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Abstract
In this paper a fractional order model for an irrigation main canal is proposed. It is based on the experiments developed in a 

laboratory prototype of a hydraulic canal and the application of a direct system identification methodology. The hydraulic pro-
cesses that take place in this canal are equivalent to those that occur in real main irrigation canals and the results obtained here can 
therefore be easily extended to real canals. The accuracy of the proposed fractional order model is compared by deriving two other 
integer-order models of the canal of a complexity similar to that proposed here. The parameters of these three mathematical models 
have been identified by minimizing the Integral Square Error (ISE) performance index existing between the models and the real-time 
experimental data obtained from the canal prototype. A comparison of the performances of these three models shows that the 
fractional-order model has the lowest error and therefore the higher accuracy. Experiments showed that our model outperformed 
the accuracy of the integer-order models by about 25%, which is a significant improvement as regards to capturing the canal dynam-
ics. 
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Introduction

Recent studies have shown that in many countries 
around the world an average of only 44% of the water 
conveyed by irrigation main canals actually reaches 
the crops for which it was intended, while the remain-
ing percentage is lost during the water transportation 
process (Litrico & Fromion, 2009). A more efficient 
use and better management of irrigation main canals 
might imply that more water would be available for the 
future industrial and agricultural necessities, signifying 
that there is a real need to improve the management 
and usage of water in these canals. 

The best alternative to improve management and 
reduce water losses in irrigation main canals, enhance 
service to water users, and also reduce the cost of canal 
operation is that of implementing effective water distri-
bution control systems (Clemens, 2006; Feliu-Batlle et 
al., 2011). However, the design of such control systems 
is not a simple task, since irrigation main canals are 
complex systems with distributed parameters over long 
distances, significant time-delays, strong nonlinearities 
and dynamics that change with the operation conditions 
(Rivas-Perez, 1990; Litrico & Fromion, 2009).

A typical main irrigation canal consists of several 
pools separated by gates that are used to regulate the 
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accurate as the models based on Saint-Venant equations 
with estimated parameters, and are much easier to use 
(Pedregal et al., 2009).

Various linear models of irrigation main canal pools 
currently exist, and are based either on Saint-Venant 
equations (Schuurmans et al., 1999; de Halleux et al., 
2003; Litrico & Fromion, 2004; Wahlin & Clemmens, 
2006) or on the use of system identification tools 
(Weyer, 2001; Cueto-Medina & Rivas-Perez, 2003; 
Sepulveda, 2007; Rivas-Perez et al., 2008). A review 
of the main approaches used in the development of 
models for irrigation main canal pools is carried out in 
Malaterre & Baume (1998). This survey includes: the 
Saint-Venant linearization model, an infinite order 
linear transfer function, a finite order non-linear model, 
a finite order linear state space model, a finite order 
linear transfer function, a neural network model, a 
fuzzy model and a petri net model. Some of the models 
that have been developed in the recent years are men-
tioned below.

An integrator with a delay model (ID) was proposed 
in Schuurmans et al. (1999) for a canal under backwa-
ter flow conditions. This model has also been used to 
generate state-space MIMO models of complete canals 
by Clemmens & Schuurmans (2004) and Montazar et 
al. (2005). Some improvements to the ID model have 
additionally been proposed by Litrico & Fromion 
(2004) and Sepulveda (2007). Nonlinear irrigation 
canal models have also been developed in de Halleux 
et al. (2003) and Dulhoste et al. (2004). 

A completely different approach consists of model-
ing canal dynamics as black-box and grey-box models, 
as has been reported by Rodellar et al. (1993), Ruiz & 
Ramirez (1998), Sawadogo et al. (1998), Weyer (2001) 
and Rivas-Perez et al. (2011). These models are based 
on experiments and identification techniques, and they 
do not have any physical or hydraulic meaning. 

water distribution from one pool to the next (Malaterre, 
1995). Fig. 1 shows a schematic representation of an 
irrigation main canal with undershot gates. These ca-
nals have many inputs (gate positions of the pools) and 
outputs (basically, the water levels in the pools) that 
must be regulated, and these are affected by stochastic 
disturbances which are mainly caused by unknown 
water withdrawals or weather conditions.

The design and implementation of effective water 
distribution control systems require mathematical mod-
els that accurately depict the dynamic behavior of ir-
rigation main canal pools in realistic conditions (Lit-
rico & Fromion, 2009). However, the construction of 
these mathematical models can be a very difficult and 
laborious task (Rivas-Perez et al., 2014).

The dynamic behaviours of these canal pools have 
been modeled using the Saint-Venant equations, which 
are nonlinear hyperbolic partial differential equations 
(Chaudry, 2008). Although these equations constitute 
a very accurate model for computational simulation, 
they are not appropriate as a control model because it 
is difficult to use them directly in controller design 
(Malaterre, 1995). Furthermore, they have limitations 
when the flow is not one-dimensional, the pressure 
distribution is not hydrostatic and the flow undergoes 
sharp discontinuity (Chaudhry, 2008).

