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Abstract 

This paper attempts to reveal the relationship between GDP per capita and R&D expenditure 

per capita, R&D expenditure per capita on natural sciences and engineering, and R&D 

expenditure per capita on social sciences and humanities for Canada. Based on data from 1981 

to 2014, bootstrap causality test proposed by Hacker and Hatemi-J (2006) show that there is a 

unidirectional causality from GDP per capita to R&D expenditure per capita, and a 

unidirectional causality from GDP per capita to R&D expenditure per capita on natural sciences 

and engineering. However, no causal relationship is observed between R&D expenditure per 

capita on social sciences and humanities and GDP per capita. These results may point an 

indirect relationship between the variables or the validity of R&D paradox and the European 

paradox for Canada. 

 

Keywords: R&D; GDP; economic growth; causality; Canada 

JEL Classification Codes: C32, O30, O32, O40 
 

 

 

1. Introduction 

Research and development (R&D) is accepted as one of the key drivers of economic growth 

today. Economic growth is an indicator of a country’s welfare, and it indicates (generally yearly) 

percentage change in a country’s real gross domestic product (GDP). Many countries focus on 

R&D policies since one of the crucial goals of a country is economic growth. In the simplest 

form, R&D activities enable knowledge production, innovation, productivity, and technological 

progress which will bring economic growth. Therefore, there exists a substantial linkage be-

tween R&D activities and economic growth. 
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Economic growth models proposed by Solow (1956) and Swan (1956) are known as Neo-

classical growth theories. They show that how technological progress provides economic 

growth in an economy. The part of output growth which cannot be explained by labor and cap-

ital has entered the literature as ‘Solow residual’, and attributed to technology. However, these 

Neo-Classical growth theoreticians assume technology as an exogenous variable. In other 

words, technology is believed to be constant. After a while, unlike Solow and Swan, the econ-

omists who form endogenous growth models explain the technological progress in detail. The 

word ‘endogenous’ comes from the fact that technology is included in models as an endogenous 

variable. These models base technological progress upon some economic variables, and show 

that how growth is provided. A well-known endogenous growth theory is proposed by Arrow 

(1962). He defines learning as a product of experience, and suggests an endogenous growth 

theory that explains shifts in production function through changes in knowledge. Accordingly, 

knowledge production increases thanks to learning-by-doing, and the economy grows. Lucas 

(1988) emphasizes the prominence of human capital on growth through schooling as well as 

learning-by-doing. Lastly, Romer (1990) highlights R&D activities. In his model, R&D is con-

sidered as a separate sector, and advances in this sector (i.e. new products developed) provide 

economic growth. 

R&D intensity (R&D expenditures/GDP) is an important indicator in terms of a country’s 

economic performance. First, we look at country groups. According to data from OECD’s 

(2018) statistics website, the intensity is 2.35% for OECD countries, and 1.94% for European 

Union countries in 2016. In 2015, the intensity for the whole world was recorded as 2.2% 

(World Bank, 2018). When we look at the top countries in the R&D intensity, we see that the 

intensity was 4.25% in Israel, 4.24% in Korea, and 3.25% in Sweden. For Canada, this indicator 

is 1.6% in 2016, and under the country group averages mentioned above (OECD, 2018). 

Using various elasticity estimation techniques, most of the studies in the literature show that 

innovative activities have positive effects on output or productivity. For example, Hanel (2000) 

for Canada; Wakelin (2001) for the United Kingdom; Sylwester (2001) for G7 countries; Wang 

and Tsai (2004) for Taiwan; and Ülkü (2004) for OECD countries find positive relationship 

between innovation activities and output or productivity. 

