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Matrix methods in Horadam sequences
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Given the generalized Fibonacci sequence {W,,(a,b;p,q)} we can natu-
rally associate a matrix of order 2, denoted by W (p, ¢), whose coefficients
are integer numbers. In this paper, using this matrix, we find some identi-
ties and the Binet formula for the generalized Fibonacci-Lucas numbers.
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Dada la sucesién generalizada de Fibonacci {W,,(a, b; p, q¢)} podemos aso-
ciar naturalmente una matriz de orden 2, denotada por W (p,q), cuyos
coeficientes son numeros enteros. En este trabajo, usando esta matriz,
encontramos algunas identidades y la férmula de Binet para los nimeros
generalizados de Fibonacci-Lucas.

Palabras claves: nimeros generalizados de Fibonacci,
métodos matriciales, férmula de Binet.

MSC: 11B39, 11C20, 15A24

Recibido: 12 de abril de 2012 Aceptado: 17 de julio de 2012

! gamaliel.cerda.m@mail.pucv.cl



98 Gamaliel Cerda, Matriz methods in Horadam sequences

1 Introduction

Let {W,(a,b;p,q)} be a sequence defined by the recurrence relation [1]

Wy=pWy_1—qWp_2, (1)

for n > 2, with Wy = a, W1 = b, where a, b, p and ¢ are integer numbers
with p > 0, ¢ # 0.

We are interested in the following two special cases of {W), }:
(i) {U,} is defined by Uy = 0, Uy = 1; and
(ii) {V,} is defined by Vp =2, V; = p.

Then {U,} and {V,,} can be expressed in the form

an_ﬁn
= e
Vo = a"+p", (2)
pHVA ﬁ:p—\/Z

where a = 55 5— and the discriminant is denoted by A =
p?> —4q. If p=1, ¢ = —1, then {U,} and {V,,} are the usual Fibonacci
and Lucas sequences.

In this study we define the generalized Fibonacci-Lucas matrix W

by

p —q
W(p7q)=[1 0]- 3)
Then we can write (U, 1U,)T = W(p, q)(UnU,_1)T, where {U,} is the
n-th generalized Fibonacci sequence and v’ is the transpose of the vector
v. Similarly, the n—th generalized Fibonacci-Lucas sequence (V1 1V;,)7
is W(p,q)(V;,V,,_1)T. Using these representations, we obtain the deter-
minants and elements of W"(p,q), and we get the Cassini formula for
the generalized Fibonacci—Lucas numbers.
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2 Generalized Fibonacci—Lucas matrix W (p, q)

We calculate the generalized characteristic roots and the Binet formula
for the matrix W"(p,q), with n > 1.

Theorem 2.1. Let W(p,q) be a matriz as in (3). Then
Un+1 —q Un
wmn = 4
(», @) [ U, qU, | (4)
where n is a positive integer number.
Proof. We will use mathematical induction. When n =1,
_|p —a|_| U —qUy

So the result is true for n = 1. We assume the result is true for any
positive integer number n = k. Now, we show that the result is true for
n =k + 1. Then we can write:

U, —q Uy Uy —qUy
Wk+1 ’ — Wk; ’ W ’ — k+1 :| |: :| )
(ps q) (P, ) W(p, q) U —qUey | | Uy —qUs
and the result follows. |
Corollary 2.2. For every positive integer number n:
(i) det(W"(p,q)) = ¢"; and
(ii) Ups1Up_1 — U2 = —¢q" 1 (Cassini formula).

Proof. We have that det(W(p,q)) = ¢. Then we can write
det(W"(p, q)) as the product of n times det(W (p,q)) equal to ¢". The
determinant det(W"(p,q)) in (4) follows from (ii). |

Theorem 2.3. Letn be a positive integer number. The Binet formula
for the generalized Fibonacci numbers is
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= p_+£/Z and 3 = p=VA

where « 5

Proof. Let the matrix W (p,q) be as in (4). The eigenvalues and
eigenvectors of the matrix W are a = HT\/Z and 8 = pr\/Z’ which are
roots of the characteristic polynomial 22 — pz + ¢, and v; = (a, 1) and
vy = (B, 1), respectively. Then we can diagonalize the matrix W by
D = P~'W(p,q)P, where P = (v} ,vl) and D = diag(a, 3). From the
properties of the similar matrices, we can write D" = P~'W"(p,q)P,
where n is any integer number. Furthermore, we can write W"(p,q) =

