
to the population´s growing concerns related to healthy 
aspects of food, there is also a growing interest taken 
in the origin or provenance of products as a source of 
information and significance in the sale of products 
and brands (Brugarolas et al., 2010). Without a doubt, 
one of the most successful formulas that agri-food 
operators have when it comes to competing in increas-
ingly global markets, consists of emphasising all those 
aspects related to origin or provenance of products 
through different figures of protection. These figures 
are the Protected Designations of Origin (PDOs) and 
the Protected Geographical Indications (PGIs), both 

RESEARCH ARTICLE OPEN ACCESS

Spanish Journal of Agricultural Research
14(3), e0104, 12 pages (2016)

eISSN: 2171-9292
http://dx.doi.org/10.5424/sjar/2016143-9433

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)

Changes in productivity in the virgin olive oil sector:  
An application to Protected Designations of Origin in Spain

Juan Aparicio, Juan F. Monge, Lidia Ortiz and Jesus T. Pastor
University Miguel Hernandez of Elche (UMH). Center of Operations Research (CIO). Avda. de la universidad, s/n, 03202 Elche (Alicante), Spain

Abstract
Virgin olive oil is a key ingredient of the renowned Mediterranean diet. In this context, the main objective of this study was to 

estimate and decompose productivity change for Protected Designations of Origin (PDOs) in the Spanish virgin olive oil sector for 
the period 2008-2013. To this end, we introduced a Luenberger-type indicator based on a specific weighted additive model in Data 
Envelopment Analysis (DEA), which, in contrast to previous studies, captured all sources of inefficiency and avoided infeasibilities. 
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In Spain, where foreign competition is weak, the most productive PDOs were those with an important number of oil mills and 
packaging/marketing companies such as “Montes de Toledo” and “Siurana”; productivity changes were mainly the consequence of 
downwards and upwards of the frontier of the technology over time. These changes were explained, to a certain extent, by the 
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Introduction

Olive oil in general, and particularly virgin and extra 
virgin olive oil, is the cornerstone of the Mediterra-
nean diet, for both their biological and therapeutic 
value. It has been demonstrated that this diet reduces 
death rates due to heart disease, the incidence of dia-
betes, obesity and cancer. To a large degree this poten-
tial benefit is due to the presence of olive oil and its 
chemical composition which is rich in oleic acid, 
polyphenols, sterols and tocopherols that set it apart 
from other oils (Moreno & Lezcano, 2015). In addition 
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Regarding literature related to the Spanish olive oil 
industry in general, it is possible to find some recent 
contributions. Amores & Contreras (2009) proposed 
an allocation system for subsidies which takes the 
Agenda 2000 criteria into account through their assign-
ment according to Farm Efficiency which is calculated 
by decomposing overall efficiency scores, by means of 
internalizing the externalities of agricultural activity. 
In particular, this paper analyzes the Type Efficiency 
of the Andalusian olive-growing sector by applying the 
proposed indexes over a sample of 3000 real farms. 
Dios-Palomares & Martínez-Paz (2011) estimated the 
level of technical efficiency in the Andalusian olive oil 
industry from a multi-output perspective, and examined 
olive oil production in quantitative and qualitative 
terms. Their study also covers the environmental impact 
of the production process. Dios-Palomares et al. (2013) 
studied the level of technical efficiency in the Andalu-
sian oil industry from a multi-output, non-parametric 
approach by conducting the DEA methodology with 
non-radial distance functions, as well as implementing 
environmental and non-discretionary variables. Fi-
nally, Alcaide-López-de-Pablo et al. (2014) studied 
technical efficiency of the olive oil sector in Andalusia 
(Spain), using a new methodology based on Multi-
Criteria Linear Programming. The analysis is developed 
at global, input and input-consumption sections levels, 
defining the extent of satisfaction achieved at all these 
levels for each company, in accordance with their own 
preferences. 

The main objective of this study was to estimate and 
decompose productivity change for PDOs in the Span-
ish virgin olive oil sector. To this end, we introduced a 
Luenberger-type indicator based on a specific weight-
ed additive model in DEA, which, in contrast to previ-
ous studies, captures all sources of inefficiency and 
avoids infeasibilities. 

