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We analyze perturbations of linear functionals (both on the real line and
on the unit circle) that belong to the Laguerre–Hahn class. In particular,
we obtain an expression for the Stieltjes and Carathéodory functions as-
sociated with the perturbed functionals, and we show that the Laguerre–
Hahn class is preserved. We also discuss the invariance of the class under
the Szegő transformation.
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1 Introduction

The Laguerre–Hahn class for linear functionals defined in the linear
space of polynomials with complex coefficients was introduced in [2, 16].
They are linear functionals such that their corresponding Stieltjes func-
tion satisfies a Riccati differential equation with polynomial coefficients.
Later on, some perturbations to linear functionals where analyzed (see
[19, 20, 24, 30], among others), in regards to whether or not they preserve
the Laguerre–Hahn character. In particular, [20] deals with a perturba-
tion consisting in the addition of a Dirac delta to a linear functional.
The authors determined that this kind of perturbation preserves the
Laguerre–Hahn character, and they also analyzed some interesting ex-
plicit examples using associated polynomials of the first kind for the
classical polynomials families.

More recently, the Laguerre–Hahn class was extended to Hermitian
linear functionals defined on the linear space of Laurent polynomials. In
such a case, the corresponding Carathéodory function satisfies a Riccati
differential equation, and the linear functionals satisfying this condition
are said to be in the Laguerre–Hahn class on the unit circle. In [25] the
author studies the Laguerre–Hahn character when some perturbations to
the linear functional are applied, as well as some characterizations of the
class in terms of a distributional equation for the functional and matrix
Sylvester differential equations, among others.

In this contribution, our aim is to analyze a perturbation consisting
in the addition of Dirac delta derivatives of order N , both for linear func-
tionals defined on the real line and on the unit circle. The structure of
the article is as follows. In Section 2, we present some preliminaries and
notation regarding the Laguerre–Hahn class on the real line and some
spectral transformations that have been studied on the past. We intro-
duce a perturbation consisting in the addition of a Dirac delta derivative
of order N , we obtain the relation between the corresponding Stielt-
jes functions and, finally, we discuss if the transformation preserves the
Laguerre–Hahn class. In Section 3, a similar analysis is carried on for
linear functionals on the unit circle. Finally, in Section 4, we study the
Laguerre–Hahn class under the Szegő transformation, i.e., the correspon-
dence between measures on the real line and measures on the unit circle.
An explicit example is presented.

2 Orthogonal polynomials on the real line

2.1 Preliminaries

Let L be a linear functional defined in the linear space P of polynomials
with complex coefficients such that
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〈L, xn〉 = µn , (1)

for n > 0, where µn ∈ R isthe n–th moment associated with the linear
functional L. We define φL, the left multiplication of L by a polynomial
φ with real coefficients, by

〈φL, q(x)〉 = 〈L, φ(x)q(x)〉 , (2)

for q ∈ P, and DL, the usual distributional derivative of L, as

〈DL, q(x)〉 = −
〈
L, q′(x)

〉
, (3)

for q ∈ P. Furthermore, if q(x) =
∑n

j=0 ajx
j ,we define

(Lq)(x) =

n∑
m=0

 n∑
j=m

aj µj−m

 xm ,

(θ0q)(x) =
q(x)− q(0)

x
.

Finally, the linear functional x−1L and the product of two linear func-
tionals are defined by

〈
x−1L, q(x)

〉
= 〈L, (θ0q)(x)〉 ,

〈L1L, q(x)〉 = 〈L1, (Lq)(x)〉 ,

for q ∈ P. If L is quasi–definite, i.e. if the principal leading submatrices of
the Gram matrix (a Hankel matrix, in this case) associated with {µn}n>0
are non–singular, then we can guarantee the existence of a unique family
of monic polynomials such that

〈L, Pn(x)Pm(x)〉 = Kn δn,m , (4)

for Kn 6= 0 and n,m > 0. {Pn}n>0 is said to be the sequence of monic
polynomials orthogonal with respect to L. Properties of orthogonal poly-
nomials have been extensively studied in the past (see [8, 28], among
others). They satisfy a three term recurrence relation
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Pn+1(x) = (x− bn)Pn(x)− dn Pn−1(x) , (5)

for n > 0, with the initial conditions P0(x) = 1, P−1(x) = 0, and bn, dn ∈
R with dn 6= 0, n > 1. It is well known that given two sequences of
arbitrary real numbers {bn}n>0, {dn}n>0, with dn 6= 0, then {Pn}n>0

defined by (5) is orthogonal with respect to some quasi–definite linear
functional L. This result is known in the literature as Favard’s theorem
([8]).

On the other hand, if the principal leading submatrices of the Hankel
matrix have positive determinant, then L is said to be positive definite.
In such a case, there exists a family of orthonormal polynomials {pn}n>0

satisfying (4) with Kn = 1, n > 0. Furthermore, L has the integral
representation

〈L, q(x)〉 =
∫
E
q(x) dµ(x) ,

with q ∈ P, where µ is a positive Borel measure supported on an infinite
subset E of the real line.

