
perimental effects and experimental error (Crossa et al., 
2010; Hu et al., 2013). ANOVA models assume homo-
geneity of variances and do not include covariances 
for random effects, which is often unrealistic in case 
of multi-environmental trials (So & Edwards, 2009; 
Hu & Spilke, 2011). 

Lately, linear mixed models (LMMs) have become 
recognized and widely used for analyzing METs data 
(Smith et al., 2005; Yang, 2010). These models are 
especially useful in the analysis of incomplete data-

RESEARCH ARTICLE OPEN ACCESS

Spanish Journal of Agricultural Research
14(2), e0703, 8 pages (2016)

eISSN: 2171-9292
http://dx.doi.org/10.5424/sjar/2016142-8737

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)

Yield response of winter wheat cultivars to environments modeled 
by different variance-covariance structures in linear mixed models

Marcin Studnicki1, Wiesław Mądry1, Kinga Noras1, Elżbieta Wójcik-Gront1 and Edward Gacek2

1 Warsaw University of Life Sciences, Department of Experimental Design and Bioinformatics. Nowoursynowska 159. 02-776 Warsaw. Poland. 
2 Research Center for Cultivar Testing (COBORU). 63-022 Słupia Wielka, Poland

Abstract
The main objectives of multi-environmental trials (METs) are to assess cultivar adaptation patterns under different environmental 
conditions and to investigate genotype by environment (G×E) interactions. Linear mixed models (LMMs) with more complex 
variance-covariance structures have become recognized and widely used for analyzing METs data. Best practice in METs analysis 
is to carry out a comparison of competing models with different variance-covariance structures. Improperly chosen variance-covar-
iance structures may lead to biased estimation of means resulting in incorrect conclusions. In this work we focused on adaptive 
response of cultivars on the environments modeled by the LMMs with different variance-covariance structures. We identified pos-
sible limitations of inference when using an inadequate variance-covariance structure. In the presented study we used the dataset 
on grain yield for 63 winter wheat cultivars, evaluated across 18 locations, during three growing seasons (2008/2009−2010/2011) 
from the Polish Post-registration Variety Testing System. For the evaluation of variance-covariance structures and the description 
of cultivars adaptation to environments, we calculated adjusted means for the combination of cultivar and location in models with 
different variance-covariance structures. We concluded that in order to fully describe cultivars adaptive patterns modelers should 
use the unrestricted variance-covariance structure. The restricted compound symmetry structure may interfere with proper interpre-
tation of cultivars adaptive patterns. We found, that the factor-analytic structure is also a good tool to describe cultivars reaction on 
environments, and it can be successfully used in METs data after determining the optimal component number for each dataset.

Additional key words: adaptability patterns; factor analytic; multi-environmental trials; unbalanced dataset; winter wheat.
Abbreviations used: AIC (Bayesian information criterion); AMMI (additive main effects and multiplicative interaction); BIC 

(Akaike’s information criterion); BLUE (best linear unbiased estimation); BLUP (best linear unbiased prediction); CS (compound 
symmetry matrix); FA (factor-analytic matrix); G (cultivar); G×E (genotype – environment interactions); GGE (genotype main ef-
fects and G×E interaction effects); L (location); LMM (linear mixed model); LS (least squares means); MET (multi-environmental 
trial); PVTS (Polish Post-Registration Variety Testing System); UN (unstructured matrix); Y (year).

Authors’ contributions: Conception and design of the study: MS, WM and KN. Data collection: KN and EG. Analysis and 
interpretation of data: MS. The paper written by: MS and EWG.

Citation: Studnicki, M.; Mądry, W.; Noras, K.; Wójcik-Gront, E.; Gacek, E. (2016). Yield response of winter wheat cultivars to 
environments modeled by different variance-covariance structures in linear mixed models. Spanish Journal of Agricultural Research, 
Volume 14, Issue 2, e0703. http://dx.doi.org/10.5424/sjar/2016142-8737.

