbing), then every non-zero submodule of M is (k, n)closed (resp. semi n-absorbing) second. The converse holds if $T(M) \neq M$.

Proof. First suppose that every proper ideal of R is (k, n)-closed. Let N be a non-zero submodule of M, $r \in R$, and K be a submodule of M such that $r^k N \subseteq K$. If $(K :_R N) = R$, then we are done. So suppose that $(K :_R N) \neq R$. Then by assumption, $r^n \in (K :_R N)$ and so $r^{n-1}N \subseteq K$. For the converse, suppose that $T(M) \neq M$. Then there exists $m \in M$ such that $Ann_R(Rm) = 0$. Now let $I \neq R$ be an ideal of R. Then $I = (Im :_R Rm)$ by [12, 3.1]. Assume that $r^k \in I$ for some $r \in R$. Then $r^k \in (Im :_R Rm)$. Hence $r^k(Rm) \subseteq Im$. By assumption, Rm is a (k, n)-closed second submodule. Thus $r^n Rm = 0$ or $r^{n-1}Rm \subseteq Im$. If $r^n Rm = 0$, then $r^n = 0 \in I$ since $Ann_R(Rm) = 0$ and we are done. If $r^{n-1}Rm \subseteq Im$, then $r^{n-1} \in I$ as needed. The proof for semi-n-absorbing is similar.

Theorem 2.37. Let M be an R-module. If E is an injective R-module and N is a (k,n)-closed submodule of M such that $Hom_R(M/N, E) \neq 0$, then $Hom_R(M/N, E)$ is a (k,n)-closed second R-module, where $k \geq n$.

Proof. Let $r \in R$. Since N is a (k, n)-closed submodule of M, we can assume that $(N :_M r^k) = (N :_M r^{n-1})$ or $(N :_M r^n) = M$ by using [15, 2.7]. Since E is an injective R-module, by replacing M with M/N in [4, 3.13 (a)], we have $Hom_R(M/(N :_M r), E) = rHom_R(M/N, E)$. Therefore,

$$r^{k}Hom_{R}(M/N, E) = Hom_{R}(M/(N:_{M} r^{k}), E) =$$
$$Hom_{R}(M/(N:_{M} r^{n-1}), E) = r^{n-1}Hom_{R}(M/N, E)$$

or

$$r^{n}Hom_{R}(M/N, E) = Hom_{R}(M/(N:_{M} r^{n}), E) =$$
$$Hom_{R}(M/M, E) = 0,$$

as needed

Boletín de Matemáticas 25(1) 13-26 (2018)

Theorem 2.38. Let M be a (k, n)-closed second R-module, where $k \ge n$ and F be a right exact linear covariant functor over the category of R-modules. Then F(M) is a (k, n)-closed second R-module if $F(M) \ne 0$.

Proof. This follows from [4, 3.14] and Theorem 2.5 $(a) \Rightarrow (c)$.

Corollary 2.39. Let M be an R-module, S be a multiplicative subset of R and N be a (k,n)-closed second submodule of M, where $k \ge n$. Then $S^{-1}N$ is a (k,n)-closed second submodule of $S^{-1}M$ if $S^{-1}N \ne 0$.

Proof. This follows from Theorem 2.38.

A proper submodule N of an R-module M is said to be a primary submodule of M if for each $r \in R$ the homothety $M/N \xrightarrow{r} M/N$ is either injective or nilpotent. In this case $P = \sqrt{(N:_R M)}$ is a prime ideal of R, and we call N a *P*-primary submodule of M.

Theorem 2.40. Let N be a primary submodule of an R-module M. If K is a semi n-absorbing second submodule of M such that $N + K \neq M$, then N + K is a primary submodule of M.