In the literature on causality, four hypotheses are classified by Maradana et al. (2017) by the 

way of causality between innovation activities and GDP. These are demand-following hypoth-

esis, supply-leading hypothesis, feedback hypothesis, and neutrality hypothesis. These hypoth-

eses can be explained simultaneously with the literature which is summarized in Table 1. De-

mand-following hypothesis (DFH) is supported when GDP causes innovation activities (see 

Maradana et al., 2017; Bozkurt, 2015; Ntuli et al., 2015; Santos and Catalão-Lopes, 2014; Çetin, 

2013; and Güloğlu and Tekin, 2012). Supply-leading hypothesis (SLH) is supported when in-

novation activities cause GDP (see Maradana et al., 2017; Ntuli et al., 2015; Çetin, 2013; Santos 

and Catalão-Lopes, 2014; Peng, 2010; and Yang, 2006). Feedback hypothesis (FH) reflects two-

way causality between innovation activities and GDP (see Maradana et al., 2017; Çetin, 2013; 

and Wu and Zhou, 2006). Finally, neutrality hypothesis (NH) indicates the absence of causality 

between innovation activities and GDP (see Maradana et al., 2017; Ntuli et al., 2015; Tuna, 

Kayacan and Bektaş, 2015; Sadraoui, Ali and Deguachi, 2014; Santos and Catalão-Lopes, 2014; 

and Çetin, 2013). As seen on Table 1, the only available causality work for Canada is Ntuli et 

al. (2015). Among other results, they find GDP causes research output in Canada, which sup-

ports DFH. 

The intent of this study is to examine the causality between R&D expenditure per capita, 

R&D expenditure per capita by field of science, and GDP per capita for Canada. To my 

knowledge, there is no study that uses R&D expenditures by field of science for any country. 

The results indicate the presence of two causal relationships: First, GDP per capita causes R&D 

expenditure per capita. Second, GDP per capita causes R&D expenditure per capita on natural 
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sciences and engineering. But, no causality is observed between R&D expenditure per capita 

on social sciences and humanities and GDP per capita. 

In the rest of the paper, second part explains data, models and methodology, third part gives 

empirical results, and the last part concludes. 

 
Table 1. Selected studies on the causality between innovation activities and GDP. 

Author Time Country Supported Hypothesis 

Maradana et al. (2017) 1989-

2014 

19 European coun-

tries 

SLH for Belgium, Denmark, Fin-

land, France, Germany, Italy, Nor-

way, Poland, Portugal, Sweden, and 

United Kingdom; DFH for Austria, 

Czech Republic, Ireland, Nether-

lands, Romania, and Spain; FH for 

Panel; NH for Greece 

Bozkurt (2015) 1998-

2013 

Turkey DFH 

Ntuli et al. (2015) 1981-

2011 

OECD countries SLH for Finland, Hungary, Mexico, 

and United States; DFH for Aus-

tria, Canada, France, Israel, Italy, 

New Zealand, Poland, and United 

Kingdom; NH for remaining coun-

tries 

Tuna, Kayacan and 

Bektaş (2015) 

1990-

2013 

Turkey NH 

Sadraoui, Ali and 

Deguachi (2014) 

1970-

2012 

32 industrial and 

developing coun-

tries 

NH 

Santos and Catalão-Lopes 

(2014) 

1987-

2008 

8 European coun-

tries 

SLH for France and Spain; DFH for 

Netherlands; NH for Portugal, Bel-

gium, Germany, Ireland, and 

United Kingdom 

Çetin (2013) 1981-

2008 

9 European coun-

tries 

SLH for Austria; DFH for Den-

mark, Spain and Portugal; FH for 

Finland and France; NH for Hol-

land, Ireland and Italy 

Güloğlu and Tekin (2012) 1991-

2007 

High-income 

OECD countries 

 

DFH 

Peng (2010) 1987-

2007 

China SLH 

Wu and Zhou (2007) 1953-

2004 

China FH 

Yang (2006) 1951-

2001 

Taiwan SLH 

   

2. Data, models and methodology 

2.1. Data 

Empirical analyses employ yearly data for Canada covering 1981-2014. The data obtained from 

OECD’s (2018) statistics website include GDP per capita (constant 2010 prices and PPPs, US$) 

and gross domestic expenditure on R&D by sector of performance and by field of science (con-

stant 2010 prices and PPPs, US$). Sector of performance is set to total intramural to get total 

numbers. R&D expenditures data include three series, namely gross domestic R&D expenditure 
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on natural sciences and engineering, gross domestic R&D expenditure on social sciences and 

humanities, and gross domestic R&D expenditure on all fields of science. These series are mul-

tiplied by 1 million to get rid of ‘millions’ notation and also divided by total population series 

acquired from World Bank’s (2018) World Development Indicators to get per capita values. 