Received: 04 Oct 2015. Accepted: 27 Apr 2016.
Copyright © 2016 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution-Non 

Commercial (by-nc) Spain 3.0 Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Funding: The authors received no specific funding for this work.
Competing interests: The authors have declared that no competing interests exist.
Correspondence should be addressed to Marcin Studnicki: marcin_studnicki@sggw.pl

Introduction

The main objectives of multi-environmental trials 
(METs) are assessing cultivar adaptation patterns under 
different environmental conditions (locations) and 
investigate genotype – environment (G×E) interactions. 
The common approach used to analyze multi-environ-
mental trials is the classical analysis of variance 
(ANOVA). However, the classical ANOVA models are 
restricted by assumptions regarding variances of ex-
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ANOVA and numerically less complicated than the 
UN structure. 

The LMMs analysis for METs data are mainly used 
to assess the yield adaptability of cultivars, through 
the estimation of the adjusted means conducted as 
linear combinations of appropriate BLUP (best lin-
ear unbiased prediction) and BLUE (best linear un-
biased estimation) effects. Adjusted means of yield 
for genotype and environment combinations obtained 
from LMM are then used to analyze the G×E interac-
tion effects by AMMI model, GGE plot or pattern 
analysis. Improperly chosen variance-covariance 
structures may lead to the biased estimation of ad-
justed means. Based on the incorrectly estimated 
adjusted means, G×E interaction analysis may result 
in incorrect conclusions. So far, other studies were 
focused on measures of the goodness of fit or the 
accuracy of prediction for LMMs with different 
variance-covariance structures. However, it may also 
be important to assess the G×E interactions in mod-
els with different variance-covariance structures. 
Therefore, in this work we focused on adaptive re-
sponse of cultivars on the environments modeled by 
the LMMs with different variance-covariance struc-
tures. We also tried to identify possible limitations 
of inference when using an inadequate variance-co-
variance structure.

Material and methods 

Multi environmental trial dataset 

The Polish Post-Registration Variety Testing System 
(PVTS) (Mądry et al., 2011) was established to evaluate 
the yield and other related traits of newly released cul-
tivars through METs. One of the most common crop 
tested through METs is winter wheat (Triticum aestivum 
L.). The tests facilitate reliable recommendation to Pol-
ish farmers on cultivars which appear to be the most 
adapted to varied agricultural environments. Unfortu-
nately, in most cases the trials lead to an unbalanced 
(incomplete) matrix of the number of cultivars, trial 
locations and years. The majority of cultivars had been 
tested for 2-3 years. Consequently, the raw plot data 
collected for grain yield (or other traits) were arranged 
according to cultivar (G), location (L), and year (Y). The 
trials were led as a split-block design. In the present 
study we used a dataset on grain yield for 63 winter 
wheat cultivars, evaluated across 18 locations, during 3 
growing seasons from 2008/2009 to 2010/2011. In the 
raw data three-way table, 2327 combinations (cells) were 
filled, that represent 68.4 % of the balanced classifica-
tion. 

sets. In LMMs, an asset is a chance to use more 
complex variance-covariance structures for describ-
ing the G×E interaction effects. The most realistic 
one is unstructured (UN) variance-covariance matrix 
(Meyer, 2009). This variance-covariance matrix is 
the most liberal. Each parameter (variance or co-
variance) in the matrix is different and is estimated 
uniquely from the data (Littell et al., 2006; Gilmour 
et al., 2009; Hu & Spilke, 2011). The disadvantage 
of the UN structure in comparison to other structures 
is the large number of parameters to estimate. This 
can contribute to complexity of numerical calcula-
tions. On the other end of the spectrum, we have the 
compound symmetry (CS) structure, which is the 
most restrictive variance-covariance matrix for LMM. 
This structure assumes equal variances and equal 
covariances.