In order to obtain a good mathematical model that 
describes the physical reality of irrigation main canal 
pools and which is useful for control, two main ap-
proaches have been followed: the first is related to the 
use of linearized Saint-Venant equations (Litrico & 
Fromion, 2009) while the second is associated with 
system identification methods (Ljung, 1999). It is im-
portant to highlight that the mathematical models ob-
tained through the use of the system identification tools 
for design purposes and the practical implementation 
of control systems and/or forecasting systems, are as 

Figure 1. Scheme of an irrigation main canal with undershot gates: LS, level sensor; GPS, gate position sensor; yup(t), ydw(t) and 
ydwe(t), upstream, downstream and downstream end water levels, respectively; Q(t), water flow; q(t), lateral discharge; u(t), gate 
opening magnitude.
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Material and methods

Fractional order operators

Fractional calculus involves the generalization of 
standard integration and differentiation to non-integer 
(fractional) order fundamental operators. These are 
represented as a Dα

t    where a and t are the limits and
α (α ∈ℜ) is the order of the operator. Several defini-
tions of this operator have been proposed (Podlubny, 
1999), all of which generalize the standard differen-
tial/integral operator in two principal respects: a) they 
become the standard differential/integral operator of 
any order when α is an integer, b) the Laplace trans-
form of the operator aDt

α is sα (provided there are zero 
initial conditions), and hence the frequency charac-
teristics of this operator are (jω)α. This last feature is 
very appealing as regards its use to identify linear 
models from their frequency responses, as it allows 
us to describe systems with new asymptotic behaviors 
in the frequency domain (both in magnitude and 
phase). 

One of the most frequently used definitions of the 
general fractional differential operator is that of 
Riemann-Liouville (the RL definition) (Podlubny, 
1999): 

 
a Dtα = 1

Γ(n−α )
d n

dtn
f (τ )

(t −τ )α−n+1
a

t

∫ d(τ ),
 

[1]

where n – 1 < α < n , Γ(.) is an integer positive number,  
is the Euler’s gamma function and t > a. Another defi-
nition is that of Caputo which is often preferred, as the 
initial conditions that appear in its Laplace transform 
are integer derivatives of f (t) while the initial condi-
tions of Eq. [1] are given in terms of fractional deriva-
tives of that function. 

The Laplace transform of any of these definitions 
under zero initial conditions for order α, (0< α < 1) is 
given by:

 
L a Dtα f (t);s{ } = sαF(s).  [2]

A fractional order system is that system described 
by the following fractional order differential equation:

an Dt
αn y (t) + ... + a1 Dt

α1 y (t) + a0 Dt
α0 y (t) = 

 bm Dt
bm u (t) + ... + b1 Dt

b1 u (t) + b0 Dt
b0 u (t), 

[3]

where αn > αn–1 > ... > α1 > α0 and bm > bm–1 > ... > b1 > b0 
are arbitrary real numbers, and , ak (k = 0, 1, ..., n), bk 

(k = 0, 1, ..., m) are constant coefficients. The frac-
tional order transfer function is therefore given by the 
following expression:

However, the degree of adequacy of the aforemen-
tioned models for the design of high performance 
control systems is not that required owing to the non-
linear behavior of the canal and to model parameter 
uncertainties (Rivas-Perez et al., 2014). This means 
that there still are significant open control problems in 
this field.

In the last few decades, increasing attention has been 
paid to fractional order calculus as a powerful tool with 
which to model and control real industrial processes 
(Bagley & Calico, 1991; Podlubny, 1999; Feliu-Batlle 
et al., 2005; Monje et al., 2010; Tavakoli-Kakhki et al., 
2010). These controllers have been successfully applied 
during the control of water distribution in main irriga-
tion canal pools (Calderon-Valdez et al., 2009; Feliu 
et al., 2009; Feliu-Batlle et al., 2011). 

Researchers have found that fractional order dif-
ferential equations are more adequate than integer order 
equations when modeling certain processes, thus pro-
viding an excellent tool with which to describe the 
dynamics of these processes (Podlubny, 1999; Monje 
et al., 2010). In particular, fractional order calculus has 
shown to be very effective in modeling distributed 
parameter processes that involve partial differential 
equations, as occurs in electrochemical processes (Feliu 
& Feliu, 1997), thermal processes (Jesus & Machado, 
2011), or hydraulic processes (Martinez-Gonzalez et 
al., 2009). 

Some authors have shown that the use of frac-
tional order models in the design of fractional order 
controllers allows the use of controllers that are more 
effective than traditional integer order controllers (see 
e.g. Martinez-Gonzalez et al., 2009; Tavakoli-Kakh-
ki et al., 2010). However, the fractional order control-
lers developed to control the water distribution in 
irrigation main canals have been based on integer-
order linear models (Monje et al., 2010). Moreover, 
in the field of fractional order systems, the problems 
related to developing useful simple fractional order 
models, estimating their parameters and using those 
in control system design have not been thoroughly 
addressed in control literature (Tavakoli-Kakhki et 
al., 2010). 

