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ABSTRACT 
Seismic modeling is an important step in the process used for imaging Earth subsurface. Current applications require accurate models 
associated with solutions of the wave propagation equation in real media. Unfortunately, it is common not to find in the technical 
literature deep discussions on the impact of specific details associated with the physical modeling of some crucial ingredients of 
the process, such as seismic source term and boundary conditions. In this paper, we discuss some issues related to the modeling 
of wave propagation in visco-acoustic media using finite differences. We focus our attention on two major elements of the modeling 
problem that are associated to the source term and the boundary conditions. We show that the source term can be modeled using 
a scale parameter that controls the spread of energy and shows that this parameter is a function of frequency and position of the 
source. As to boundary conditions, we show that Perfectly Matched Layer (PML) parameters are also frequency dependent. For both 
cases, seismic source scale parameter and PML model parameters we provide values and functions that optimize the performance 
of the approach for problems where visco-acoustic wave propagation is required. Frequency domain Full Waveform Inversion (FWI), 
or Reverse Time Migration (RTM) processes that depend fundamentally on the appropriate modeling of the wave-field are potential 
fields of application of these results.
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RESUMEN
El modelamiento sísmico es un ingrediente importante en el proceso 
de construcción de imágenes del subsuelo.  Aplicaciones actuales 
requieren soluciones precisas asociadas con la solución de la 
propagación de ondas en medios realistas. Desafortunadamente no 
es común encontrar en la literatura técnica, discusiones y análisis 
suficientemente profundas asociadas al impacto detalles específicos 
asociados con el modelamiento físico de ingredientes claves para 
este proceso como lo son el término de la fuente y las condiciones 
de frontera. En este trabajo se discuten algunos de esos detalles 
relacionados con el modelamiento de la propagación de ondas en un 
medio visco-acústico usando diferencias finitas. Nuestra atención se 
enfoca en dos aspectos importantes del modelamiento asociados 
con el término de la fuente y las condiciones de frontera. Se muestra 

que el término de la fuente puede ser modelado a través del uso de 
parámetros de escala que controlan la distribución de energía y se 
muestra que este parámetro es una función de la frecuencia y de la 
posición de la fuente. Para las condiciones de frontera se muestra 
que los parámetros del modelo de fronteras de tipo PML (Perfectly 
Matched Layer) también son dependientes de la frecuencia. Tanto 
para el parámetro de escala de la fuente como los parámetros que 
modelan la PML se provee valores y funciones que optimizan el 
rendimiento de dichas aproximaciones para problemas donde se 
requiere el modelamiento de la propagación de ondas en medios 
visco-acústicos. Inversión de onda completa (FWI) o Migración 
Reversa en Tiempo (RTM) son escenarios que dependen fuertemente 
del modelamiento apropiado del campo de onda y son campos 
potenciales de aplicación para los resultados que se presentan.
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Modeling wave propagation in real sub-surface is a complex 
task: the detailed propagation physics is complicated and several 
simplifying approximations are required for computing the solution 
for many practical situations. For example, it is usual to ignore the 
effects of attenuation in wave propagation; however in real life, the 
earth exhibits elastic and viscous behavior, properties that must 
be considered when one is interested in real and detailed physical 
processes associated, for example, with wave propagation in the 
subsurface for seismic exploration. 

Ignoring any viscous or elastic behavior in the medium leads to 
the so-called acoustic wave propagation. Although unrealistic, 
in general, it is the simplest (but often practical) modeling 
approximation. Together with the assumption of isotropy, acoustic 
wave propagation has been widely used in different situations in 
seismic exploration [1]-[4]. However, to obtain accurate data on 
the physical properties of the sub-surface in realistic situations, 
the acoustic wave approximation does not provide any further 
information and it becomes necessary to do a better modeling of 
the propagation of waves.  In particular, the realistic modeling of 
wave propagation is an important step in earth subsurface imaging 
process.