The Stieltjes function associated with µ is defined by

S(x) =

∫
E

dµ(y)

x− y
, (6)

and has great importance in the theory of orthogonal polynomials and
in approximation theory. It admits the series expansion at infinity

S(x) =

∞∑
k=0

µk

xk+1
, (7)

where {µn}n>0 are the moments given in (1). By extension, for quasi–

definite linear functionals, we will define the Stieltjes function as in (7).

2.2 The Laguerre–Hahn class

A linear functional L (or the associated family of orthogonal polynomials
{Pn}n>0) is said to be in the Laguerre–Hahn class if the corresponding
Stieltjes function satisfies a Ricatti differential equation of the form

AL(x)S
′(x) = BL(x)S

2(x) + CL(x)S(x) +DL(x) , (8)
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where AL, BL, CL and DL are polynomials with complex coefficients
such that AL(x) 6= 0, and DL(x) = [(DL)θ0AL](x) + (Lθ0CL)(x) −
(L2θ0BL)(x). Moreover,

Theorem 1. [19] Let L be a normalized (µ0 = 1) quasi–definite linear
functional and {Pn}n>0 the corresponding sequence of monic orthogonal
polynomials. The following statements are equivalent

1. L is in the Laguerre–Hahn class.

2. L satisfies the functional equation D [ALL]+ΨL+BL

(
x−1L2

)
= 0,

where AL(x), BL(x) and CL(x) are the polynomials defined in (8),
and

Ψ(x) = −
[
A′

L(x) + CL(x)
]
. (9)

3. L satisfies the functional equation

D [xALL] + (xΨ−AL)L+BLL2 = 0 , (10)

with the condition 〈L,Ψ〉+
〈
L2, θ0BL

〉
= 0.

4. Every polynomial Pn(x), with n > 0, satisfies a structure relation

AL(x)P
′
n+1(x)−BL(x)P

(1)
n (x) =

n+d∑
k=n−s

θn,k Pk(x) ,

for n > s + 1, where
{
P

(1)
n

}
n≥0

are the associated polynomials of

first kind (see the following subsection) with respect to {Pn}n≥0,

t = degAL, p = degΨ > 1, r = degBL, s = max{p − 1, d − 2},
d = max{t, r}, and θn,k are some constants.

If BL = 0, then {Pn}n>0 is said to belong to the affine Laguerre–Hahn
orthogonal polynomials class. Equivalently, they are the semiclassical
orthogonal polynomials (see [1, 21]).

Notice that the characterization D [ALL] + ΨL+ BL

(
x−1L2

)
= 0 is

not unique. If fact, multiplying by a polynomial q(x), L also satisfies

D
[
ÂLL

]
+ Ψ̂L + B̂L

(
x−1L2

)
= 0, where ÂL = qAL, Ψ̂ = qΨ, and
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B̂L = qBL. In order to obtain uniqueness, a minimizing condition on
the degrees of the polynomials is imposed. Let t, p and r be the degrees
of the polynomials ÂL, Ψ̂ and B̂L, respectively, and let d = max{t, r}.
Now, set H(L) = {max{p− 1, d− 2}, for any polynomials ÂL, Ψ̂ and B̂L

satisfying (10)}. Then, the class s of the Laguerre–Hahn linear functional
L is defined as the minimum of H(L).

Furthermore, we have (see [20])

Theorem 2. Let L be a linear functional satisfying (8), and let Z be
the set of zeros of AL. Then, L has class s if and only if

∏
a∈Z

(|CL(a)|+ |BL(a)|+ |DL(a)|) 6= 0 ,

i.e., AL, BL, CL and DL are coprime.

2.3 Spectral transformations

Given a linear functional L, the following perturbations to it have been
studied in [4, 30].

(i) LC = (x− α)L, α /∈ supp(µ);

(ii) LG = (x− α)−1L, α /∈ supp(µ);

(iii) LU = L+Mrδα, Mr ∈ R, α /∈ supp(µ),

where δα is defined by 〈δα, q〉 = q(α). The above transformations are
called, respectively, Christoffel, Geronimus and Uvarov transformations.
In terms of the corresponding Stieltjes functions, these perturbations can
be expressed (see [30]) as

S̃(x) =
A(x)S(x) +B(x)

D(x)
, (11)

where S̃(x) is the perturbed Stieltjes function and A,B, and D are poly-
nomials in the variable x, which were determined in [30], where the au-
thor also shows that all perturbations of the form (11), called linear
spectral transformations, can be expressed as a product of Christoffel and
Geronimus transformations. Moreover, it can be shown (see [19]) that
the Laguerre–Hahn class is closed under the transformations (i)–(iii).