This article explores the possibility of increasing the 
accuracy of the simple linearized models of canal pool 
dynamics by means of fractional order derivative op-
erators. A fractional order model of an irrigation main 
canal pool is therefore proposed, which has been de-
veloped using an experimental laboratory prototype of 
a hydraulic canal. This model is obtained by means of 
a direct system identification approach (Garnier & 
Young, 2004), which allows the immediate derivation 
of a continuous-time model using continuous-time 
model identification tools. 
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The prototype hydraulic canal

The prototype hydraulic canal used as a case study 
in the present research is a closed-loop water variable 
slope rectangular canal with glass walls and a methac-
rylate bottom, manufactured by the Spanish company 
MCD-2000, and located in the Fluids Mechanics 
Laboratory of the Castilla-La Mancha University 
(Spain). The canal is 5 m long and 8 cm wide, while 
its walls are 25 cm high. The estimated manning coef-
ficient is 0.001. It consists of a closed-loop water canal 
with an instrumental platform that integrates electro-
mechanical sensors and actuators, a PLC (program-
mable logic controller) and a SCADA (data acquisition 
and supervisory system). The canal has motorized and 
manual adjustable slide gates (with a discharge coef-
ficient of 0.4) that allow it to be divided into pools of 
different lengths, but considering its small dimensions 
the canal is fundamentally operated as a single main 
canal pool of approximately 4.7 m in length and with 
a downstream end operation method. The upstream gate 
of this main pool is a motorized undershot gate and the 
downstream gate is a manually adjustable overshot 
gate. A view of this prototype hydraulic canal is shown 
in Fig. 2 and its schematic representation is depicted 
in Fig. 3. The geometry of the downstream overshot 
gate is shown on the right-hand side of Fig. 3. The 
angular position of this gate can be manually adjusted 
to three values which yield gate top heights of 13, 23 
and 33 mm above the canal bottom, respectively.

 
G(s) = Q(s)

P(s)
= bms

βm + bm−1sβm−1 +…+ b1sβ1 + b0sβ0
sαn + an−1sαn−1 +…+ a1sα1 + a0

,
 

[4]

where P(s) and Q(s) have no common zeros and the 
normalization an = 1, ..., α0 = 0 has been carried out. 

If a fractional system has to be simulated, then it is 
necessary to approximate expression [1] by means of 
discrete realizations. These can be obtained in two ways 
(Vinagre et al., 2000): i) by approximating the frac-
tional operator using a standard transfer function in the 
frequency range of interest and then applying any ha-
bitual discretization technique (e.g., Tustin operator), 
ii) by numerically approximating the fractional operator. 
In the second way, the numerical approximations of the 
fractional derivative/integral operator are often imple-
mented by using the following numerical generalization:

 

dα f (t)
dtα t=kT

= limT −α Δf (t)⎡⎣ ⎤⎦
α
,  [5]

where α ∈ℜ+ , Δf (kT )
t=kT

= f (kT )− f (kT −T )  and T 
is the period of discretization. This operator is for-
mally expressed as: 

 
Dα ≈ 1− z−1

T
⎛
⎝⎜

⎞
⎠⎟

α

,
 

[6]

and can be implemented by using:

 
a Dtα = lim

h→0
T −α (−1) j

α
j

⎛
⎝⎜

⎞
⎠⎟j=0

t−a
h

⎡

⎣
⎢

⎤

⎦
⎥

∑ f (t − jT ),
 

[7]

where [.] represents the integer part, and the combina-
torial function has been generalized in the following 
respect:

 

α
l

⎛
⎝⎜

⎞
⎠⎟
= α (α −1) ⋅⋅⋅(α − l +1)

l!
. [8]

This numerical approximation is called the Grund-
wald-Letnikov (GL) definition of the discretized frac-
tional operator (Podlbny, 1999), and provides suffi-
ciently accurate results in most cases, provided that T 
is sufficiently small. This discrete operator may be 
approximated using FIR or IIR discrete filters. Expres-
sion [8] can be truncated to a fixed number of N + 1 
terms of this sum (0 ≤ j ≤ N) in oder to obtain a FIR

filter. This can be done because  and it lim
l→∞

α
l

⎛

⎝⎜
⎞

⎠⎟
= 0

is called the short memory approximation. This ap-
proximation usually leads to FIR filters of a very large 
order (often N > 100).

Figure 2. Prototype hydraulic canal in laboratory.

The water flows in a closed circuit from an upstream 
reservoir to a downstream storage reservoir in order to 
economize water. The return of the water to the up-
stream reservoir is guaranteed by an electric pump. 
This pump operates with a speed variator, thus allow-
ing adjustments in frequency from 0 to 50 Hz. The total 
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Froude number attained in the downstream of the main 
pool is 0.97. The regime of the flow at the end of the 
main pool is therefore always subcritical. 