PD"P~!, where

1 an+1 _ 5n+1 —q(Ocn _ 511)

Oé——ﬁ Q" — B _q(an—l _ ,Bn_l) (6)

W(p, q) =
Thus the proof is complete. |

Consequently, the limit ratio of successive generalized Fibonacci
numbers is

U I an—i—l _ ﬁn—i—l
lim /4= = lim ———— =,
n—oo n n—oo ot — ,Bn
. VA
with o = E52 for W (p, q).

Theorem 2.4. The characteristic roots of W"™(p,q) are A\j2 =
W, where A\ = o™ and Ao = ™. Then, V,, = o™ 4+ 5".

Proof. From the characteristic polynomial of W"(p,q) we get
det(W"(p, q) — M) = X = (Upy1 — qUn-1)A — q(Un41Un—1 = U;) = X2 —
Vad+q", by identities Up 1 —qUp—1 = Vy, and Uy 11Uy -1 — U,% = —q¢" L

we get the generalized characteristic roots as
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Ay o — Vo £V —4g"

1,2 — B .
Since VnQ - 4qn - (Oé - 5)2U37 we can write )\172 = w Conse_
quently ot = M and ﬂn — M |

We define

Un Un
r _WV'pa _ [ omrdiit’ B ]
mn - .
Un—l _q

) . Unt1
Since lim —F

n—o0

= «, it follows that

n

Rp(a) = lim Rn:[m_q _qo‘]. (7)

n—oo (0% —q

Theorem 2.5. Let R,(«) be a 2 x 2 matriz as in (7). If « = p, then

U2n+1 —q UZn
R, =
Q [ Uan, —qUzp 1 ]

for anyn > 1.

Proof. It can be done by mathematical induction. |
Corollary 2.6. For every positive integer number n, we have:
(i) det(Ra(p)) = ¢*"; and

(i) Uapy1Uzp—1 — U22n — _q2n—1.

Proof. The proofs is similar to Corollary (2.2).

3 Sums of generalized Fibonacci numbers

When n = 1, the equation A2 — V,,\A + ¢ = 0 becomes \?> — p\ + ¢ = 0,
which is the characteristic equation for the generalized Fibonacci mtix
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W (p,q). Notice that W2(p,q) — pW(p,q) + qI = 0 (from the Cayley—
Hamilton theorem), with I the identity matrix of order 2. Now, we have
the following equation

I+G+G?+-- +GVG-1)=G"—T. (8)

Since W2(p, q) — pW (p, q) = —qI, we can write W (p, q)(W (p, q) — pI) =
—qI. Thus, W=Y(p,q) = _Tp(%W(p, q) — I). Multiplying both sides
of equation (8) by the inverse of (G — I), with G = %W(p, q), we get

[+ G+ +G" times (G" — [)Z2W (p, q), and

~ Wkp,q) -1 _ . p
Z#:TWH(P, q) +=W(p, q). 9)
= p g q

Equating the (2, 1)—entry of both side, we obtain the following result.

Theorem 3.1. For any integer number n > 1,

n

S U _p Un
ko n
—pk g pg
A particular case of the previous theorem is p = 1 and ¢ = —2,
known as the Jacobsthal succession. Then we can write >} Uy =
%(Un+2 — 1), and if p =, ¢ = —1, the Fibonacci sequence, we obtain

Soheo Uk = Upyo — 1.

Theorem 3.2. Let n and m be positive integer numbers. Then we
have the following relation between the generalized Fibonacci and gen-
eralized Fibonacci—Lucas numbers

Vn+m = Um+1 Vn —q Um Vn—l . (10)

Proof. From the definition of the generalized Fibonacci and
Fibonacci-Lucas numbers we can write an expression for (V,11V;)7 =
W (p,q)(V;V,,_1)T. Multiplying both sides of equation (10) by W"(p, q),

we get W(p, q) (Va1 Vo)™ = W (p, q)(VaVi—1)". Using (4) we obtain
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|: Vn+m+1 :| _ |: Um+2 Vi — quJrl Va1