A step forward in the direction of doing realistic modeling of wave 
propagation is to consider the effects of viscosity. The visco-acoustic 
media can be defined as a medium without cross propagation, 
although it exhibits attenuation in the amplitude of the longitudinal 
wave. This medium presents two phenomena, dissipation and 
dispersion. The first one is produced by energy absorption such that 
the amplitude of the wave is reduced especially at high frequencies, 
while the second is induced by the change in the refractive properties 
of the media, where the wave velocity depends on the frequency [5]. 

To describe the attenuation of energy in the seismic wave front 
[6] proposed a model based on linear solid material rheology and 
memory variables. Later, [7] followed the same modeling approach, 
using, however, only one relaxation mechanism. They show how 
the method works to compensate for attenuation in least-squares 
reverse time migration. [8] used a visco-acoustic wave equation 
to compensate for the energy decrease of wave propagation in a 
realistic media, using an extrapolator based on the propagator of the 
wave equation in the forward and backward direction. Visco-acoustic 
modeling has been implemented also in 3D high computing demand 
simulations [9],[10] and has also been used in the development of 
specific geometrical configurations (TTI) [11], exhibiting accurate 
descriptions of the wave propagation in the media.

In general, visco-acoustic phenomena are modeled explicitly as 
frequency-dependent functions. The solution of the visco-acoustic 

wave equation in frequency domain must be performed numerically, 
and because of its simplicity and computational efficiency, the usual 
approach to solve it is to use finite difference methods. Nevertheless, 
the propagation problem must take in to account, besides the 
complex nature of the differential equation, crucial ingredients such 
as the source term and boundary conditions [12],[13]. 

In frequency domain, spatial resolution changes every time frequency 
changes, which complicates the characterization of different parts 
of the model such as the size of the zones of boundary and the size 
of the seismic source. All of the foregoing makes solutions of the 
visco-acoustic wave equation in frequency domain a problem far 
from trivial. In particular, since at a given frequency the structure of 
the grid should adapt to the scales associated with the frequency, 
the energy injection in the media could be radiated at different scales 
if not considering these effects carefully. The distribution of such 
energy among grid cells close to the source is a topic that is poorly 
discussed in the literature, especially the discretization of the source, 
which is commonly modeled as a Dirac delta function to describe 
its spatial part, [14]-[16]. This turns to be key in the solution of the 
numerical forward problem. 

The same occurs with boundary conditions: Sponge absorbing 
boundary condition (ABS) Convolution Perfectly-matched layer 
(CPML), Perfectly-matched layer (PML), all having parameters that 
must be tuned, as can be observed in [18],[20] and [21].

When solving the problem of wave propagation in time domain, 
these are probably easy to fix, but in frequency domain, they are 
problematic, once again because the size of the region where 
absorbing boundaries work change with frequency and with the way 
attenuation is being modeled at the boundary. For example, in [17], 
these parameters are chosen based on trial and error. How to deal 
with these parameters? We present in this paper a study of how to 
deal with PML boundary conditions in frequency domain, showing in 
particular  how to model, implement and control the behavior of the 
seismic source, and how to estimate the values of the parameters 
that control the behavior of this model.  Furthermore, we show 
practical functions that allows the determination of the parameters 
required to model the performance of the PML boundary conditions. 

For approaching this analysis, we used the following structure: 
First, in section 2 we present the basic theoretical considerations 
relative to our problem, presenting the basic equation used to 
model visco-acoustic wave propagation. Then, we present some 
considerations on the source term for seismic wave propagation, 
as well as considerations associated with the modeling of PML 
boundary conditions. Then, in section 3, we discuss the results 
obtained from the modeling of the source term and PML; finally, in 
section 4 we present our conclusions. 

INTRODUCTION1

2. TheOReTICal fRame
THE SOURCE

We consider the propagation of waves in 2D for the case of a visco-
acoustic media. For this purpose, the equation for wave propagation 
in our visco-acoustic medium can be expressed as [16] 
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where P is the pressure field, K is the acoustic bulk modulus, ξ is 
the damping function [6] and b is the inverse of the medium density. 