On the other hand, perturbations of the form

S̃(x) =
A(x)S(x) +B(x)

C(x)S(x) +D(x)
, (12)
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with AD−BC 6= 0, are called rational spectral transformations and were
also analyzed in [30]. An example of this kind of perturbations are the
so–called associated polynomials of order k, which are defined ([8]) by

P
(k)
n+1(x) = (x− bn+k)P

(k)
n (x)− dn+k P

(k)
n−1(x) , (13)

for n > 1, and the initial conditions P
(k)
0 (x) = 1, P

(k)
1 (x) = x − bk,

where {bn}n>0 and {dn}n>0 are the same that in (5). In other words, we
obtain the associated polynomials of order k by a shift of the recurrence
relation parameters. S(k)(x), the corresponding Stieltjes function, can
be obtained using

S(k)(x) =
Sk(x)

dkSk−1(x)
,

where Sk(x) = Pk(x)S(x)− P
(1)
k−1(x).

Another example of rational spectral transformation are the anti–
associated polynomials of order k, considered in [26] and defined by

P
(−k)
n+1 (x) = (x− b̃n)P

(−k)
n (x)− d̃n P

(−k)
n−1 (x) ,

for n > 0 ,, with initial conditions P
(−k)
−1 (x) = 0, P

(−k)
0 (x) = 1, where

b̃n = bn−k, d̃n = dn−k, n > k and b̃0, b̃1, . . . , b̃k, d̃1, . . . , d̃k are arbitrary
real numbers. The corresponding Stieltjes function is also given by an
expression of the form (12). Furthermore,

Theorem 3. [30] Any rational spectral transformation of the form (12)
can be obtained as a superposition of Christoffel, Geronimus, associated,
and anti–associated transformations.

Theorem 4. [30] The class of Laguerre–Hahn is closed under rational
spectral transformation of the form (12).

2.4 Perturbation by the addition of Dirac delta
derivatives

Let L be a quasi–definite linear functional. Taking into account that

〈
D(N)L, q(x)

〉
= (−1)N

〈
L, q(N)(x)

〉
,

consider the linear functional LN such that
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〈LN , q(x)〉 = 〈L, q(x)〉+M
〈
D(N)δα, q(x)

〉
, (14)

for M ∈ R+, i.e., a perturbation of L by the addition of a Dirac delta
derivative or order N at the point x = α /∈ supp(µ). Our interest is to
find the Stieltjes function associated with LN , and to determine if this
kind of perturbation preserves the Laguerre–Hahn character.

Proposition 5. Let L be a quasi–definite linear functional and S(x)

the corresponding Stieltjes function. Then, S̃(x), the Stieltjes functions
associated with LN defined as in (14) is given by

S̃(x) = S(x) +M (−1)N N !
1

(x− α)N+1
. (15)

Remark 6. The case N = 1 was analyzed in [10].

Proof. Consider

c̃k =
〈
LN , xk

〉
= ck +M (−1)N

k!

(k −N)!
αk−N ,

for k > N . Then, the Stieltjes function is

S̃(x) =
∞∑
k=0

c̃k
xk+1

=
∞∑

k=N

(
ck +M (−1)N

k!

(k −N)!
αk−N

)
1

xk+1

= S(x) +M (−1)N
∞∑

k=N

k!

(k −N)!

αk−N

xk+1

= S(x) +
M(−1)N

αN+1

∞∑
k=N

k!

(k −N)!

(α
x

)k+1
.

Taking into account that

[(α
x

)k−N+1
](N)

=
(−1)N

αN

k!

(k −N)!

(α
x

)N+1
,

we have
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S̃(x) = S(x) +
M(−1)N

αN+1

∞∑
k=N

αN

(−1)N

[(α
x

)k−N+1
](N)

= S(x) +
M

α

∞∑
k=N

[(α
x

)k−N+1
](N)

= S(x) +
M

α

[ ∞∑
k=0

(α
x

)k+1
](N)

= S(x) +
M

α

[
α

x− α

](N)

= S(x) +M (−1)N N !
1

(x− α)N+1
,

for |α| < |x|.

In other words, the addition of a derivative of order N modifies the
Stieltjes function by adding a rational function with a pole of multiplicity
N + 1 at x = α. Notice that, in general, if we consider the perturbation

〈LN , q(x)〉 = 〈L, q(x)〉+
l∑

k=0

Mk

〈
D(Nk)δαk

, q(x)
〉
, (16)

then the corresponding Stieltjes function will consist in the addition of
rational functions with poles of multiplicities Nk+1 at the points x = αk

to S(x). As a consequence,

Corollary 7. Let L be a linear functional that is in the Laguerre–Hahn
class. Then, LN defined as in (16) is also Laguerre–Hahn.

Now, assuming that L is Laguerre–Hahn, we consider the class s̃ of
the Laguerre–Hahn functional defined by (14). Combining (8) and (15),
we obtain

Φ(x)

(
S̃′(x) +

(−1)NM(N + 1)!

(x− α)N+2

)
= B(x)

(
S̃(x)− M(−1)NN !