Recently, researchers more and more often suggest 
using factor-analytic (FA) structure for the METs data 
(Piepho, 1997, 1998; Kelly et al., 2007; Meyer, 2009; 
Stefanova & Buirchell, 2010; Burgueño et al., 2011). 
That variance-covariance matrix also offers the mod-
eler a flexibility comparable to the UN structure but 
with a lower number of parameters to estimate. The FA 
model can be regarded as the mixed model equivalent 
of the additive main effects and multiplicative interac-
tion (AMMI) model with similar fixed-effects as 
genotype main effects and G×E interaction effects 
(GGE). In contrast to AMMI model, which is based on 
principal components analysis via singular value de-
composition, the factor-analytic model is based on 
factor analysis with a Cholesky factorization (Smith 
et al., 2001; Burgueño et al., 2011). The factor-analyt-
ic model depends on the decomposition of an unstruc-
tured variance-covariance matrix.

In case of the analysis of the METs data with 
LMMs, it is always recommended to carry out a com-
parison of the models with different variance-covari-
ance structures first (So & Edwards, 2009; Burgueño 
et al., 2011). The second step is to use the selected 
model for proper analysis and evaluation of the culti-
vars. Comparison of the models involves assessment 
of the goodness of fit and the prediction accuracy. 
Several studies have evaluated the models with differ-
ent variance-covariance structures (including FA). 
Piepho (1998) used and evaluated LMMs with FA 
structure starting the analysis with one component and 
ending with seven. He recommended using the two-
component FA structure. The model was later used by 
Kelly et al. (2007) and Burgueño et al. (2011). Hu & 
Spilke (2011) compared LMMs for five variance-co-
variance structures, including the FA structure with 
one component, and concluded that the FA variance-
covariance structure is more accurate than the classical 
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where LogL is the logarithm of maximum restricted 
likelihood of the model; and p is the number of esti-
mated variance-covariance parameters in the model. 
The smaller AIC values, the better fit of the variance-
covariance structure. The expression “–2 × LogL” is 
called “deviance” and is also used in calculating other 
information criteria (e.g. BIC) and likelihood ratio 
tests.

In the cultivar selection and recommendation pro-
cess, the cultivar ranking (Roostaei et al., 2014) and 
its compatibility across locations (Hu, 2015), are very 
important. This is why in this research we analyzed the 
Spearman rank correlation. We calculated the correla-
tion coefficients for cultivars effects G and cultivars 
within the locations G(L) effects estimators from the 
models with difference variance-covariance structures. 
Inconsistency of cultivars ranking between the models 
informs us which model leads to an inaccurate evalu-
ation of cultivars adaptability patterns. 

For the description of the cultivars adaptation to the 
agricultural environments, we calculated adjusted 
means for cultivar and location G(L) combination in 
all compared models with different variance-covariance 
structures. The adjusted means were calculated as 
combinations of appropriate BLUPs or/and BLUEs 
effects, using an algorithm described by Welham et al. 
(2004). The modeled adjusted means for all considered 
cultivars across 18 locations using different variance-
covariance structures are presented in Figs. 1-2. Ad-
ditionally, in the results we indicated two winter wheat 
cultivars characterized by wide environmental adapta-
tion ('Mulan' and 'Smaragd'), bred in Germany.

Results

The lowest AIC value was observed for the model 
with FA2 variance-covariance structure for G(L) effects 
(Table 1). The FA structure with three components was 
the second best. The next lowest levels of AIC were 
observed in FA structures with one, four and five com-
ponents. In contrast, the highest value of AIC was 
found for an UN variance-covariance matrix, indicating 
interior fit. The model with this variance-covariance 
structure has the lowest value of the logarithm of the 
restricted likelihood ratio LogL. For the model with 
compound symmetry structure we obtained the highest 
value of LogL. The LogL value is not in constant de-
crease with increasing number of components for 
models with FA variance-covariance structure. 