Two ultrasonic sensors (US), located outside the top 
of the canal, are used to monitor and control the up-
stream (yup (t)) and downstream end (ydwe (t )) water 
levels. A third ultrasonic sensor is shown in Fig. 3, and 
this measures the water level immediately downstream 

canal inflow is adjustable from 0 to 9 m3/h (≈ 2.5 L/s). 
The canal does not therefore have any water losses 
except evaporation effects, which are not significant 
in this case. Moreover, the laboratory canal has a water 
extraction system with which to simulate users’ water 
offtakes. Taking into account the maximum inflow 
permitted and the minimum downstream water level 
measured in our experiments (see Fig. 4), the maximum 

Figure 3. Scheme of the overall control systems of the prototype hydraulic canal. DAQ, data acquisition card; GPS, gate position 
sensor; US, ultrasonic level sensor; FPI/PI, fractional proportional integral/proportional integral controllers; PID, proportional in-
tegral derivative controller; DC motor, direct current motor.
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downstream, downstream end, mixed, Bival, etc.), and 
set-point changes (ydwe_sp (t )) and (yup_sp (t )) of the pri-
mary and secondary control loops, respectively. This 
SCADA application also provides other facilities such 
as: 1) storage of all the input and output signals in a 
data-base, allowing their exportation to other programs, 
such as MS-Excel, Matlab, etc.; 2) a display of the state 
of all the input and output signals; 3) alarm generation 
making it possible to obtain information about verified 
damages, the suggestion of the corresponding actions 
and, in extreme conditions, even the making of auto-
matic decisions. The main alarms are: water levels in-
side the hydraulic canal (in order to prevent the canal 
from emptying or overtopping), and the operational state 
of the control system devices (canal control station, DC 
motor, gate position and ultrasonic sensors, flowmeters, 
pumps, speed variators, etc.).

Dynamic models of irrigation canals 
and identification process

The dynamics of water flowing in irrigation canal 
pools is modeled by using the Saint-Venant equations. 
These equations are derived from mass and momentum 
balances and are given by (Chaudhry, 2008):

 

∂A
∂t

+ ∂Q
∂x

= q;
 

[9]

 

∂Q
∂t

+ ∂
∂x

Q2

A
⎛
⎝⎜

⎞
⎠⎟
+ gA ∂y

∂x
= gA Sb − S f( ) ,

 
[10]

where A (x,t ) is the canal cross section area, Q (x,t ) is 
the water flow (discharge) through section A, q (x,t ) is 
the lateral discharge, y (x,t ) is the water depth, Sf (x,t ) 
is the friction slope, Sb is the bed slope, g is the gravi-
tational acceleration, t is the time variable, and x is the 
longitudinal abscissa in the direction of the flow. 

Several methods currently exist for the solution of 
the Saint-Venant equations, but all of them have con-
siderable mathematical complexities (Litrico & Fro-
mion, 2004). These are thus often solved numerically 
by using specific software (e.g., Valipour, 2012; Khas-
raghi et al., 2015). Moreover, the direct use of these 
equations in the analysis of flow dynamics and the 
design of controllers is very difficult (Malaterre, 1995). 
The Saint-Venant equations are often linearized around 
a set-point. In this case, an equivalent first-order plus 
a time delay system is used to model the canal pool 
dynamic behavior (Rivas-Perez, 1990; Weyer, 2001). 
Experiments developed by some authors have demon-
strated that the dynamical parameters of these linear-

of the undershot gate. When the canal has a variable 
slope, measurements of the second (ydw (t )) and third  
(ydwe (t )) ultrasonic sensors are different. The motorized 
slide undershot gate is equipped with a DC motor and 
a gate position sensor (GPS). The canal is also 
equipped with two electromagnetic flowmeters (EMF). 
One flowmeter is installed in the water return tube 
which measures the canal water inflow (Qin (t )) pumped 
by the electric pump from the storage downstream 
reservoir toward the upstream reservoir, while the other 
is installed in the water extraction system tube which 
measures the canal water outflow (Qout (t )) pumped by 
the electric pump from the canal laboratory. This is not 
shown in Fig. 3 because neither the water extraction 
system nor its outflow pump or its flowmeter are used 
in our experiments. These two flowmeters facilitate the 
supervision of the pumping operations.

Our hydraulic canal prototype uses a PC (personal 
computer) as a canal control station. A SCADA ap-
plication is installed in this PC to ensure the auto-
matic control and supervision of the canal. Signals from 
the various installed sensors are measured and re-
corded for the: upstream (xup (t )) gate position, upstream 
(yup (t )), downstream (ydw (t )), and downstream end 
(ydwe (t )) canal water levels, canal water inflow (Qin (t )) 
and canal water outflow (Qout (t )).