(x− α)N+1

)2

+C(x)

(
S̃(x)− M(−1)NN !

(x− α)N+1

)
+D(x) ,

so that
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Φ(x) S̃′(x) = B(x) S̃2(x)

+

(
C(x)− 2M(−1)NN !B(x)

(x− α)N+1

)
S̃(x)

+
M2 (N !)2B(x)

(x− α)2N+2
− M(−1)NN !C(x)

(x− α)N+1

−(−1)NM(N + 1)!Φ(x)

(x− α)N+2
+D(x) .

Thus, if

ÃL(x) = (x− α)2N+2Φ(x) ,

B̃L(x) = (x− α)2N+2B(x) ,

C̃L(x) = (x− α)N+1
(
C(x) (x− α)N+1 − 2M (−1)N N !B(x)

)
,

D̃L(x) = M2 (N !)2 B(x)−M (−1)N N !C(x) (x− α)N+1

+D(x) (x− α)2N+2 − (−1)N M (N + 1)! (x− α)N Φ(x) ,

then

ÃL(x) S̃
′ = B̃L(x) S̃

2 + C̃L(x) S̃ + D̃L(x) . (17)

Now, let s be the class of L. Notice that

deg ÃL = t̃ 6 s+ 2N + 4 ,

deg Ψ̃ = p̃ 6 s+ 2N + 3 ,

deg B̃L = r̃ 6 s+ 2N + 4 .

As a consequence, d̃ = max{t̃, r̃} 6 s+2N +4 and the class of LN is s̃ =

max{p̃−1, d̃−2} 6 s+2N+2. On the other hand, since µ = µ̃−Mδ
(N)
α ,

then

Proposition 8. Let s be the class of the linear functional L. Then, the
class s̃ of the linear functional LN is such that

s− (2N + 2) 6 s̃ 6 s+ (2N + 2) .

Remark 9. The cases N = 0 and N = 1 were studied in [20] and [10],
respectively. In the latter, the authors also obtain the conditions on the
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polynomials of the differential equation that determine each specific value
of the class.

Proposition 10. Let LN be a Laguerre–Hahn linear functional whose
Stieltjes function satisfies (17). Then, for every zero of ÃL(x) different
from α, (17) cannot be simplified by division of the polynomial coeffi-
cients.

Proof. From the assumption on L, AL, BL, CL, and DL are coprime.
Let ÃL and B̃ be as above and assume a is a zero of ÃL different from
α. Three different situations can be analyzed

1. If B(a) 6= 0, then B̃L(a) 6= 0.

2. If B(a) = 0 and C(a) 6= 0, then we get C̃L(a) 6= 0.

3. If B(a) = C(a) = 0 then taking into account D(a) 6= 0, we get

D̃L(a) 6= 0 and, as a consequence,

∣∣∣B̃L(a)
∣∣∣+ ∣∣∣C̃L(a)

∣∣∣+ ∣∣∣D̃L(a)
∣∣∣ 6= 0 .

As a conclusion, the equation (17) cannot be simplified.

3 Orthogonal polynomials on the unit circle

3.1 Preliminaries

Consider a linear functional L defined in the linear space of Laurent
polynomials with complex coefficients Λ = span{zk}k∈ZE , such that

cn = 〈L, zn〉 = 〈L, z−n〉 = c̄−n ,

i.e., L is an Hermitian linear functional. We will denote the corre-

sponding bilinear functional by 〈p(z), q(z)〉L =
〈
L, p(z)q(z)

〉
, where

q(z) = q̄(z−1), and p, q ∈ P. The set of complex numbers {ck}k∈ZE
are called the moments associated with L. The Gram matrix associ-
ated with L is now a Toeplitz matrix. Analogously to the real line case,
studied in the previous Section, we will say that L is a quasi–definite
(positive definite) linear functional if the determinants of the principal
leading submatrices of the Toeplitz matrix are non–negative (positive).
In the quasi–definite case, it can be guaranteed that there exists a family
of monic polynomials {Φn}n>0 satisfying
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〈
L, Φn(z)Φm(z)

〉
= kn δn,m ,

for n,m > 0, where kn 6= 0, n > 0. {Φn}n>0 is said to be the monic
orthogonal polynomial sequence (MOPS) with respect to L.

On the other hand, any positive definite linear functional admits the
integral representation

〈L , p(z)〉 =
∫
T
p(z) dσ(z) ,

where p(z) is a polynomial and σ is a nontrivial positive measure sup-
ported on T.

The properties of {Φn}n>0 have been extensively studied over the
years ([13, 27, 28], among others). They satisfy

Φn+1(z) = zΦn(z) + Φn+1(0)Φ
∗
n(z) , (18)

Φn+1(z) =
(
1− |Φn+1(0)|2

)
zΦn(z) + Φn+1(0)Φ

∗
n+1(z) , (19)

for n > 0, the so–called forward and backward recurrence relations, where
Φ∗
n(z) = znΦ̄n(z

−1) is the reversed polynomial and the complex numbers
{Φn(0)}n>1 are known as Verblunsky coefficients (they are also called
Schur or reflection parameters).