We observed significant and positive correlation for 
cultivar effects between all variance-covariance struc-
tures (Table 2). The results with the UN structure were 
highly correlated with ones obtained using the FA4 

Linear mixed models for METs

We analysed raw data for grain yield using a two-
stage approach (Smith et al., 2005; Möhring & Piepho, 
2009; Welham et al., 2010; Piepho et al., 2012). In the 
first stage, raw data were analysed for each trial (each 
location-year combination) separately using the 
ANOVA mixed-model for a split-block design. In the 
analysis, we assumed cultivars to be fixed effects and 
blocks to be random (Spilke et al., 2005). The least 
squares (LS) means for cultivars were estimated. Then, 
the LS means were combined across trials and years to 
obtain an unbalanced G×L×Y data table. In the second 
stage, we performed the combined analysis of the 
means in the unbalanced G×L×Y table based on the 
linear mixed model:

X ijk = m + Li +G(L)ij +Yk +YLik +YG(L)ijk + eijk ,

where Xijk is the LS mean of yield for the 3-factorial 
combination of the k-th year, the i-th (i=1,2, …, I) loca-
tion, the j-th cultivar; m is the general mean; Li is the 
fixed main effect of the i-th location; G(L)ij is the ran-
dom effect of the j-th cultivar within the i-th location; 
Yk is the random main effect of the k-th year; YLik is 
the random interaction effect of the k-th year and the 
i-th location; YG(L) ijk is the random interaction effect 
of the j-th cultivar within the i-th location and the k-th 
year; and eijk is the random residual effect of the mean 
experimental error. 

We used models with homogeneous and heterogene-
ous variance-covariance structures for cultivar within 
environment G(L) effects. The random effects of 
G(L)ij were modelled with CS, UN and FA structures. 
The FA structure for the presented linear mixed model 
was fitted with different number of components, from 
one component, FA1, to seventeen components, FA17. 
The linear mixed models with different variance-co-
variance structures were fitted using ASReml-R (Gil-
mour et al., 2009).

The popular method used to choose the best vari-
ance-covariance structure is based on information 
criteria, such as Akaike’s information criterion (AIC) 
or Bayesian information criterion (BIC) (So & Ed-
wards, 2009; Hu & Spilke, 2011). It depends on evalu-
ating the predictive accuracy of the effects (Piepho, 
1998; Kelly et al., 2007). In our study, the classical 
evaluation of the variance-covariance structures was 
based on the AIC. This is a commonly used criterion 
to choose the best variance-covariance structure in 
linear mixed model for METs. The AIC was obtained 
using the following formula:

AIC = –2 × LogL + 2p,
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Figure 1. The winter wheat cultivars adaptive yield response 
patterns across eighteen environments modeled with compound 
symmetry (a) and unstructured (b) variance-covariance structure. 
Environmental means, dashed line; 'Mulan' cultivar, blue line; 
'Smaragd' cultivar, red line.
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Table 1. Akaike information criterion and restricted log-like-
lihood values for models with different variance-covariance 
structures fitted to winter wheat dataset.

Model AIC[1] LogL[2]

CS[3] 19681.77 –9827.9
FA[4]1 19577.14 –9752.6
FA2 19540.10 –9720.0
FA3 19547.75 –9707.9
FA4 19560.76 –9699.4
FA5 19576.93 –9694.5
FA6 19580.80 –9697.4
FA7 19626.44 –9710.2
FA8 19682.63 –9721.3
FA9 19558.07 –9648.0
FA10 19660.34 –9691.2
FA11 19722.45 –9713.2
FA12 19710.62 –9706.3
FA13 19866.96 –9778.5
FA14 19746.59 –9707.3
FA15 19762.21 –9710.1
FA16 19696.29 –9676.1
FA17 19782.53 –9710.3
UN[5] 19733.64 –9685.8
[1]  AIC, Akaike Information Criterion. [2]  LogL, restricted log-
likelihood. [3]  CS, compound symmetry variance-covariance 
structures. [4]  FA, factor-analytic variance-covariance structures. 
[5]  UN, unstructured variance-covariance structures.

Table 2. Spearman rank correlations matrix for main cultivars effects (lower triangular matrix) and cultivar within the locations 
effects (upper triangular matrix) estimates using difference variance-covariance structures.