Control of this hydraulic canal is very complicated 
because the maneuvers needed to open and close the 
upstream gate produce very large changes in the up-
stream water levels, owing to the small dimensions of 
the upstream pool (see Fig. 2). In order to solve this 
problem, a secondary control loop that controls the 
upstream water level and maintains it at a fixed refer-
ence was implemented. The upstream water level is 
controlled by a PID controller, which acts on a speed 
variator (frequency converter) that varies the water flow 
of a pump. The primary control loop carries out the 
control of the downstream end water level in the main 
pool of the hydraulic canal. The aforementioned up-
stream water level control then decouples the main pool 
dynamics from the upstream pool dynamics, and allows 
us to focus on identifying only the main canal dynamics 
without having to pay attention to secondary dynamics 
caused by any interaction with the upstream pool.

All the hydraulic canal prototype controllers are in-
stalled inside the PLC, which is supervised by the 
SCADA application. Fig. 3 shows the overall control 
system for this canal. The primary control loop can be 
seen in the upper part of this figure, and the secondary 
standard control loop can be seen in the lower part. The 
SCADA application developed facilitates the implemen-
tation of different control strategies, such as fractional 
order control, standard, robust and nonlinear controls, 
along with various canal operation methods (upstream, 
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an insight into the hydraulic process involved, let us 
consider a very simplified dynamic model of the main 
pool, which is labeled as Pool 2. Consider the follow-
ing equation, which represents the flow balance just 
upstream of Gate 3:

 
Q2(t −τ ) = A

dydwe(t)
dt

+Q 3(t)+ q2(t),
 

[11]

where, according to Fig. 1, Q2 (t) and Q3 (t) are the 
input and output flows to the main pool, q2 (t) is the 
offtake (assumed to be close to Gate 3), A is a constant, 
and t is the time-delay that represents the time required 
by an increment of mass at the upstream gate to move 
to the position of the downstream gate. As Fig. 3 shows, 
our canal uses a submerged undershot gate like Gate 2, 
and an overshot gate like Gate 3 (this gate has a con-
stant opening). These flows are therefore those given 
by e.g. Chaudhry (2008):

 

Q2(t) = K2u2(t) y up(t)− ydw(t);

Q3(t) = K3( ydwe(t)− h)3/2 ,  
[12]

where K2 and K3 are constants, u2 is the Gate 2 opening, 
and h is the constant height of the top of Gate 3 with 
regard to the canal bottom; (ydwe (t) – h) is thus the 
upstream head over the gate.

In the steady state, the flow balance is Q2 = Q3 + q2 ,
where the overline signifies steady state values. The 
linearization of Eqs. [11] and [12] around this steady 
state, assuming that q2 = 0 and taking only the input  
u2 and the output ydwe (t) as the variables representative 
of the process, leads to the following incremental 
model:

 

K2 yup − ydwΔu2(t −τ ) =

= A dΔydwe(t)
dt

+ K3
3
2
ydwe − h Δydwe(t),

 

[13]

where the overline again represents initial steady state 
values of the gates’ opening and water levels. This 
linearized model is a first order plus time delay system 
whose parameters change dramatically depending on 
the operation regime. Its transfer function (taking the 
Laplace transforms in Eq. [13]) is:

 

ΔYdwe(s)
ΔU2(s)

=

2K2 yup − ydw
3K3 ydwe − h

1+ 2A
3K3 ydwe − h

s
e−τ s ,

 

[14]

ized models may vary considerably when the discharg-
es through the upstream gates of the canal pools vary 
in the operation range [Qmin, Qmax] (Litrico & Fomion, 
2009; Rivas-Perez et al., 2011).

A linear parameter variable (LPV) non-integer order 
model of a canal pool was obtained using fractional-
order LPV identification (Martinez et al., 2009). Ra-
tional local fractional-order models were obtained at 
different operation points, and a global LPV model was 
then obtained from polynomial interpolations of the 
parameters of these local models. 

Experiments based on the response to a step like 
input were carried out in our hydraulic canal prototype 
in order to obtain a mathematical model that would 
accurately describe its dynamic behavior. In these ex-
periments, the downstream gate was fixed in one of the 
three possible positions (13, 23 and 33 mm) above the 
horizontal level of the canal bottom. Different step 
movements were performed by the upstream gate in 
order to excite the canal dynamics and the downstream 
end water level was measured with an ultrasonic sensor. 
Furthermore, experiments were carried out with differ-
ent upstream water levels (60, 65 and 70 mm), thus 
allowing us to obtain suitable and exhaustive experi-
mental data that would permit an adequate characteriza-
tion of the dynamic behavior of our canal. During the 
experiments, the upstream gate was in free or sub-
merged flow, which depends on the upstream water 
level and the position of the downstream gate. The 
downstream gate was in free flow. The water levels and 
upstream gate positions were sampled with a period of 
0.15 s. The positions of the upstream gate and the water 
level are given in mm.