. 11
Vner Um+1 Voo —qUpm Vi1 ( )

Thus the proof is complete. |

Let n and m be positive integer numbers. Since W"T = W™,
we can write

U(n+m)+1 —qUnim :|
Unim —q U(ner)fl
_ Uns1 —qU, Unm+1 —qUpn
Un —q Unfl Um —q Umfl

then, Uyt = UpnUn+1 — QUn—1Up,. In particular, if n = m, we get

Uy =U, (UnJrl —q Unfl) s
i.e., Uy = UpVy,. Furthermore, if n = m+1, Ugypq1 = U72n+1 — qun. For

W=" we get

— 1 _qUnfl qUn
W™"(p, q) = —
(p, @) p0 [ , Uir

Since W™ = W™W ™™, we can write:

U(n—m)+1 —qUp_m :|
Un—m —q U(nfm)fl
o i |: Un+1 _qUn :| |: —qu,1 qu
qm Un —q Un—l _Um Um+1

Definition 3.3. We define the generalized Fibonacci—Lucas matriz S
by
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2
p°=2q —pq
S =S8(p, q) = [ } . 12
po= |0 (12

We can write (Viy2Vni1)? = S(Un11Un)T, where U, and V,, are
the nth generalized Fibonacci and Fibonacci-Lucas numbers, respec-
tively. Furthermore, by (10) we get V41 = ViUpt1 — ¢VoU,, for all
n > 1. Then

Vo —qV,
5(p,q)=[vf —ZVH’

in function of the succession {V,,}.

4 The matrix S representation

In this section we will get some properties of the generalized Fibonacci—
Lucas matrix S. Moreover, using this matrix, we will obtain the Cassini
and the Binet formulae for the generalized Fibonacci and Fibonacci—
Lucas numbers.

Theorem 4.1. Let S(p,q) be a matriz as in (12). Then, for all inte-
ger numbers n, the following matrix power is given by

U, —qU,
(VA" i 1 , for evenn
n n Un _qUn—l
St =5"p, q) = v v (13)
(VA1 i 4 ¥n , for oddn
Vn _qvn—l

where A = p® — 4q.

Proof. We will use mathematical induction for odd and even n,
separately. For n =1 we get

2—-2q —pgq Voo —qW1
S'wo=| |- |
=1, —2g Vi —qVy
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Therefore, for n = 1 the result is true. We assume that the result is
correct for odd n = k. Now we show that the result is correct for n =
k4 2. We can write S¥+2 = §%52 where

_ Vi —q Vi
gk — (VA 1[ k+1 ] 7
V&) Vi —q Vi1

2 _ (\/K)z[pz—q —pq}

p —-q

By multiplying those two expressions we obtain

Vi —q V2
GhH2 _ (/AR [ k43 + } . 1
(V&) Vite —q Vit (14)

When n = 2 and using the previous equality, we obtain that the result for
S2(p, q) is correct. We assume that the result is correct for even n = k.
Finally, we show that the result is correct for n = k + 2. We get

A [ Upp1 —qUy } [ P’ —q —pgq ]
(VA)k+2 U —qUi— [ | p —q
[ Uk+s —qUgs2 }
Up+2 —qUit1
The proof is complete. |

Let S™(p,q) be as in (13). For all positive integer numbers n, the
determinant of S™ is (—¢A)™, given that det(S(p,q)) = —¢A. Further-
more, U, 1Up 1 — U2 is (=1)"(—q)" L.

The identity

Upii = qU; = Usnyr, (15)

has as its Lucas counterpart

V2, —qV2=AUs1. (16)
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Indeed, since V11 = Upyo—qU, = pUpy1—2qU, and V,, = 2U, 41 —pU,,
the equation (16) follows from (15). We define R(p, q) as the 2 X 2 matrix

R(p,q>:§[f ﬂ (17)

Then for an integer number n, R"(p, q) has the form

1

R"(p, q) = [

1[ Ve AU,
- ,

Up Vo

Theorem 4.2. V2 — AU?2 = 4q", for alln € Z.
Proof. Since det(R(p,q)) = q, we get

det(R"(p, q)) = (det(R(p, 9)))" = q" .

Furthermore, from (18), we get det(R"(p, q)) = +(V;2— AU2). The proof
is complete. |
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