CS[1] FA[2]1 FA2 FA3 FA4 FA5 FA10 FA15 FA17 UN[3]

CS 1.000 0.524 0.473 0.504 0.839 0.843 0.846 0.840 0.832 0.855
FA1 0.674 1.000 0.882 0.851 0.760 0.753 0.762 0.760 0.746 0.751
FA2 0.651 0.970 1.000 0.937 0.779 0.771 0.771 0.771 0.753 0.765
FA3 0.652 0.784 0.731 1.000 0.827 0.818 0.803 0.808 0.787 0.805
FA4 0.676 0.681 0.633 0.794 1.000 0.989 0.950 0.944 0.931 0.973
FA5 0.675 0.681 0.634 0.794 0.998 1.000 0.958 0.962 0.949 0.984
FA10 0.683 0.693 0.656 0.781 0.994 0.990 1.000 0.995 0.983 0.978
FA15 0.686 0.693 0.656 0.781 0.994 0.990 0.991 1.000 0.983 0.980
FA17 0.683 0.682 0.641 0.769 0.986 0.987 0.992 0.994 1.000 0.961
UN 0.682 0.671 0.627 0.778 0.995 0.994 0.996 0.992 0.990 1.000
[1] CS, compound symmetry variance-covariance structures. [2] FA, factor-analytic variance-covariance structures. [3] UN, unstructured 
variance-covariance structures.

structure. They showed that the rankings of cultivar 
effects were compatible. The correlation calculated 
among G and G(L) effects using the FA structure with 
smaller number of components and the UN structure 
were weak. The results acquired for the CS structure 
were moderately correlated with other variance-covar-
iance structures. This indicates that the cultivar rank-
ings were not the same. In case of cultivars within 

location effects we observed similar patterns. How-
ever, the values of Spearman correlation coefficients 
were slightly lower than for cultivars effects. The use 
of CS model or FA with smaller number of components 
models can contribute to erroneous selection of supe-
rior cultivars.

In the Fig. 1a, we present cultivars yield response 
across 18 agricultural environments (locations) mod-
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The cultivar yield response across environments mod-
eled by linear mixed model with unstructured variance-
covariance matrix is presented in the Fig. 1b. Contrary 
to cultivars response on environments modeled by the 
CS structure, the UN structure diversifies the ranges of 
yield values in tested environments. For this variance-
covariance structure we observed that one of the environ-
ments had exceptionally greater diversity of cultivars 

eled with the CS variance-covariance structure. The 
yields of cvs. 'Mulan' and 'Smaragd' modeled using this 
structure were on the first place in all tested locations. 
The modeled locations range (max-min) of cultivars’ 
grain yield stayed on a similar level, amounting to 
about 0.80 t/ha, in all tested locations. The minimum 
yield was 0.63 t/ha for location L6 and maximum 0.98 
t/ha for L18 (Table 3). 

Table 3. Minimal, maximum and range values for the cultivars adjusted yield means (t/ha) for all tested environments modeled 
by differences variance-covariance structures. 

Variance-
covariance 
structures

Parameters
Environments

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18

CS[1] min 7.07 8.13 7.95 8.28 6.56 7.44 6.85 6.16 7.34 8.85 7.51 8.13 8.81 7.49 5.99 8.14 7.17 8.68
max 7.82 8.94 8.90 9.08 7.52 8.07 7.50 6.89 8.03 9.56 8.31 8.83 9.64 8.25 6.67 8.96 7.93 9.66
range 0.75 0.81 0.95 0.79 0.96 0.63 0.66 0.73 0.69 0.71 0.80 0.70 0.83 0.77 0.68 0.82 0.76 0.98

FA[2]1 min 7.17 7.79 7.91 8.19 5.52 7.58 6.79 6.39 7.51 9.14 7.03 8.30 8.76 7.72 6.06 8.12 7.46 8.43
max 7.57 8.97 8.84 9.06 7.82 7.86 7.46 6.82 7.95 9.30 8.32 8.62 9.50 8.18 6.72 8.80 7.73 9.90
range 0.40 1.17 0.93 0.87 2.30 0.28 0.67 0.44 0.44 0.16 1.30 0.32 0.74 0.46 0.66 0.68 0.27 1.47