Fig. 4 shows different step responses of our hydrau-
lic canal prototype. This figure shows that the upstream 
reservoir water level is maintained approximately 
constant by the pump, whose speed variator is con-
trolled by the PID. This control system compensates 
for the variations in the upstream water level caused 
by the different openings and outflows of the upstream 
gate (note that only fast transients that are quickly re-
moved are produced on the upstream water level by 
the upstream gate opening changes). 

According to the responses obtained after carrying 
out the experiments developed, we have proposed three 
simple linear models with which to characterize the 
dynamic behavior of our hydraulic canal prototype.

Standard first order plus time-delay model

This is the simplest and probably most frequently 
used canal pool model (Malaterre, 1995). It is based 
on simple physical considerations. In order to obtain 
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where ui and uf are the initial and final values of a gate 
manoeuvre (the gate position undergoes a step from ui 
to uf). This yielded a total amount of 1080 different 
experiments that were carried out. Model [15] was fit-
ted to the response data obtained in each of these ex-
periments. This set of experiments yielded the following 
ranges of model parameter variations: 0.086 ≤ K ≤ 0.775, 
1.1 ≤ T ≤ 48.94 and 2.25 ≤ t ≤ 5.7. 

The accuracy of the model [15] estimated in the dif-
ferent operation regimes was sufficient for control 
purposes, but we wished to explore whether, by just 
slightly increasing the complexity of the model, a bet-
ter fit to the experimental data could be achieved, 
which would obviously have a significant impact on 
the design of the controller. 

We have three parameters (K, T and t) in the first 
order plus time delay model. In the following subsec-
tions we explored the impact on the model accuracy if 
a fourth parameter is added to the model. We therefore 
fit models with four parameters to our already record-
ed experimental data, and we considered two new 
model structures, which are natural extensions of the 
previous one. The first is of an integer-order nature (the 
second order plus time delay model), while the second 
is of a fractional-order nature (a fractional-order plus 
time delay model), which implies using only a frac-
tional order derivative operator sα in the model [15].

Second order plus time-delay model

This is a standard integer-order model that has also 
often been used to model main irrigation canal pools 
(see e.g. Rivas-Perez et al., 2008):

 
G2(s) =

ΔY2(s)
ΔU2(s)

= K
(1+T1s)(1+T2s)

e−τ s ,
 

[18]

where: K is the static gain, T1, T2 are the time constants, 
and t is the time-delay.

The identification method applied in this case con-
sisted of the following: i) parameters K and t were 
taken from the previous identification process, because 
the time-delay and the static gain would remain the 
same in both models [15] and [18], as they had been 
obtained from the first and the last instants of the re-
sponse respectively, which were not influenced by the 
transient response, and ii) parameters T1 and T2 were 
again obtained from an optimization procedure that 
minimized the ISE performance index using model 
[18].

We ran this identification process on the data of the 
1080 experiments, and yielded the following ranges 
of model parameter variations: 0.086 ≤ K ≤ 0.775, 
1 ≤ T1 ≤ 48.92, 0 ≤ T2 ≤ 13.18 and 2.25 ≤ t ≤ 5.7. 

The transfer function [14] can be expressed as:

 
G1(s) =

ΔYdwe(s)
ΔU2(s)

= K
1+Ts

e−τ s ,
 

[15]

where K is the static gain, T is the time constant, and  t 
is the time-delay. Expression [14] shows that these pa-
rameters change according to the canal operation regime. 

An algorithm is designed in order to estimate param-
eters K, T and t of Eq. [15] in each canal operation re-
gime. The quality of the estimated model is measured 
using the value of the Integral Square Error (ISE), in 
which the error is defined between the step input response 
of the estimated mathematical model and the response 
experimentally obtained from our canal. The ISE is a 
performance index that is very often used in system 
identification (Ljung, 1999) and which is defined as:

 
ISE = e2(t) dt.

0

∞

∫
 

[16]

Even though the ISE is calculated from 0 to infinity 
in Eq. [15], we calculate the ISE in the range from 0 to 
360 s in order to save computation time, as all the ex-
periments reached their steady state in less than 360 s 
(and the error between the model output and the real 
response would therefore become approximately zero 
in less than this time, if the gain K had been properly 
tuned). All the experiments were executed during the 
same time interval of 360 s.

In our identification approach, therefore: i) we 
manually determine the time-delay value t by means 
of a simple inspection of the experimental response, 
and ii) parameters K and T are obtained from an opti-
mization procedure that minimizes the aforementioned 
ISE index. The nominal values obtained for the labora-
tory hydraulic canal model (values obtained in the case 
of the most frequent operation regime) are: K0 = 0.372, 
T0 =10.975 and t0 =4.05. They correspond to an up-
stream reservoir water level of 70 mm, a downstream 
end water level of 50 mm in the main pool, and a gate 
opening of 15 mm. However, these parameters have 
wide ranges of variation around their nominal values 
when the operation regime changes. 