There are several choices on how to model attenuation. For example, 
using the models described in [5], which defines the wavenumber 
as k(ω)=ω/c(ω) =ω/ν(ω) -iκ(ω), where c(ω) is the complex velocity, 
ν(ω) the phase velocity and κ(ω) the attenuation wavenumber, one 
can rewrite things in terms of ξ like 

Where γ is the rate deformation function related to the viscosity of 
the medium that is often related to the Q attenuation factor, which 
in the simplest case (Kolsky model, see e.g. [5]) is  γ/ω=1/2Q.

In Eq (1), the source term is

such that F(ω,x) is a body force. The source in these models is 
generally an impulse at point xs=(xs,zs). The Ricker wavelet is a 
possibility to represent a seismic source, such that ∇⋅F(ω,x)=R(ω)
δ(x-xs) where R(ω) is the Ricker wavelet given by

where δ(x-xs) is a Dirac delta function, but in the discretized domain 
can be represented with the Kronecker delta. The R0 is the maximum 
amplitude of the ricker wavelet and fs is the principal frequency 
of the source. Now, assuming that the divergence of the force is 
∇⋅F(ω,x)=R(ω)δ(x-xs), the force could be expressed as

Thus, and using Eq. (1), we can write

Here, one can safely discard the second term to the right. When 
the velocity, density and attenuation are not constant, we propose 
for the source

Where (is,js) is a point in the grid where the source is placed and δi,is  
δj,js  can be approximated as
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This approximation comes from the Dirac delta function as the limit 
(in the sense of distributions) of the sequence of zero-centered 
normal distributions δσ(x)=1/(√πσ)exp-(x/σ)2 as →0 . The factor σ must 
have a relationship with the grid spacing, i.e. σx=σz∼Δ . 

The discretization of the Dirac delta is used because of the changes 
in grid spacing, which according to the condition Δ=λ/Gr=cmin/(fGr) 
depends on the frequency. It is important to make sure that the 
energy source is distributed evenly within the space to avoid losses 
by locating the entire amplitude at a point that cannot be located 
unequivocally in all grids. Therefore, it must meet the property of 
the Dirac Delta in the discrete case. 

On such basis, it may be stated that the solution, is well defined 
in the discrete domain [14],[15]. Thus, we can define σ=σx=σz as, 
using Equation 7:

where s is a parameter that must be tuned to make sure that 
condition (9) is fulfilled, and at the end the parameter used to control 
the energy distribution of the source in the model. 

PERFECTLY-MATCHED LAYER (PML) ABSORBING BOUNDARY
CONDITIONS
 

Another important ingredient for the solution of Equation 1 is the 
boundary condition. In this work, we will study the use of perfectly-
matched absorbing boundary conditions (PML). The absorbing 
boundary condition is a virtual boundary, very simple to use, as our 
media is dissipative in principle. 

The PML method consists on using two damping functions to 
suppress the value of the pressure field in the boundaries at the 
edges of the square computational domain, γx (x) and γz(z) and a 
non-physical pressure wavefield Px and Pz such that P=Px+Pz. This 
technique is similar to a sponge-like absorbing boundary condition 
[18], but attenuation occurs at each dimension independently. 
The effect of these absorbing boundary conditions is that waves 
propagate in the medium, resembling the behavior of waves that 
propagate in an infinite medium (no reflections are produced at the 
borders of the computational domain), such that no need for any 
particular boundary conditions are required to specify the structure 
of the solution. 

We simply expanded the computational domain ℧ with size 
characterized by Nx×Nz to the expanded domain ∂℧ with size Nxe×Nze 
where Nxe=Nx+2nxpml and Nze=Nz+2nzpml, where nxpml and nxpml are the 
number of extra points for the boundary condition (see Figure 1). 
In the expanded region, the damping functions have the form [17] 
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3. ReSUlTS
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Figure 1. PML in Ω and boundary workspace ∂Ω for the numerical solution, in x and z coordinates

Where γ(ω,x,Lz) is the rate deformation function related to the 
viscosity of the medium introduced a few equations ago, which we 
will assume as a constant parameter.  Note that the functions γzpml 
(ω,x) and γxpml (ω,x) are modified deformation functions that apply 
only in the region of the extended domain.  However, the idea is that 
these deformation functions should be coupled with the deformation 
functions (and, therefore, to the attenuation) in the original field ℧. 
Here, m0 is a parameter that should depend on the frequency and 
takes a value that makes the amplitude of the wave at the boundary 
of the domain to fall below a given threshold. 