FA2 min 7.12 7.80 7.89 7.96 5.50 7.59 6.80 6.27 7.39 9.06 7.01 8.27 8.77 7.72 6.05 8.11 7.33 8.31
max 7.66 9.08 8.85 9.35 7.84 7.87 7.51 7.00 8.08 9.44 8.37 8.67 9.50 8.23 6.79 8.81 7.92 9.96
range 0.54 1.27 0.96 1.38 2.34 0.28 0.72 0.73 0.68 0.38 1.36 0.40 0.74 0.51 0.74 0.70 0.59 1.64

FA3 min 7.09 7.77 7.78 7.95 5.40 7.59 6.78 6.22 7.39 9.05 6.99 8.28 8.75 7.67 6.06 8.09 7.27 8.08
max 7.67 9.07 8.88 9.37 7.89 7.87 7.51 7.18 8.09 9.53 8.66 8.67 9.49 8.34 6.81 8.78 8.13 10.07
range 0.58 1.31 1.10 1.42 2.49 0.28 0.73 0.96 0.70 0.48 1.66 0.39 0.74 0.67 0.75 0.69 0.86 2.00

FA4 min 6.97 7.44 7.58 7.93 5.55 7.41 6.68 5.97 7.22 8.76 7.00 8.01 8.65 7.25 5.86 8.02 7.01 8.23
max 7.78 9.19 9.09 9.30 7.93 8.06 7.64 7.32 8.25 9.69 8.84 8.92 9.64 8.64 6.99 8.85 8.29 10.05
range 0.81 1.75 1.50 1.37 2.37 0.65 0.97 1.35 1.03 0.93 1.84 0.91 0.99 1.39 1.13 0.83 1.28 1.82

FA5 min 6.99 7.45 7.58 7.91 5.55 7.43 6.58 5.98 7.20 8.76 6.98 7.97 8.65 7.26 5.82 8.04 7.01 8.26
max 7.77 9.22 9.10 9.31 7.94 8.10 7.72 7.32 8.28 9.68 8.86 8.90 9.62 8.67 7.05 8.88 8.30 10.03
range 0.79 1.76 1.52 1.40 2.39 0.66 1.14 1.34 1.08 0.92 1.88 0.93 0.97 1.40 1.23 0.84 1.29 1.77

FA10 min 7.00 7.43 7.58 7.96 5.45 7.45 6.57 5.99 7.23 8.82 6.91 7.98 8.68 7.27 5.82 7.96 7.04 8.21
max 7.76 9.20 9.13 9.27 7.93 8.11 7.78 7.41 8.32 9.64 8.67 8.90 9.61 8.68 7.09 8.86 8.29 10.08

range 0.76 1.77 1.55 1.31 2.48 0.66 1.21 1.42 1.09 0.83 1.76 0.92 0.93 1.41 1.27 0.91 1.26 1.87
FA15 min 7.08 7.79 7.75 8.15 5.65 7.53 6.71 6.14 7.27 8.88 7.22 8.09 8.76 7.35 5.88 7.97 7.04 8.12

max 7.70 9.10 8.91 9.14 7.87 8.05 7.66 7.18 8.19 9.54 8.51 8.83 9.53 8.58 7.09 8.94 8.22 10.27
range 0.62 1.31 1.16 0.99 2.22 0.52 0.95 1.04 0.91 0.65 1.29 0.75 0.78 1.23 1.21 0.97 1.17 2.16

FA17 min 7.03 7.31 7.64 7.93 5.56 7.13 6.44 5.78 6.95 8.89 7.11 8.05 8.72 7.44 5.92 8.01 7.14 8.31
max 7.75 9.00 9.01 9.27 7.90 8.33 7.82 7.50 8.48 9.57 8.55 8.87 9.58 8.46 7.01 8.90 8.11 10.03
range 0.72 1.68 1.37 1.34 2.34 1.20 1.38 1.72 1.53 0.68 1.44 0.82 0.86 1.03 1.09 0.89 0.97 1.72