We repeated the identification process of model [15] 
using the canal step input response data obtained in all 
the possible operation regimes: we covered the entire 
flow range, we used different upstream water levels, 
and we opened the downstream gate in the main pool 
using different settings. All the possible combinations 
of the following values were considered:

yup € [60,65,70,75,80] mm 
ydwe € [13,23,33] mm 
ui € [10,15,20,25,30,35,40,45,50] mm 
uf € [10,15,20,25,30,35,40,45,50] mm 

[17]
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has four parameters to be tuned (a model with the same 
complexity of the second order plus time-delay model 
shown in the previous subsection and with only one 
more parameter to be tuned than in the first order plus 
time-delay model):

 
G4(s) =

ΔY2(s)
ΔU2(s)

= K
1+Tsα

e−τ s ,
 

[20]

where K is the static gain, T is the time constant, t is 
the time-delay, and α is the fractional order. 

The identification method applied in this case was 
similar to that used in the previous subsection. It con-
sisted of: i) removing parameters K and t from the first 
order plus time-delay identification process, for the 
same reason as that shown in the previous subsection, 
and ii) once again obtaining parameters T and α from 
an optimization procedure that minimized the ISE per-
formance index using model [20].

We again ran this identification process on the data 
of the 1080 experiments, and yielded the following 
ranges of model parameter variations: 0.086 ≤ K ≤ 0.775, 
1.17 ≤ T ≤ 48, 2.25 ≤ t ≤ 5.7 and 0.59 ≤ α ≤ 1.32. 

Results and discussion

Fig. 5 shows the step input responses yielded by the 
three models identified in the case of the nominal plant, 
together with the real time experimental response 

In many of the identification experiments carried 
out, the second order model with a time-delay fitted 
converted into a first order model with a time-delay, 
because the optimum T2 obtained was zero. This meant 
that adding a second pole to the model did not, in many 
cases, improve the accuracy attained with the first order 
plus time-delay model.

There is another integer-order model with four pa-
rameters to be tuned that could be used:

 
G3(s) =

ΔY2(s)
ΔU2(s)

= K (1+T2s)
(1+T1s)

e−τ s ,
 

[19]

but this model is not suitable for our canal as it implies 
a discontinuity in the step input response (just when the 
response starts varying, after the time-delay has passed), 
and we verified that the experimental responses of our 
canal pool did not have such discontinuity.

Fractional-order plus time-delay model

The previous subsection allows us to conclude that 
increasing the complexity of the transfer function ob-
tained from an integer-order differential equation by 
adding one more parameter does not produce more 
accurate models of our main canal pool. In this subsec-
tion we therefore model our canal pool dynamics with 
a fractional-order differential equation plus time delay. 
We propose a simple fractional-order model that also 

Figure 5. Step response of the prototype hydraulic canal vs. step responses of the models obtained.
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where tf is the time of the duration of each experiment, 
i.e., 360 s, and Δydwe is the difference between the 
downstream end water level after the upstream gate has 
been opened and the downstream end water level before 
the upstream gate has been opened. 

With this normalization we basically obtained a 
value for the average error of the fitting, which was 
then normalized by using the extent of the change un-
dergone by the downstream water level during a ma-
noeuver, in order not to weight too much errors pro-
duced in large maneuvers on errors in small maneuvers.

We then calculated the mean error, the maximum 
error and the standard deviation of the set of values 
[21] obtained in the 1080 experiments with each of the 
proposed models. These are illustrated in Table 1, 
which shows that the fractional-order plus time-delay 
model has 11% less mean error than the first order plus 
time-delay and the second order plus time-delay mod-
els.

It should be noted that this improvement would be 
much higher and apparent if a visual inspection of the 
responses were to be made, because in our experiments 
the ISE is distorted by sensor noise, water surface 
waves (higher order dynamics), etc., which are present 
in the steady state (see in Fig. 5 the variations of the 
experimental response in its steady state). This causes 
an unnecessary increase in the ISE performance index, 
produced by the integration of these squared errors 
during the steady state time interval which lasts until 
the 360 s. This increase is very significant since in 
many cases such a steady state interval is more than 

(model validation results) of our hydraulic canal pool 
prototype. Upon comparing the responses in this figure, 
we concluded that the step responses of the three mod-
els closely follow the real time experimental data, but 
that the response of the fractional-order model is more 
approximate than the other two (in Fig. 5 the respons-
es of first order plus time-delay and second order plus 
time-delay models are almost equal, and cannot be 
distinguished). In particular, the fractional-order model 
response fits the transient of the canal pool response 
more accurately. In this section we check whether this 
result is the same in all the operation regimes. For this 
purpose we quantify the accuracy of the fittings by 
using the ISE index.