Material and methods

Data envelopment analysis, distance functions 
and Pareto-Koopmans efficiency

In this paper, we estimated the corresponding tech-
nology of each period of time resorting to DEA. DEA 
is a non-parametric technique based on Mathematical 
Programming that permits estimating the underlying 
technology from a dataset of units, usually called 
DMUs (Decision Making Units), and the distance 
(technical inefficiency) from these units to the frontier 
of the estimated production possibility set. In contrast 
to other alternatives, like Stochastic Frontier Analysis, 
DEA does not need to specify a particular production 

focused on the benefits offered by these geographical 
indicators, and on the importance of commitment that 
authorities, whether regional, national, or European are 
willing to undertake in these matters. 

In 2013, Spain has, without including the wine sec-
tor, 176 PDOs in food products, the most important of 
which are virgin olive oil (29). The latter has experi-
enced significant growth in the last decade, by reaching 
the current 29 from 19, and which have a total number 
of 761 companies registered, between oil mills, packag-
ing firms and trading companies, a registered surface 
area of around 700,000 hectares and a total production 
of around 133,000 tons. In total, the volume of virgin 
olive oil traded is almost 26,000 tons, which represents 
a market value of 108 million euros (MAGRAMA, 
2014).

It is not usual to come across studies in our country 
where PDO or PGI efficiency or productivity is ana-
lyzed and even less so in the olive oil sector. In this 
regard, we would like to highlight, first of all, the 
work carried out by Vidal et al. (2014) where the 
technical efficiency of virgin olive oil PDOs in the 
2008-2010 triennium is analyzed, using Data Envelop-
ment Analysis (DEA) models, particularly the BAM 
(Bounded Adjusted Measure) of Cooper et al. (2011b), 
which allows all possible sources of technical inef-
ficiency to be considered. On the other hand, and in 
the specific area of productivity, Vidal et al. (2015) 
studied changes in the productivity of these PDOs in 
the 2008-2013 period by means of global frontiers for 
each pair of periods analyzed (using the Biennial 
Malmquist index of Pastor et al., 2011, and a radial 
model with output orientation). However, it must be 
borne in mind that the aggregation implies loss of 
information, which is why our work aims to analyze 
the PDOs of virgin olive oil in the 2008-2013 six year 
period, from the perspective of evolution in productiv-
ity, thereby offering an alternative to the methodol-
ogy used in Vidal et al. (2015) and therefore not 
having to resort to the estimation of common frontiers 
for each pair of years analyzed. Common frontiers 
help to avoid problems of unfeasibility but with the 
methodology proposed here, this problem will be 
solved any way. Furthermore, GEMs (Global Effi-
ciency Measures) are going to be used, in particular 
a weighted additive model, considering inefficiencies 
in inputs and outputs instead of using an oriented 
radial model, as done by Vidal et al. (2015). Moreo-
ver, given the nature of the additive model, and as a 
novel element, a Luenberger indicator is defined in-
stead of a Malmquist, measuring the change in pro-
ductivity that is decomposed not into two but three 
sources of change: change in efficiency, change in 
technology and change in scale.
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tions is that they characterize the belonging or not 
belonging to the technology by means of a sign, as 
happens with the directional distance function, or by 
being greater or lesser than one, as in the case of the 
Shephard distance functions. This feature easily al-
lowed to measure productivity change over time; even 
in the case of cross-period evaluation when a unit 
observed in period t+1 under assessment is outside 
the technology corresponding to period t or vice-
versa.

The well-known distance functions in the literature 
as the input and output Shephard distance functions 
(Shephard, 1953) and the directional distance function 
(Chambers et al., 1998), which are used to build the 
Malmquist index and the Luenberger indicator for 
measuring productivity change, respectively, neglected 
slacks since none of them was based on the notion of 
Pareto-Koopmans efficiency. In order to avoid this 
problem in DEA, where the existence of a non-smooth 
boundary of the production possibility set usually gen-
erates sources of inefficiency associated with input and 
output slacks, we introduced and applied in this paper 
a novel distance function that combines the weighted 
additive model in DEA with the interesting properties 
of a distance function.