In terms of the moments, we can define an analytic function in a
neighborhood of the origin by

F (z) = c0 + 2
∞∑
k=1

c−k z
k , (20)

which, if L is positive definite, is analytic in the open unit disc DE with
positive real part therein. It can be represented as

F (z) =

∫
T

w + z

w − z
dσ(w) ,

where σ is the measure associated with L. F (z) is said to be the
Carathéodory function associated with L . For quasi–definite linear func-
tionals, we will define F (z) as (20).
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3.2 Spectral transformations and the Laguerre–Hahn
class

Given a linear functional L, the following perturbations (analogous to the
Christoffel, Geronimus and Uvarov perturbations defined in the previous
Section) have been studied in the past (see [9, 11, 14, 15, 17, 18]):

〈p(z), q(z)〉LC
= 〈(z − α) p(z), (z − α) q(z)〉L ,

for α ∈ C;

〈p(z), q(z)〉LG
=

〈
p(z)

z − α
,

q(z)

z − α

〉
L
+m p(α) q(ᾱ−1) + m̄ p(ᾱ−1) q(α) ,

for α ∈ C, |α| 6= 1 and m ∈ C; and

〈p(z), q(z)〉LU
= 〈p(z), q(z)〉L +m p(α) q(ᾱ−1) + m̄ p (ᾱ−1) q(α) ,

for m ∈ C and α 6= 0. In terms of the corresponding Carathéodory
functions, they can be expressed as

F̃ (z) =
A(z)F (z) +B(z)

D(z)
, (21)

where A,B, and D are polynomials in the variable z whose coefficients
depend on m and α (see [17]). (21) is said to be a linear spectral trans-
formation of F (z).

There are other transformations that result from modifications of the
Verblunsky parameters, namely the Aleksandrov transformation (result-
ing from multiplying the Verblunsky parameters by the complex number
λ, with |λ| = 1), and the associated and antiassociated polynomials of
order k, defined by a forward and backward shift, respectively, of the
Verblunsky coefficients, in a similar way that the associated and anti-
associated polynomials are defined on the real line. Once one has the
sequence of modified Verblunsly coefficients, the corresponding polyno-
mials can be constructed using (18). In terms of the Carathéodory func-
tions, these transformations are given by

F̃ (z) =
A(z)F (z) +B(z)

C(z)F (z) +D(z)
, (22)
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where A,B,C and D, with AD − BC 6= 0, are polynomials in z, which
are known (see [22, 27]). In general, transformations of the form (22)
are called rational spectral transformations. In [22], the author gives
necessary and sufficient conditions on the polynomials A,B,C, and D in

order for F̃ (z) to be a Carathéodory function, provided that F (z) is.
A linear functional L whose corresponding Carathéodory function

satisfies the Ricatti differential equation

z AL(z)F
′(z) = BL(z)F

2(z) + CL(z)F (z) +DL(z) , (23)

where AL, BL, CL, and DL are polynomials in z, is said to be in the
Laguerre–Hahn class. The Laguerre–Hahn class on the unit circle can
be understood as an extension of the Laguerre–Hahn class on the real
line, and was studied in [25], where the author characterizes this class
in terms of a distributional equation for the corresponding orthogonality
linear functional, and in terms of a first order structure relation with
polynomial coefficients.

If BL = 0, then we obtain the affine Laguerre–Hahn class on the
unit circle (see [3, 5, 23]), and if BL = DL = 0 and CL is some specific
polynomial, then we obtain the semiclassical class on the unit circle (see
[3, 5]). It is important to notice that, unlike the real line case, the affine
Laguerre–Hahn and semiclassical classes do not coincide. The following
result can be found in [25].

Theorem 11. Let L be a quasi–definite linear functional such that F (z),
the corresponding Carathéodory function, satisfies (23) for some polyno-
mials AL, BL, CL and DL, i.e, F (z) belongs to the Laguerre–Hahn class.

Let F̃ (z) be a rational spectral transformation of F (z) of the form (22).

Then, F̃ (z) also belongs to the Laguerre–Hahn class.

3.3 Perturbation by the addition of Dirac delta
derivatives

Consider an Hermitian linear functional L and the corresponding deriv-
ative functional on the unit circle, given by (see [29])

〈DL, p(z)〉 = −i
〈
L, z p′(z)

〉
,

Then,

〈
DL, p(z)q(z)

〉
= −i

〈
L, z [p(z) q(z)]′

〉
= −i

〈
L, z p′(z) q(z)− z−1 p(z) q′(z)

〉
.
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For the second and third derivatives, we get, respectively,

〈
D(2)L, p(z) q(z)

〉
= −i

〈
DL, z [p(z) q(z)]′

〉
= (−i)2

〈
L, z2 p′′(z) q(z) + z p′(z) q(z)

−2 p′(z) q′(z) + z−1 p(z) q′(z)

+z−2 p(z) q′′(z)
〉
,

and

〈
D(3)L, p(z) q(z)

〉
= (−i)3

〈
L, z3 p′′′(z) q(z) + 3 z2 p′′(z) q(z)

−3 z p′′(z) q′(z) + z p′(z) q(z)

−z−1 p(z) q′(z) + 3 z−1 p′(z) q′′(z)

−3 z−2 p(z) q′′(z)− z−3 p(z) q′′′(z)
〉
.