Figure 1 displays the timeline of the R&D series used in this study. As seen, R&D expenditure 

per capita on social sciences and humanities are substantially lower than R&D expenditure per 

capita on natural sciences and engineering. Until 2001, R&D expenditure per capita on natural 

sciences and engineering has increased considerably. However, R&D expenditure per capita on 

social sciences and humanities follows almost a straight path. 

 
Figure 1. R&D expenditures in Canada (per capita, constant 2010 prices, PPPs, US$). 

 

 

2.2. Models and methodology 

Following the literature, GDP per capita is simply described as functions of R&D expenditures 

per capita. All variables are used in their natural logarithms, and abbreviated as ln 𝐺𝐷𝑃 for GDP 

per capita; ln 𝑅𝐷 for R&D expenditure per capita; ln 𝑅𝐷𝑁 for R&D expenditure per capita on 

natural sciences and engineering; and ln 𝑅𝐷𝑆 for R&D expenditure per capita on social sciences 

and humanities. Models used in causality analyses can be indicated in vector autoregression 

(VAR) form with lag augmentations as follows: 

Model (A) - 𝐴𝑡 = 𝛽0 + 𝛽1𝐴𝑡−1 +⋯+ 𝛽𝑝𝑎𝐴𝑡−𝑝𝑎 +⋯+ 𝛽𝑝𝑎+𝑑𝑎𝐴𝑡−𝑝𝑎−𝑑𝑎 + 𝜀𝑡  (1) 

Model (B) - 𝐵𝑡 = 𝜃0 + 𝜃1𝐵𝑡−1 +⋯+ 𝜃𝑝𝑏𝐵𝑡−𝑝𝑏 +⋯+ 𝜃𝑝𝑏+𝑑𝑏𝐵𝑡−𝑝𝑏−𝑑𝑏 + 𝜖𝑡  (2) 

Model (C) - 𝐶𝑡 = 𝛾0 + 𝛾1𝐶𝑡−1 +⋯+ 𝛾𝑝𝑐𝐴𝑡−𝑝𝑐 +⋯+ 𝛾𝑝𝑐+𝑑𝑐𝛾𝑡−𝑝𝑐−𝑑𝑐 + 𝑒𝑡  (3) 

Here, 𝐴𝑡, 𝐵𝑡, and 𝐶𝑡 are 2 × 1 ln 𝐺𝐷𝑃 and ln 𝑅𝐷; ln 𝐺𝐷𝑃 and ln 𝑅𝐷𝑁; and ln 𝐺𝐷𝑃 and ln 𝑅𝐷𝑆 

vectors, respectively. Also, 𝛽0, 𝜃0 and 𝛾0 are 2 × 1 constant term vectors, and 𝛽𝑟, 𝜃𝑟, and 𝛾𝑟 are 

2 × 2 coefficient matrices for lag 𝑟 = 1, 2, … , 𝑝. Finally, 𝜀𝑡, 𝜖𝑡, and 𝑒𝑡 are 2 × 1 error vectors. 

Note that 𝑝 is optimum lag length for associated VAR model, and to be determined using 

Hatemi-J Criterion (HJC) (Hatemi-J 2003, 2008; Hacker and Hatemi-J, 2008), which combines 

Schwarz (1978) and Hannan and Quinn (1979) criteria, and gives one optimum lag length. 𝑑 is 

maximum integration order of the series, to be detected by unit root tests Augmented Dickey-

Fuller (1981) (ADF) and Phillips-Perron (1988) (PP), in the related VAR model. Sub-indices of 
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𝑝 and 𝑑 indicate the models in which 𝑝 and 𝑑 belong to. 