Proof. Let N be a P-primary submodule of $M, r \in R$, and $r(n+k) \in N+K$ for some $n \in N$ and $k \in K$. If $r \in P = \sqrt{(N:_R M)}$, then clearly $r \in \sqrt{(N+K:_R M)}$. So assume that $r \notin P$. As $r(n+k) \in N+K$, we have $r(n+k) = n_1 + k_1$ for some $n_1 \in N$ and $k_1 \in K$. It follows that $r^n n + r^n k - r^{n-1}k_1 \in N$. Since K is a semi n-absorbing second submodule of M, we have $r^n K = 0$ or $r^n K = r^{n-1}K$ by Theorem 2.5. If $r^n K = 0$, then $r^n n + r^n k - r^{n-1}k_1 = r^{n-1}(rn - k_1) \in N$. This implies that $rn - k_1 \in N$ because N is a P-primary submodule of M and $r^{n-1} \notin P$. So that $k_1 \in N$. Therefore, $rn+rk = n_1+k_1 \in N$. Thus $n+k \in N$ as needed. If $r^n K = r^{n-1}K$, then $r^{n-1}k_1 = r^n k_2$ for some $k_2 \in K$. Thus $r^n n + r^n k - r^n k_2 \in N$. This implies that $n + k - k_2 \in N$ because N is a P-primary submodule of M and $r^n \notin P$. Thus $n+k = n+k-k_1+k_2 \in N+K$, as desired.

Corollary 2.41. Let N and K be two non-zero submodules of an R-module M with $N \subseteq K \neq M$. If N is a primary and K is a semi n-absorbing second submodule of M, then K is a primary submodule of M.

Proof. This follows from Theorem 2.40.

Theorem 2.42. Let M_1 , M_2 be *R*-modules, N_1 be a (k_1, n_1) -closed second submodule of M_1 , and N_2 be a (k_2, n_2) -closed second submodule of M_2 . Then $N_1 \oplus N_2$ is a (k, n)-closed second submodule of $M_1 \oplus M_2$ for all positive integers $k \leq \min\{k_1, k_2\}$ and $n \geq \max\{n_1, n_2\} + 1$.

Proof. By Theorem 2.11 (d), N_1 , N_2 are both (k, n)-closed second submodules of M_1 and M_2 , respectively. Let $r \in R$. Then $r^k N_1 = r^{n-1} N_1$ or $r^n N_1 = 0$ and $r^k N_2 = r^{n-1} N_2$ or $r^n N_2 = 0$. If $r^k N_1 = r^{n-1} N_1$ and $r^k N_2 = r^{n-1} N_2$

(resp. $r^n N_1 = 0$ and $r^n N_2 = 0$), then $r^k (N_1 \oplus N_2) = r^{n-1} (N_1 \oplus N_2)$ (resp. $r^n (N_1 \oplus N_2) = 0$) so we are done. If $r^k N_1 = r^{n-1} N_1$ and $r^n N_2 = 0$, then $r^k N_2 = 0$ because $n \le k$. Thus $r^k (N_1 \oplus N_2) = r^k N_1 \oplus 0 = r^{n-1} (N_1 \oplus N_2)$. Similarly, we are done if $r^k N_2 = r^{n-1} N_2$ and $r^n N_1 = 0$.

References

- D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), 1646–1672.
- [2] _____, On n-closed ideals of commutative rings, Journal of Algebra and Its Application 16 (2017), no. 01, [21 pages] DOI: http://dx.doi.org/10.1142/S021949881750013X.
- [3] H. Ansari-Toroghy and F. Farshadifar, *Some generalizations of second submodules*, Palestine Journal of Mathematics, to appear.
- [4] _____, The dual notion of some generalizations of prime submodules, Comm. Algebra **39** (2011), 2396–2416.
- [5] _____, On the dual notion of prime submodules, Algebra Colloq. 19 (2012), no. (Spec 1), 1109–1116.
- [6] H. Ansari-Toroghy, F. Farshadifar, and S. Maleki-Roudposhti, nabsorbing and strongly n-absorbing second submodules, Boletim Sociedade Paranaense de Matemática, to appear.
- [7] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc.
- [8] A. Barnard, Multiplication modules, J. Algebra **71** (1981), 174–178.
- [9] S. Ceken, M. Alkan, and P. F. Smith, The dual notion of the prime radical of a module, J. Algebra 392 (2013), 265–275.
- [10] A. Y. Darani and F. Soheilnia, On n-absorning submodules, 17 (2012), 547–557.
- [11] J. Dauns, *Prime submodules*, J. Reine Angew. Math.
- [12] Z. A. El-Bast and P. F. Smith, *Multiplication modules*, Comm. Algebra 16 (1988), 755–779.
- [13] L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in: Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math 249 (2006), 121–145.

- [14] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), 273–278.
- [15] E. Yetkin, On (k, n)-closed submodules, arXiv:1604.07656v1.