Applying additional derivatives, it is not difficult to show that

〈
D(N)L, p(z) q(z)

〉
= (−i)N

〈
L,

N∑
l=1

l∑
k=0

ak,l−k p
(k)(z) q(l−k)(z)z2k−l

〉
,

for some integers ak,l, 0 6 k 6 l, 1 6 l 6 N with

ak,l =

{
al,k, if N is even,

− al,k, if N is odd,

for k 6= l. Now, for M ∈ R+, |α| = 1, we define the linear functional LN

by

〈LN , p(z)〉 = 〈L, p(z)〉+M
〈
D(N)δα, p(z)

〉
, (24)

for p ∈ Λ, where δα is the Dirac delta functional. Thus, in terms of the
corresponding bilinear functionals,
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〈p(z), q(z)〉LN
= 〈p(z), q(z)〉L

+M (−i)N
N∑
l=1

l∑
k=0

ak,l−k p
(k)(α) q(l−k)(α)α2k−l ,

(25)

for p, q ∈ P. Notice that, if {c̃n}n>0 is the family of moments associated
with LN , then c̃0 = c0 and, for m > 1,

c̃m = 〈zm, 1〉LN
= 〈zm, 1〉L +M (−i)N

N∑
l=1

al,0 [zm](l) αl
∣∣∣
z=α

= cm +M (−i)N
N∑
l=1

al,0
m!

(m− l)!
αm−l αl

= cm +M (−i)N m!αm
N∑
l=1

al,0
(m− l)!

.

On the other hand,

c̃−m = 〈1, zm〉LN
= 〈1, zm〉L +M (−i)N

N∑
l=1

a0,l [zm](l) α−l
∣∣∣
z=α

= c−m +M (−i)N
N∑
l=1

a0,l
m!

(m− l)!
ᾱm−l α−l

= c−m +M (−i)N m! ᾱm
N∑
l=1

a0,l
(m− l)!

= c̃m ,

so that LN is an hermitian linear functional.

Next, we will find the Carathéodory function associated with LN ,
and will determine if this transformation preserves the Laguerre–Hahn
character.

Proposition 12. Let L be a quasi–definite linear functional and de-

note by F (z) the corresponding Carathéodory function. Then, F̃ (z), the
Carathéodory function associated with LN defined as in (25), is given by
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F̃ (z) = F (z) + 2M (−i)N
N∑
l=1

a0,l z
l l!

ᾱ (α− z)l+1
. (26)

Remark 13. The case N = 1 was analyzed in [6], where the authors

obtain an expression for F̃ (z) equivalent to (26).

Proof. The Carathéodory function F̃ is given by

F̃ (z) = c̃0 + 2
∞∑
k=1

c̃−k z
k

= c0 + 2

∞∑
k=1

(
c−k +M (−i)N k! ᾱk

N∑
l=1

a0,l
(k − l)!

)
zk

= F (z) + 2M (−i)N
∞∑
k=1

(
k! ᾱk

N∑
l=1

a0,l
(k − l)!

)
zk .

For a given m such that 1 6 m 6 N , notice that

(
(ᾱ z)k

)(m)
= (ᾱm k (k − 1) (k − 2) · · · (k − (m− 1))) (ᾱ z)k−m

=
ᾱmk!

(k −m)!
(ᾱ z)k−m .

Therefore,

k!

(k −m)!
=

(
(ᾱz)k

)(m)

αm(ᾱz)k−m
,

and, as a consequence,
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∞∑
k=1

a0,mk!

(k −m)!
(ᾱ z)k =

∞∑
k=1

a0,m
ᾱm

(
(ᾱ z)k

)(m)
(ᾱ z)m

= a0,m zm
∞∑
k=1

(
(ᾱ z)k

)(m)

= a0,m zm
(

ᾱ z

1− ᾱ z

)(m)

,

for |z| < 1. Thus,

F̃ (z) = F (z) + 2M (−i)N
N∑
l=1

a0,l z
l

(
ᾱ z

1− ᾱ z

)(l)

= F (z) + 2M (−i)N
N∑
l=1

a0,l z
l l!

ᾱ (α− z)l+1
,

which completes the proof.

Then, F̃ (z) is a perturbation of F (z) that consists in adding a rational
function with a pole at z = α of multiplicity N + 1. Therefore,

Corollary 14. If L belongs to the Laguerre–Hahn class, then LN defined
as in (25) also belongs to the Laguerre–Hahn class.