The test proposed by Granger (1969) is commonly used in investigating causation between 

the variables interested. However, the test results may lead to void implication, if the series are 

not stationary (Granger and Newbold, 1974). Also, causality between integrated variables in 

their levels cannot be tested using VAR models, since asymptotic distribution theory is not 

valid, as Sims, Stock and Watson (1990) point. Toda and Yamamoto (1995) indicate the estima-

tion of VAR models that are formulated in their levels, and testing general constraints in param-

eter matrices, tough the processes are integrated or cointegrated at random levels. The null hy-

pothesis of “𝑘’th element of 𝐴𝑡 does not Granger-cause 𝑗’th element of 𝐴𝑡” can be checked 

through modified Wald statistic (MWALD), as Toda and Yamamoto (1995) indicate. Employing 

Monte Carlo simulations, however, Hacker and Hatemi-J (2006) clarify that if the sample is 

small, and error terms are autoregressive conditional heteroskedastic (ARCH) and non-normal, 

then MWALD may give invalid results. To solve this problem, they make use of bootstrap cor-

rection technique, and get credible critical values. For bootstrapping, Model (A) is estimated 

with null of no causality first. Thereafter, bootstrapped data 𝐴𝑡
∗ are generated based on estimated 

coefficients (𝛽̂0, 𝛽̂1, … , 𝛽̂𝑝𝑎), the essential data (𝐴𝑡−1, … , 𝐴𝑡−𝑝𝑎), and bootstrapped residuals 

(𝜀𝑡̂
∗). Bootstrapped residuals are contingent upon 𝑇 arbitrary draws with replacement from the 

regression’s modified residuals. Every single draw has probability equals to 1/𝑇, where 𝑇 is 

sample size. To make the expected value of the bootstrapped residuals exactly zero, the mean 

of the resulting set of drawn modified residuals is subtracted from every modified residual in 

that set. Using leverages, modified residuals, which are the unadjusted residuals of the regres-

sion that are set to have constant variance, are obtained. Bootstrap simulation is performed 1000 

times and MWALD statistic is estimated in every stage. Then the 𝛼’th upper quantile of the 

distribution of bootstrapped MWALD statistic is found and the 𝛼-level bootstrap critical values 

(𝑐𝛼
∗ ) are obtained. If MWALD is greater than 𝑐𝛼

∗ , then the null is rejected. The same procedure 

is also valid for Model (B) and Model (C). 

Unit root tests and diagnostic checks on stability, serial correlation, and normality were run 

on Eviews 10. Leveraged bootstrap simulations, HJC, and autoregressive conditional heteroske-

dasticity LaGrange multiplier (ARCH LM) test by Hacker and Hatemi-J (2005) were applied 

on GAUSS Light 9 by running modules of Hacker and Hatemi-J (2009a), (2009b), and (2009c), 

respectively. 

 

3. Empirical results 

Outcomes of ADF and PP unit root tests presented in Table 2 support that the variables are 

stationary in their first differences. Therefore, augmentation lags (𝑑) are set 1 for all models. 

When we set the maximum lag order to 3, HJC suggests optimal lag orders 2 for Model (A) and 

Model (B), and 1 for Model (C). VAR estimations of all models pass stability, serial correlation, 

and ARCH LM tests. However, when Model (A) and Model (B) pass normality test, Model (C) 

fails (see Tables A1, A2, A3, and A4 in Appendices). 

 
Table 2. Results of unit root tests. 