As to the corners, which generate well-known edge problems [17], 
we use the conventional treatment of averaging the boundary 
conditions at x and z [22].

Once again, for a given form of the damping function (ω,x,Lz) , the 
parameter m0 controls the behavior of the PML. We show how this 
parameter depends on frequency and find a way to fix his value 
in our implementation of the visco-acoustic modeler. It should be 
noted that the behavior of the PML also depends on the value of 
the number of pixels one considers to extend the domain, Nxe,Nze. If 
these numbers are too small, waves going through the PML region 
will not attenuate completely, thus producing artificial reflections 
on the computational domain. Furthermore, if one uses Nxe,Nze that 
are too large, the attenuation will take place, but there will be a 
waste of computational resources trying to solve the problem of 
wave propagation in regions that are of no interest. It would be good 
to then find a way to identify the smaller values of Nxe,Nze to make 
sure that the behavior of the PML is the right one.

Now, we discuss the result of our exploration. First, we show how we 
use Equation 9 to study the effects of our model for implementing 
the seismic source and controlling its behavior through the use of 
parameter s. Then, we show how we control the behavior of the 
PML boundary through parameter m0.

Specific details on how we solve the differential equation using a 
mixed grid are out of the scope of this work, but r the reader may 
refer to [16] and [19] for more details on its implementation.

THE SOURCE TERM

To get a correct value for s, we calculate Eq. (9) for different 
frequency values, assuming the position of the source is xs=1Km 
and zs=1Km in a field of area of 2Km x 2Km, with c=2100 m/s. The 
frequencies we used are f=1,5,15,30,50Hz. We do not compute it for 
higher frequencies as the Δ in these cases is smaller, approaching 
the continuous form of the Dirac delta. With these values, we reach 
Figure 2.
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Figure 2. (a) Integral values for discrete Dirac delta calculate for equation 9 for different frequency values, assuming the 
position of the source is Xs = 1 Km  and Zs = 1 Km; (b) Placed at Xs = 1 Km and Zs = 0.015 Km

As we can see in Figure 2a, the values of I(s) remain close to 1 for 
s>0.9 , except for the solution at f=1Hz. However, in order to not being 
too restrictive, we notice that for scales in the range s=[0.65,1.6] , 
I(s) keeps constrained in the range [0.95,1.05]. It could be argued 
that it is enough to ensure the conservation of properties of the 
delta function around the source. For s (s<0.95) smaller value, the 
discretization affects the estimation of the spread of the source 
significantly. 

In Figure 2b, we do the same calculation but with the source placed 
at xs=1Km and zs=15m. We can see in the figure that now the region 
of the interval of values of s that keep I(s,f)=[0.95,1.05] are reduced 
to the interval s=[0.6,0.75] . Note how the spread on I(s,f) increases, 
and how the value of I(s,f) is larger for smaller frequencies. 

This experiment shows that the appropriated value of s shall depend 
on the frequency and the position of the source. Then, looking for 
a way to find evidence to argue the selection of the value of s, we 
computed Eq. 9 for different scale factors as a function of frequency. 

Figure 3 shows the same situation as that of the previous 
figure, an area of 2Km x 2Km, with c=2100 m/s. The Figure 3a 
shows the result at position xs=1Km and zs=1Km. The Figure 3b 
shows the result at xs=1Km and zs=15m. The scale factors are 
s=0. 65,0.75,0.85,1.0,1.5,2.0 for frequencies in the range f=[1.0,50.0] Hz. 

We can see in Figure 3 that the values of I(s,f) remain close to 1 for 
the scale factor below 1. We can also note that for low frequencies, 
the integral has a value close to 1 for scale factors s<1, for scaling 
factors s=[1,2] the integral has values distant to 1. For scale factor 
s=[0.65,0.75] , I(s,f) fluctuates around 1, while for values in the range 
s=[0.75,1], we see an asymptotic convergence of I(s,f) to 1, for larger 
values of the frequencies. This behavior is much more desired as in 
a multiscale approach, this will ensure  better performance of the 
source for larger frequencies. 