After having obtained the parameters of the three 
models for the different processes characterized by the 
different operation regimes, the ISE indexes yielded by 
all these fittings were compared. Fig. 6 presents the ISE 
indexes obtained in the 1080 experiments after having 
fitted the three models. It is observed that the fraction-
al-order plus time delay model yields the lowest ISE of 
the three models, and that the ISE obtained with the first 
order plus time-delay and the second order plus time-
delay models are almost equal in most cases.

In order to carry out a quantitative comparison of 
the results obtained, the ISE index is normalized as 
follows:

 
Error =

ISE
t f

Δydwe
,
 

[21]

Figure 6. Integral square error (ISE) calculated for the three proposed canal pool models.
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prototype hydraulic canal more accurately than the 
other two models. 

It is important to stress that the canal pool models 
obtained through the use of the direct system identifi-
cation tools (for purposes of design and practical imple-
mentation of control systems and/or forecasting sys-
tems) are as accurate as those based on Saint-Venant 
equations with estimated parameters and are much 
easier to use.

The LPV rational fractional-order model obtained 
by Martinez et al. (2009) had a lower error than an LPV 
integer order rational model. The aforementioned work 
differs from ours in two aspects: 1) the authors used a 
prototype canal that did not have the geometry and 
structure of real irrigation canals because the water 
there was moved from one pool to the adjacent one 
through a pipe with the aid of a pump, rather than 
through a gate with a regulated opening, 2) they im-
proved the accuracy of the fractional-order dynamical 
model at the cost of significantly increasing its com-
plexity. The question of whether it would be possible 
to obtain the same accuracy with integer-order models 
of a similar complexity to the fractional-order models 
proposed therefore remains open.

In the context of hydraulic engineering, the principal 
contribution of this paper therefore consists of the fact 
that an accurate fractional order model of an irrigation 
main canal pool with a complex hydraulic infrastructure 
has been obtained under different real operation condi-
tions and using real-time data. The results attained are 
very promising and show that there is great potential 
for the use of fractional order models in depicting the 
dynamic behavior of irrigation main canal pools.

We highlight that improving the accuracy of the 
dynamic model of our prototype hydraulic canal and 
of a real canal has a significant impact on improving 
the performance of canal monitoring, control, and 
supervisory systems, which are based on such dy-
namic models. Sources of error in our identification 

60% of the whole time interval (360 s). This reduces 
the relative effects of having improved the transient 
fitting with the fractional-order model in the total value 
of the ISE index. 

In the following, we overcome the previous problem 
by calculating index [21] using a variable time interval 
tf. This tf is the instant at which we consider that the 
experimental response has reached its steady state, and 
is different for each experiment. However, for a given 
experiment, tf remains the same when calculating the 
fitting errors to the experimental data of the three 
model responses. Table 1 shows the mean error, the 
maximum error and the standard deviation of the set 
of values [21] obtained in the 1080 experiments with 
each of the proposed models, but using the proposed 
modification as regards allowing a variable tf. This 
table shows that the fractional-order plus time-delay 
model now has 25% less mean error than the first order 
plus time-delay and the second order plus time-delay 
models.

We should mention that we carried out a fair com-
parison of the proposed models. Two of them had four 
parameters to be determined, while the standard model 
had three. The integer-order and fractional-order mod-
els compared had approximately the same number of 
parameters to be adjusted, unlike that which occurred 
in a previous work in which fractional-order models 
with many parameters to be adjusted were compared 
with much simpler integer-order models.

Our results showed that: i) a moderate increase (one 
parameter more) in the complexity of a model based 
on integer-order differential equations did not improve 
the accuracy achieved with the standard first order plus 
time delay model, ii) using a very simple fractional-
order plus time-delay model (with only one more pa-
rameter to be identified than in the first order plus time 
delay model) improved the accuracy of the model by 
about 25% (data taken from Table 1) and this model 
was capable of capturing the transient dynamics of our 

Table 1. Comparison of the three models with the error index calculated in an interval of 360 s and in a time interval that lasts 
until the instant at which the experimental response has reached its steady state

Model
Interval of 360 s Interval until the steady state

Mean error Maximum 
error

Standard 
deviation Mean error Maximum 

error
Standard 
deviation

First order plus time delay transfer 
function 0.0492 0.3386 0.0268 0.0907 0.3103 0.0317

Second order plus time delay 
transfer function 0.0491 0.3386 0.0267 0.0905 0.3103 0.0315

Fractional-order plus time delay 
transfer function 0.0438 0.3382 0.0272 0.0682 0.2519 0.0282
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technique are the low accuracy of our ultrasonic sensor 
for the water level and the fact that the high order 
dynamics of the water flow were not taken into con-
sideration. In future research we shall develop more 
complex fractional-order models that will include such 
high order oscillatory dynamics and we shall also 
improve the precision of our sensors. Finally, we 
should mention that our future work will also be de-
voted to obtaining a fractional order model of a true 
irrigation main canal.
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