UN[3] min 6.99 7.42 7.56 7.93 5.49 7.43 6.56 5.97 7.19 8.76 6.95 7.98 8.65 7.23 5.83 7.97 7.00 8.25
max 7.84 9.20 9.16 9.28 7.93 8.12 7.78 7.46 8.34 9.67 8.71 8.97 9.61 8.71 7.09 8.90 8.32 10.05
range 0.85 1.77 1.60 1.36 2.44 0.69 1.22 1.49 1.16 0.91 1.76 0.99 0.95 1.47 1.26 0.93 1.32 1.80

[1]  CS, compound symmetry variance-covariance structures. [2]  FA, factor-analytic variance-covariance structures. [3]  UN, unstruc-
tured variance-covariance structures.
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ferent locations were from 0.65 t/ha for location L_6 
to 2.37 t/ha for L_5. These results were compatible with 
the UN structure. For the FA model with more than four 
components the cultivars response to environments did 
not change much (Table 3, figure not presented).

Discussion

The adaptive yield response of winter wheat cultivars 
on environments modeled by the CS structure suggests 
a lack of interaction. In Fig. 1 we observed almost par-
allel lines of cultivars reaction on different environ-
ments, so the yield diversity of the tested cultivars was 
the same across environments according to the model. 
The results are far away from the reality. It is very rare 
that all environments have equal discrimination power 
for cultivars. In reality there are always differences in 
cultivar yield reactions to different environments. Thus, 
evaluation of cultivar adaptability to environments using 
the CS model is incomplete and may lead to erroneous 
conclusions. Especially, the ranking for cultivars and 
cultivars within the locations from the CS structure was 
not consistent with those from other variance-covariance 
structures. Other empirical studies also suggest poor 
performance of the models with CS structure (So & 
Edwards, 2009; Hu & Spilke, 2011).

yield than others. The modeled yields of cvs. 'Mulan' 
and 'Smaragd' were above the mean in all environments 
but, in most cases, they were not the highest. The mod-
eled ranges of cultivars yields in different locations were 
from 0.69 t/ha for L6 to 2.44 t/ha or L5. There are envi-
ronments where the range of grain yield values is three 
times greater than in other tested environments (Fig. 1b).

Fig. 2 presents reaction of cultivars to the tested 
environments modeled with an FA structure for the first 
four components. Particularly for the model with FA1 
we observe that some environments are characterized 
by a very small difference in cultivars yield. The range 
of yield values is around only 0.20 t/ha, e.g. for loca-
tion L10 their yield difference was 0.16 t/ha. For this 
model in environment L5 cultivars yield difference was 
equal to 2.30 t/ha, minimum yield of 5.50 t/ha, and the 
maximum one –7.84 t/ha (Table 3). In most locations 
the cultivars yields on average differed by about 0.40 
t/ha. For FA1 structure, 'Mulan' and 'Smaragd' cultivars 
had yield below environmental mean in some locations. 
It might suggest that these cultivars were characterized 
by narrow adaptation. 

With increasing number of components for the FA 
models, the cultivars adaptive yield response patterns 
across eighteen environments become slightly more 
similar to the results of the model with UN structure. 
For FA4, the modeled range of cultivar yields in dif-

Figure 2. The winter wheat cultivars adaptive yield response patterns across eighteen environments modeled with FA variance-
covariance structure: a) FA1, b) FA2, c) FA3, d) FA4. Environmental means, dashed line; 'Mulan' cultivar, blue line; 'Smaragd' 
cultivar, red line.
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model with compound symmetry structure, it does not 
limit the inference on cultivars adaptive patterns. The 
factor-analytic structure is also a good tool to describe 
the cultivars’ yield reaction to the environments. In our 
case, for the winter wheat datasets coming from the 
Polish Post-registration Variety Testing System, the rea-
sonably low optimal number of components is 4 but 
each dataset requires separate determination of the 
optimal number of the factor-analytic components.
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