Remark 15. As in the real line case, this result can be generalized to
perturbations consisting in the addition of l Dirac delta derivatives of
different orders, as each one of them adds a rational function to the
Carathéodory function.

3.4 Semiclassical linear functionals and their class

A linear functional L is said to be semiclassical if it satisfies the functional
equation

D[As(z)L] = Bs(z)L ,

where As, Bs are polynomials. In such a case, the corresponding orthog-
onal polynomials satisfy (see [29])
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A′
s(z)Φn(z) =

p∑
j=0

γn,j Φn−1+j(z) +

p′∑
j=2

ηn,j z
j−2Φ∗

n−j(z) , (27)

for n > p + 1, where p = degAs, p
′ = max{p, degBs}, and γn,j , ηn,j ∈

CE. The pair (p, q), where q = max{p − 1,deg[(p − 1)As + iBs]}, is
defined as the class of L. q is the maximum number of terms of the
form zjΦ∗

n−j−2(z) that appear in (27). Furthermore (see [25]), if the
corresponding Carathéodory function satisfies

z As(z)F
′(z) = [z A′

s(z)− i Bs(z)]F (z) +DL(z) ,

for |z| 6= 1, then L is semiclassical satisfying D[As(z)L] = Bs(z)L if, and
only if,

DL(z) = −z

[
A′

s(z) +

〈
L, 2w

p∑
k=2

A
(k)
s (z)

k!
(w − z)k−2

〉]

−i

〈
L, w + z

w − z
[Bs(w)−Bs(z)]

〉
.

Now, we will show that the perturbation LN does not, in general,
preserve the semiclassical character of L. To see this, set BL(z) =

zA′
s(z) − iBs(z). Taking into account that F̃ (z) = F (z) + Q(z), where

Q(z) is the rational function that appears in (26), we have

z As(z) [F̃ (z)−Q(z)]′ = BL(z) [F̃ (z)−Q(z)] +DL(z) ,

z As(z) F̃
′(z) = BL(z) F̃ (z) + z As(z)Q

′(z)

−BL(z)Q(z) +DL(z) .

Thus, LN will be a semiclassical linear functional if and only if

z As(z)Q
′(z)−BL(z)Q(z) +DL(z)

= −z

[
A′

s(z) +

〈
LN , 2w

p∑
k=2

A
(k)
s (z)

k!
(w − z)k−2

〉]

−i

〈
LN ,

w + z

w − z
[Bs(w)−Bs(z)]

〉
,
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and, since LN = L+MD(N)δα, the condition becomes

z As(z)Q
′(z)−BL(z)Q(z)

= −zM

〈
D(N)δα, 2w

p∑
k=2

A
(k)
s (z)

k!
(w − z)k−2

〉

−iM

〈
D(N)δα,

w + z

w − z
[Bs(w)−Bs(z)]

〉
, (28)

As a consequence,

Proposition 16. Let L be a semiclassical linear functional. Then, LN

defined as in (24) is semiclassical if and only if Q(z) satisfies (28). In
such a case, L and LN have the same class.

As an example, if Lθ is the functional associated with the Lebesgue
measure, then (see [29]) it satisfies D[As(z)Lθ] = Bs(z)Lθ with As = C
(constant) and Bs = 0. Thus, (28) becomes CzQ′(z) = 0, and thus LN

is semiclassical is and only if Q(z) is constant. Therefore, LN applied to
Lθ is not semiclassical.

4 The Laguerre–Hahn class and the Szegő
transformation

Given a positive Borel measure µ with support in [−1, 1], we can define
another nontrivial positive Borel measure, σ, supported in [−π, π], by
(see [28])

dσ(θ) =
1

2
|dµ(cos θ)| . (29)

We will refer to (29) as Szegő transformation. If µ is a probability mea-
sure (i.e. µ0 = 1) of the form dµ(x) = ω(x)dx, then we have

dσ(θ) =
1

2
ω(cos θ) | sin θ| dθ ,

and σ is also a probability measure supported on T, with an associated
family of orthogonal polynomials, which can be related to the family of
polynomials orthogonal with respect to µ. Also, there is a relation be-
tween the coefficients of the recurrence relation (13) and the Verblunsky
coefficients, which in this case are real. Furthermore, if S(x) and F (z)
are the Stieltjes and Carathéodory functions associated with µ and σ,
respectively, then ([22])
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F (z) =
1− z2

2z
S(x) , (30)

where z = x−
√
x2 − 1 and x = z+z−1

2 .