It can be, therefore, assumed that the correct value for the scale 
factor, for our tests with sources located in the center of the domain 
or at the top, should be s=[0.75,1.0] 
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Integral value vs Frequency

Frequency [Hz]
(b)

In
te

gr
al

 D
el

ta
 d

ira
c 

(∑
δ σ
(x

-x
S)
Δ2 )

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35 40 45

Integral value vs Frequency

Frequency [Hz]
(a)

In
te

gr
al

 D
el

ta
 d

ira
c 

(∑
δ σ
(x

-x
S)
Δ2 )

0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06

0 5 10 15 20 25 30 35 40 45

= 0.65s = 0.75s = 0.85s

= 1.0 s = 1.2s = 1.5 s = 2.0s

Figure 3. (a) Integral values for discrete Dirac delta calculate for Eq. 9 for different 
scale factor, assuming the position of the source is x s = 1 Km and z s = 1 Km;  
(b) Placed at x s = 1 Km and z s = 0.015 Km.

THE PML

Now, we focus our attention on the properties of the PML and the 
selection of the parameters m0 and Nxe,Nze that control its behavior. 

We compute the value of the P-wave amplitude of waves propagating 
in a 2Km×2Km  field. The media has a constant velocity of 2100m/s. 
Our Ricker source frequency is 30Hz. The constant quality factor is 
Q=50, using the damping function of Kolsky (see [5]). The solution 
uses a cell size ∆=λ/Gr  , where Gr = 7, scale factor s=0. 75. The position 
of the source is x0 = 1 Km and z0 = 1 Km. We conducted several tests 
on the dispersion and stability of the solution. It was found that for 
the scales and frequencies of the experiments presented herein, 
using Gr = 7 offers good solutions of the equation in terms of the 
low dispersion. In addition, we tested several frequencies, yielding 
spectra that behave as expected, amplitude values whose highest 
value is in the main frequency (see [19]).

Figure 4 shows the real, imaginary parts, 
and modulus of field P-wave with PML (m0 

= f) and Figure 5 shows the real, imaginary 
part, and modulus of field P-wave without 
PML (m0 = 0) in a medium with constant 
velocity, attenuation and density for 15 Hz. 

The expected result is a symmetrical and 
spherical field (in agreement with the 
result shown in Figure 4). However, in 
Figure 5 the absence of PML presents a 
perturbation that is not in agreement with 
the physical setup of the problem. There 
are some ripples observed in the figure, 
which are associated to interference of the 
incident and reflected waves. These waves 
are reflected at the borders when no PML is 
acting in the solution. In this figure, we can 
see the importance of the PML so that the 
results are consistent with the physics of 
the medium we model (an open boundary 
problem). 

In [17], m0 is chosen based on trial and error; 
in this work, we propose  defining m0, nxpml 
and nzpml as a function of frequency. In Figure 
6, we show the modulus of field P-wave (m0 

=3.0) for 3Hz. The figure at the top shows 
the full field, the figure at the middle shows 
an horizontal cut at z=1000m, and the figure 
at the bottom shows an horizontal cut at 
z=500m. Figure 7 shows the same, with 
m0=3.0 for waves of frequency 10Hz. 

In this case, we have used the same value 
of m0=3.0 at different frequencies. Initially, 
for frequencies close to 3Hz, it seems that 
this choice of m0 was adequate; however, 
after several experiments, it was noticed 
that the more we increased the frequency, 
the PML performance started to deteriorate. 
This is because the term m0 controls the 
way in which the functions γpml attenuate 
the amplitude of the wave; the larger the 
frequency, the faster the attenuating term 

falls, so m0 must counteract this behavior at high frequencies. 
Therefore, m0 is frequency dependent.
 
We have noticed for low frequencies that m0=f is not enough to 
achieve  good response. Figure 8 shows a horizontal cut on the 
modulus of field P-wave at z=100m for a numerical solution using 
m0=f (solid line) and m0 = ω =2πf (dashed line) obtained with the 
9-point schemes. For f=3,5,10,30Hz, it is found that the best choice 
for m0 is m0 = 2πf, especially at low frequencies. This choice makes 
sense considering the way attenuation is modeled in the PML 
according to Equations 10 and 11, where we see that the explicit 
frequency dependence of the damping function is cancelled.
 