 ADF (Constant) ADF (Trend) PP (Constant) PP (Trend) 

 Level 1st Dif. Level 1st Dif. Level 1st Dif. Level 1st Dif. 

ln 𝐺𝐷𝑃 -1.5596 -4.5433*** -2.6576 -4.5598*** -0.5090 -4.5433*** -2.0731 -4.5777*** 

ln 𝑅𝐷 -1.6440 -3.0894** -0.1269 -3.5997** -2.1647 -3.0595** 0.3701 -3.5346* 

ln 𝑅𝐷𝑁 -1.7942 -3.2036** 0.1254 -4.1002** -2.3593 -3.1544** 0.6300 -3.7832** 

ln 𝑅𝐷𝑆 0.2293 -4.2285*** -2.1190 -4.3265*** 0.0446 -4.2285*** -1.5683 -4.3497*** 

Note: *, ** and *** indicate 10%, 5% and 1% significance levels, respectively. t-stats for ADF and adjusted t-

stats for PP. Lag length is chosen by Schwarz information criterion for ADF. Barlett kernel is employed as 

spectral estimation method and the bandwidth is determined using the Newey–West method for PP. 
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Now three reasons can be put forward on the selection of bootstrap causality procedure pro-

posed by Hacker and Hatemi-J (2006). First, having a small sample with 34 observations. Sec-

ond, having non-stationary series. Third, non-normal distributed residuals of Model (C). 

 
Table 3. Results of bootstrap causality tests. 

Null hypothesis MWALD 
1% bootstrap 

critical value 

5% bootstrap 

critical value 

10% boot-

strap 

critical value 

ln 𝑅𝐷 does not Granger-cause ln 𝐺𝐷𝑃 0.453 14.391 8.369 5.812 

ln 𝐺𝐷𝑃 does not Granger-cause ln 𝑅𝐷 9.050** 12.979 7.695 5.926 

ln 𝑅𝐷𝑁 does not Granger-cause ln 𝐺𝐷𝑃 0.055 12.491 8.084 5.962 

ln 𝐺𝐷𝑃 does not Granger-cause ln 𝑅𝐷𝑁 8.269** 13.707 7.853 5.695 

ln 𝑅𝐷𝑆 does not Granger-cause ln 𝐺𝐷𝑃 1.827 6.559 3.553 2.428 

ln 𝐺𝐷𝑃 does not Granger-cause ln 𝑅𝐷𝑆 1.725 8.621 5.537 3.702 

Note: ** represents the rejection of the null at 5% significance level.  

 

According to the results given in Table 3, null hypotheses of ‘ln 𝐺𝐷𝑃 does not Granger-cause 

ln 𝑅𝐷’ and ‘ln 𝐺𝐷𝑃 does not Granger-cause ln 𝑅𝐷𝑁’ are both rejected at 5% significance level. 

Consequently, there is a unidirectional causality from GDP per capita to R&D expenditure per 

capita, and a unidirectional causality from GDP per capita to R&D expenditure per capita on 

natural sciences and engineering in Canada. 

 

4. Conclusions 

In this study, the relationship between per capita GDP and R&D expenditures per capita by field 

of science are examined for Canada over the period from 1981 to 2014. Having a small sample, 

non-stationary series and non-normal distributed error terms are the reason why bootstrap cau-

sality test proposed by Hacker and Hatemi-J (2006) is chosen. The first finding points to a 

unidirectional causality from GDP per capita to R&D expenditure per capita. This result is 

compatible with the results of Maradana et al. (2017); Bozkurt (2015); Çetin (2013); and Gü-

loğlu and Tekin (2012). It is particularly in harmony with Ntuli et al. (2015) whose results show 

causality from GDP to research output for Canada. Also, a unidirectional causality from GDP 

per capita to R&D expenditure per capita on natural sciences and engineering is found. How-

ever, no causal relationship is observed between R&D expenditure per capita on social sciences 

and humanities and GDP per capita. 

As seen, no evidence that supports ‘supply-leading hypothesis’ is found for Canada. In other 

words, R&D expenditures does not cause economic growth. In point of R&D expenditure per 

capita and R&D expenditure per capita on natural sciences and engineering, the results clearly 

show R&D expenditures originate from economic growth.  These findings indicate the validity 

of ‘demand-following hypothesis’ in Canada. In this regard, the country can stimulate innova-

tion activities as the economy grows. 