The weighted additive distance function

Working in the usual DEA framework, let us con-
sider n decision making units (DMUs) to be evaluated. 
DMUj consumes x j = (x1 j ,...,xmj )ŒR+

m amounts of inputs 
for the production of y j = ( y1 j ,..., ysj )ŒR+

s amounts of 
outputs. The relative inefficiency of each DMU in the 
sample is assessed with reference to the so-called pro-
duction possibility set, which can be non-parametrical-
ly constructed from the observations by assuming 
certain postulates (see Banker et al., 1984). To imple-
ment our approach, we will hereafter assume CRS 
(Constant Returns to Scale). This assumption, when 
productivity change is the focus, is supported for ex-
ample by Grifel-Tatjé & Lovell (1995) and Ray & Desli 
(1997). In this way, the production possibility set in 
DEA, T, can then be mathematically characterized as 
follows: 

T = (x, y)ŒR+
m ¥ R+

s :x ≥ l j x j
j=1

n

Â , y £ l j y j
j=1

n

Â ,l j ≥ 0, j = 1,...,n

�
�
�

�
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.  [1]

Additionally, we will denote hereafter by means of 
a superscript the period of time considered.

Next, we introduced the weighted additive distance 
function (WADF) in a DEA context for estimating the 
‘distance’ from unit xkh , ykh( )  observed in period h (h=t, 
t+1) to the frontier of technology of period l (l=t, t+1).

{{

function and deals with multiple outputs in an easy way 
(Cooper et al., 2007).

The measurement of technical inefficiency in the 
context of multiple-outputs was based on a few meas-
ures, fundamentally the Shephard input and output 
distance function and the directional distance function, 
in the case of the parametric literature. For the non-
parametric literature, the first years of life of DEA 
witnessed the introduction of many different technical 
efficiency measures, from the seminal paper of 
Charnes et al. (1978), such as the Russell input and 
output measures of technical efficiency and their 
graph extension; the Russell Graph Measure of tech-
nical efficiency (see Färe et al., 1985), the weighted 
additive model (Lovell & Pastor, 1995), the Range 
Adjusted Measure (Cooper et al., 1999) and the En-
hanced Russell Graph (Pastor et al., 1999) or Slacks-
Based Measure (Tone, 2001), to name but a few. One 
of the reasons for the introduction of many different 
technical efficiency measures in DEA was the piece-
wise linear nature of the frontier of the technology. 
In this context, an important notion was Pareto-effi-
ciency (Koopmans, 1951); indeed, it has been a recur-
ring topic in DEA. In particular, the additive model 
by Charnes et al. (1985) was the first graph linear 
model that ensured that the evaluated DMU was com-
pared exclusively with respect to the set of Pareto-
efficient points in the input-output space. From this 
model, DEA researchers have introduced some 
modifications of the original additive model weight-
ing the slacks that appear in the objective function 
(see, for example, Lovell & Pastor, 1995; Cooper et 
al., 1999, 2011b; Pastor et al., 2013) in order to meas-
ure technical inefficiency using the strongly efficient 
frontier as a reference, or, what is the same thing, the 
set of non-dominated points of the corresponding 
technology. This existence of a different battery of 
tools for estimating technical inefficiency in the 
parametric and non-parametric world revealed the 
importance in DEA in measuring inefficiency with 
respect to the Pareto-efficient frontier.

The focus of this paper was, in particular, to esti-
mate productivity change over time and decompose 
this value into technical change, efficiency change 
and scale efficiency change. Most of the classical 
results and applications in microeconomics related 
to the measurement of productivity change over time 
from panel data were based on the notion of distance 
function. A distance function behaves as a technical 
inefficiency measure when an observation belonging 
to the corresponding technology is evaluated, with a 
meaning of ‘distance’ from the assessed interior point 
to the boundary of the production possibility set. 
Moreover, another interesting feature of these func-
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Dl xkh , ykh( ) = max wi−sik−
i=1

m

∑ + wr+srk+
r=1

s

∑

s.t. λ jk xijl
j=1

n

∑ + sik− ≤ xikh , i = 1,...,m [2.1]

− λ jk yrjl
j=1

n

∑ + srk+ ≤ − yrkh , r = 1,...,s [2.2]

sik− ≤ Mα k , i = 1,...,m [2.3]

sik− ≥ M α k −1( ), i = 1,...,m [2.4]

srk+ ≤ Mα k , r = 1,...,s [2.5]

srk+ ≥ M α k −1( ), r = 1,...,s [2.6]

α k ∈ 0,1{ }, [2.7]

λ jk ≥ 0, j = 1,...,n [2.8]

 [2]

where M is a (sufficiently) large positive number and 
w- = w1- ,...,wm-( ) ŒR++

m  and w+ = w1+ ,...,ws+( ) ŒR++
s  are 

weights representing the relative importance of unit 
inputs and unit outputs. Different paths could be fol-
lowed in choosing such weights. One possibility se-
lected them based on the observations. In this way, it 
is possible to achieve a dimensionless optimal value in 
[2]. This line was followed by Cooper et al. (1999) and 
Cooper et al. (2011b) to introduce the Range Adjusted 
Measure (RAM) and the BAM, respectively.