In addition, nxpml and nzpml are also frequency dependent, which for low 
frequencies (long wavelengths) should have large values compared 
to the values of Nx and Nz such that the amplitude of the pressure 
field is attenuated correctly. On the other hand, for high frequencies 
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Figure 4. Field P-wave with m0=f Figure 5. Field P-wave with m0=0 
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Figure 6. Modulus P-wave with m0=3.0 and f=3Hz. The 
first figure shows the modulus P-wave for all (x,z) and the 
following figures show the modulus P-wave for a fixed z.

Figure 7. Modulus P-wave with m0=3.0 and f=10Hz. The 
first figure shows the modulus P-wave for all (x,z) and the 
following figures show the modulus P-wave for a fixed z.
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Figure 8. Field P-wave with m0=f, ω for f=3,5,10,30 Hz

(short wavelengths), only a few points nxpml and nzpml are needed to 
damp the pressure field in the region of the PML. After a careful 
study whereby we systematically varied the frequency and the size 
of the PML, it was found that a convenient approximation for nxpml 
and nzpml as a function of frequency is 

With c1 = -1.24×10-6 , c2=3.37×10-4 , c3= -3.07×10-2 and c4=1.07. 
We found that using this approximation, the behavior of the PML 
produces the correct attenuation of the wavefield on the extended 
domain, in a way that no reflections or spurious information 
appear in the solution coming from the boundaries. What is most 

(14)
= ( ) = ( )

( ) = 1
3 + 2

2 + 3 + 4

interesting in this approximation is that it provides an automatic 
way to determine the size of the PML region as a function of the 
frequency (as one would expect) without the need to find a value 
through trial and error tests.

CONClUSIONS
In this work, we studied the propagation of waves in a visco-acoustic 
medium through explicit modeling of the attenuation, using damping 
functions that allow for dispersion depending on the quality factor. 
We have implemented a finite difference scheme to solve the 
problem in frequency domain. Special care was taken regarding the 
numerical dispersion issues of the modeling, for which we used a 
mixed grid technique and optimal setup of the intercalated grids to 
minimize numeric dispersion. 
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We focused our attention on two particular issues that are loosely 
discussed in the literature when modeling seismic wave propagation. 
The first one relates to the discreteness of the source function of 
the seismic source. The second point we discussed is the selection 
of the parameters that control the behavior of the PML.

Regarding the source, we show that the condition imposed to fix 
its behavior is given by the normalization condition of the Dirac 
delta pulse, and it is considered in the implementation presented in 
Equation 9, where the behavior of the source term is then controlled 
through a free parameter s that controls the spread of the source 
around neighboring cells. 

We have shown that parameter s depends non-trivially on the 
frequency and the position of the source in the field. The dependence 
on the position of the source is mostly due to the effect of the 
boundary conditions of the problem; concerning the case of seismic 
exploration, it should represent a field of air or water boundary in 
one of the borders. It was  found, in particular, that if the source 
is placed deep down from the border, where the upper boundary 

effects are neglectable, the parameter s is almost non-dependent 
on the frequency of the waves. A careful study of the behavior of the 
model source I(s,f) shows that appropriated values of parameter s 
that lead to an acceptable normalized behavior of the source term 
in the range of s=[0.75,1]. 

When we explored the implementation of the PML, it was noticed 
that this model ingredient depends on three parameters. The 
attenuation frequency m0 , and the scale of the PML zone n_xpml 
and nzpml. We found that, contrary to what is done in other works (see 
for example [17]), it is not necessary to test by trial and error the 
values of m0 that produce the best results for the performance of 
the PML. We show that m0 =2πf is a very much reasonable choice 
that also provides the best results out of the PML. 

For the size of the PML, after a careful set of tests,  a set of relations 
between nxpml and nzpml and the frequency of the waves was found. 
This relation facilitates the setup of modeling and inversion 
experiments intended to achieve optimal process performance.