In terms of social sciences, ‘neutrality hypothesis’ is supported for Canada. Thus, R&D ex-

penditures on social sciences and humanities and GDP have no effect on each other. As shown 

in data subsection, Canada spends far less money on R&D in social sciences and humanities 

than in natural sciences and engineering. This can limit both quantity and quality of social stud-

ies, and be the reason why the causal link is broken. This field deals with humans, who are also 

economic agents that constitute the economy, by its very nature. Thus, R&D expenditures on 

social sciences can be related to economic growth through social channels. That is to say, there 

can be an indirect relationship. 

All of these findings resembles Swedish version of R&D paradox and the European paradox.  
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Swedish version of R&D paradox indicates high R&D expenditure but comparatively low GDP 

(Ejermo, Kander, and Henning, 2011). Likewise, European paradox indicates high performance 

in science and low performance in high-tech sectors (European Commission, 1995). 

 
Figure 2. GDP per capita and R&D expenditures per capita by field of science, 

index 1981=1. 

 
 

Ejermo, Kander, and Henning (2011) investigate the timeline of value added and R&D ex-

penditures by sector. They explain the growing gap between value added and R&D expenditures 

in fast-growing manufacturing and service sectors in Sweden as R&D paradox. Following 

Ejermo, Kander, and Henning (2011), same procedure is applied using variables employed in 

empirical analysis. The variables are indexed (1981=1) to get a clean comparison. The timeline 

is given on Figure 2. Index forms of GDP per capita, R&D expenditure per capita, R&D ex-

penditure per capita on natural sciences and engineering, and R&D expenditure per capita on 

social sciences and humanities abbreviated as GDP index, RD index, RDN index, and RDS 

index, respectively. It is seen that the gap between GDP index and RD index, as well as GDP 

index and RDN index, typically widens in time. There is almost no gap between GDP index 

and RDS index in 1981-1993 when the gap is negative in 1994-1998. After 1998, the gap be-

comes positive and also widens in time. These findings can be due to R&D and European par-

adoxes. 

Finally, further study in this area is required. Then, future research can examine the existence 

of the possible indirect causality between R&D expenditures and economic growth. Also, va-

lidity of R&D and European paradoxes for Canada can be investigated in detail. 
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Appendix A – Additional tables 

 
Table A1. Roots of characteristic polynomial. 

Model (A)  Model (B)  Model (C) 

Root Modulus  Root Modulus  Root Modulus 

 0.979034- 0.089139i  0.983083   0.985065-0.083223i  0.988574   0.982276  0.982276 

 0.979034+0.089139i  0.983083   0.985065+0.083223i  0.988574   0.837936  0.837936 

 0.241528-0.264432i  0.358135   0.219617-0.271096i  0.348891    

 0.241528+0.264432i  0.358135   0.219617+0.271096i  0.348891    

 
Table A2. VAR residual serial correlation LM tests. 

 Model (A)  Model (B)  Model (C) 

Lags LRE-Stat* Prob  LRE-Stat* Prob  LRE-Stat* Prob 

1  7.4512  0.1139   6.3732  0.1730   5.7718  0.2169 

2  3.2891  0.5107   4.0887  0.3941   2.7459  0.6012 

3  3.7636  0.4389   3.4711  0.4823   1.4408  0.8371 

*Edgeworth expansion corrected likelihood ratio statistic. 

 
Table A3. Probabilities for ARCH effects. 

Model (A)  Model (B)  Model (C) 

  0.5440    0.3680  0.4920 

 
Table A4. VAR residual normality tests. 

Model (A)  Model (B)  Model (C) 

Jarque-Bera Prob  Jarque-Bera Prob  Jarque-Bera Prob 

4.7132 0.3180   4.9554  0.2919  13.8304 0.0079 

 

 