Program [2] is a Mixed Integer Linear Program 
(MILP) with a unique binary decision variable, a k. This 
model clearly follows the spirit of the traditional 
weighted additive model (Lovell & Pastor, 1995), 
where a weighted sum of slacks is maximized. Regard-
ing the constraints, the idea behind the preceding pro-
gram is the following. On one hand, [2.1]–[2.2] are 
identical to the first two constraints in the usual 
weighted additive model. However, in [2] the slacks 
are free instead of non-negative. Additionally, [2.8] is 
the usual non-negativity constraint for the intensity 
variables. Regarding the role played by the binary 
variable, a k appears in constraints [2.3]-[2.6], together 
a sufficiently large positive number, denoted as usual 
in Mathematical Programming as M. So, we have two 
possibilities with respect to constraints [2.3] and [2.4] 
for each input and constraints [2.5] and [2.6] for each 
output. First, if a k = 1 then the evaluated unit xkh , ykh( ) 
is located inside the technology in period l. Accord-
ingly, [2.3] and [2.4] are translated in 0 £ sik- £ M , and 
[2.5] and [2.6] in 0 £ srk+ £ M . In this case, all the slacks 
are non-negative as in the original weighted additive 
model and the objective function also takes non-nega-
tive values. Second, if a k = 0 then xkh , ykh( ) is located 
outside the technology in period l. Accordingly, [2.3] 
and [2.4] are equivalent to -M £ sik- £ 0, and [2.5] and 
[2.6] to -M £ srk+ £ 0. In this last case, all the slacks are 

non-positive and the corresponding objective function 
is also non-positive. The first scenario is useful to be 
used when the evaluated unit belongs to the reference 
technology, whereas the second option is helpful when 
it is located out of the production possibility set. Since 
both scenarios are excluding, we have that the sign of 
the optimal value of [2] will determine whether xkh , ykh( ) 
belongs or not to the technology in period l.

Regarding using a sufficiently large positive number 
M, it is possible to substitute M by a logical relationship 
that may be computationally implemented by means 
of a Special Ordered Set (SOS). SOS is a way to 
specify the number of nonzero solution values among 
a set of variables without the need of resorting to fixing 
a big M. The optimizers usually achieve it by using 
special branching strategies. Traditionally, SOS has 
been used with discrete and integer variables, but mod-
ern optimizers, like for example CPLEX, use also SOS 
with continuous variables.

One interesting property of the weighted additive 
distance function is that it is always feasible, even when 
one works with the cross-period scenario, when a unit 
observed in period h under assessment xkh , ykh( ) is out-
side the technology corresponding to period l, with 
h π l . It is due to the fact that there is always a point 
(observed or virtual) that belongs to the production 
possibility set in period l that is dominated by xkh , ykh( ) 
in the Pareto sense.

Another interesting property is that related to the 
existence of a correspondence between the distance 
function and some support function (profit, cost, rev-
enue function). In particular, it can be proved that the 
Weighted Additive Distance Function (WADF) has a 
dual relationship with the profit function. This corre-
spondence allows to measure and decompose profit 
inefficiency into technical and allocative inefficiency 
(Cooper et al., 2011a). 

Nowadays, different alternative distance functions 
can be appreciated in the literature. The most famous 
are the Shephard input and output distance functions 
and the directional distance function. In all these cases, 
slacks are neglected when the distance function works 
as a technical efficiency measure. In this sense, as we 
are aware, the weighted additive distance function is 
the first one that allows to take into account all sourc-
es of technical inefficiency. This justifies the existence 
of this new approach. 

Regarding the weights that we will use in order to 
solve model [2], it is worth mentioning that we will 
resort  to the weights wi- = 1 (m+ s) ,  i = 1,...,m ,  
and wr+ = 1 (m+ s), r = 1,...,s. Nevertheless, from the 
existing literature, we have several possibilities for 
selecting the weights: the Measure of Inefficiency 
Proportions (MIP) (Cooper et al., 1999) considering
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output Shephard distance functions, Chambers et al. 
(1996) defined the Luenberger productivity change 
indicator, that is a difference-based index of the direc-
tional distance function that accounts for both input 
contractions and output improvements.