It has been shown in [12] that if one applies the Christoffel transfor-
mation defined in Section 2.3 to a probability measure µ (supported in
[−1, 1]) and then apply the Szegő transformation to the perturbed mea-
sure µ̃, then we obtain a probability measure σ̃ supported on the unit
circle, which is a Christoffel transformation of σ, defined from µ as in
(29). The same occurs for the Geronimus and Uvarov transformations.
In other words, transformations defined in Section 2.3 are preserved un-
der the Szegő transformation. Our objective in this Section is to show
that the Szegő transformation also preserves the Laguerre–Hahn class.
Indeed,

Theorem 17. Let µ be a positive Borel measure supported in [−1, 1]
which belongs to the Laguerre–Hahn class and let σ be the corresponding
measure supported on T defined by the Szego transformation. Then, σ
belongs to the Laguerre–Hahn class.

Proof. Denote by S(x) the Stieltjes function associated with µ, satisfying

A(x)S′(x) = B(x)S2(x) + C(x)S(x) +D(x) ,

for some polynomials A,B,C, and D. Using (30), we have

S′(x) =
2z2 + 2

(1− z2)2

(
1− x√

x2 − 1

)
F (z)

+
2z

1− z2
F ′(z)

(
1− x√

x2 − 1

)
=

(
1− x√

x2 − 1

) [
2z2 + 2

(1− z2)2
F (z) +

2z

1− z2
F ′(z)

]
=

−2z2

1− z2

[
2z2 + 2

(1− z2)2
F (z) +

2z

1− z2
F ′(z)

]
,

since 1− x(x2 − 1)−1/2 = −2z2/(1− z2). Thus,
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−2z2A(x)

1− z2

[
2z2 + 2

(1− z2)2
F (z) +

2z

1− z2
F ′(z)

]
= B(x)

(
2z

1− z2
F (z)

)2

+
2zC(x)

1− z2
F (z) +D(x) ,

and, rearranging the terms,

−4z3

(1− z2)2
A(x)F ′(z) = B(x)

(
2z

1− z2

)2

F 2(z)

+

[
2zC(x)

1− z2
+

4z2(z2 + 1)A(x)

(1− z2)3

]
F (z)

+D(x) ,

−4 z3
(
1− z2

)
A(x)F ′(z) = 4 z2

(
1− z2

)
B(x)F 2(z)

+
(
1− z2

)3
D(x) +

(
2 z
(
1− z2

)2
C(x)

+4 z2 (z2 + 1)A(x)
)
F (z) .

Taking into account that any polynomial Q(x) can be expressed in terms
of z as

Q(x) = Q

(
z + z−1

2

)
=

Qn(z)

Qd(z)
,

where Qn(z) and Qd(z) are polynomials with complex coefficients, then
it follows that F (z) satisfies

z AL(z)F
′(z) = BL(z)F

2(z) + CLF (z) +DL(z) ,

with

AL(z) = −4 z2 (1− z2)An(z)Bd(z)Cd(z)Dd(z) ,

BL(z) = 4 z2 (1− z2)Ad(z)Bn(z)Cd(z)Dd(z) ,

CL(z) = 2 z (1− z2)2Ad(z)Bd(z)Cn(z)Dd(z)

+4 z2 (z2 + 1)An(z)Bd(z)Cd(z)Dd(z) ,

DL(z) = (1− z2)3Ad(z)Bd(z)Cd(z)Dn(z) ,

so F (z) is in the Laguerre–Hahn class.
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4.1 Example

We consider the first kind associated polynomials for the Jacobi ones.
They belong to the Laguerre–Hahn class, satisfying (see [20])

A(x)S′(x) = B(x)S2(x) + C(x)S(x) +D(x) ,

with

A(x) = x2 − 1 ,

B(x) =
4(α+ 1)(β + 1)(α+ β + 1)

(α+ β + 3)(α+ β + 2)2
,

C(x) = (α+ β + 2)x− α2 − β2

α+ β + 2
,

D(x) = α+ β + 3 .

Notice that

A(x) = A

(
z + z−1

2

)
=

(1− z2)2

4z2
:=

An(z)

Ad(z)
.

In a similar way, we have

Bn(z) = B(x) ,

Bd(z) = 1 ,

Cn(z) = (α+ β + 2)2 (z2 + 1)− 2 (α2 − β2) z ,

Cd(z) = 2 (α+ β + 2) z ,

Dn(z) = D(x) ,

Dd(z) = 1 ,

and thus F (z), the Carathéodory function associated to S(x) by means
of the Szegő transformation, satisfies

z AL(z)F
′(z) = BL(z)F

2(z) + CLF (z) +DL(z),

with
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AL(z) = −8 (α+ β + 2) z3 (1− z2)3 ,

BL(z) =

(
128(α+ 1)(β + 2)(α+ β + 1)

(α+ β + 3)(α+ β + 2)

)
z7 (1− z2) ,

CL(z) = 8 z3 (1− z2)2 [(α+ β + 2)2 (z2 − 1)− 2 (α2 − β2) z]

+16 (α+ β + 2) z5 (z2 + 1) ,

DL(z) = 8 (α+ β + 2) (α+ β + 3) z3 (1− z2)3 .
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