By analogy with the original Luenberger indicator 
defined through the directional distance function, we 
next introduce a new Luenberger indicator, which 
measures productivity change (PC), based on the 
weighted additive distance function and its correspond-
ing decomposition into efficiency change (EC), scale 
efficiency change (SC) and technical change (TC).

The productivity change for unit k is estimated as 
follows:

PCk t,t +1( ) =

1
2
Dt xkt , ykt( ) - Dt xkt+1, ykt+1( )( ) + Dt+1 xkt , ykt( ) - Dt+1 xkt+1, ykt+1( )( )

�

�

�������������������������
�������������������������
�������������������������
�������

�
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 [3]

The new Luenberger indicator may then be decom-
posed into efficiency change - catch-up (EC) and fron-
tier shift (TC):

ECk t,t +1( ) = Dt xkt , ykt( ) - Dt+1 xkt+1, ykt+1( ),
TCk t,t +1( ) =

1
2
Dt+1 xkt+1, ykt+1( ) - Dt xkt+1, ykt+1( )( ) + Dt+1 xkt , ykt( ) - Dt xkt , ykt( )( )
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 [4]

Finally, efficiency change may be further decom-
posed to identify the contribution of scale efficiency 
change. To do that, we followed Kapelko et al. (2015). 
By analogy with their aproach, we first define a term 
that measures efficiency change under Variable Returns 
to Scale (VRS), denoted as ECVRS.

 ECVRSk t,t +1( ) = DVRSt xkt , ykt( ) - DVRSt+1 xkt+1, ykt+1( ),  [5]

where DVRSl xkl , ykl( ) denotes the optimal value of model 

[2] with the additional constraint l jk
j=1

n

Â = 1.

Scale efficiency change can be then derived as:

 SCk (t,t +1) = ECk (t,t +1) - ECVRSk (t,t +1)  [6]

In this way, we get the desired decomposition of 
productivity change:

PCk (t,t +1) = TCk (t,t +1)+ ECVRSk (t,t +1)+ SCk (t,t +1)  [7]

An advantage of the proposed approach with respect 
to the traditional Luenberger indicator is that mixed 
period directional distance functions can yield infeasi-
ble results (Briec & Kerstens, 2009), while the weight-
ed additive distance function does not suffer from the 
infeasibility problem.

(W - ,W + ) = (1 X0 ,1 Y0 ), where 1 X0 = (1 x10 ,...,1 xm0 ) 
and 1 Y0 = (1 y10 ,...,1 ys0 ) ;  the Range Adjusted  
Measure of Inefficiency (RAM) (Cooper et al., 1999) 
c o n s i d e r i n g  (W - ,W + ) = (1 (m+ s)R- ,1 (m+ s)R+ )  
where R- = (R1- ,...,Rm- ) with Ri- = max

1£ j£n
xij{ } -min

1£ j£n
xij{ }, 

i = 1,...,m ,  a n d  R+ = (R1+ ,...,Rs+ )  w i t h 
Rr+ = max

1£ j£n
yrj{ } -min

1£ j£n
yrj{ }; the BAM of inefficiency 

( C o o p e r  e t  a l . ,  2 0 1 1 b )  c o n s i d e r i n g 
W - = 1 [(m+ s)(X0 - X )], where X = (x1,..., xm ) with 
xi = min

1£ j£n
xij{ }, i = 1,...,m, and W + = 1 [(m+ s)(Y −Y0 )], 

where Y = ( y1,..., ys ) with yr = max
1£ j£n

yrj{ }, r = 1,...,s; the 
normalized weighted additive model (Lovell & Pastor, 
1995) considering (W - ,W + ) = (1 s - ,1 s + ) where 
s - = (s1

- ,...,sm
- ) is the vector of sample standard de-

viations of inputs and s + = (s1
+ ,...,s s

+ ) is the vector of 
sample standard deviations of outputs. Each of them 
will generate different values for the WADF.

This is not the first time in which weighted additive 
models are utilized for measuring productivity change 
in a DEA framework. Grifell-Tatjé et al. (1998) defined 
a quasi-Malmquist using an ‘output-oriented’ weighted 
additive model. Unfortunately, they did not propose a 
decomposition of the index. Chen (2003) showed how 
to define a non-radial Malmquist index based on an 
‘input-oriented’ weighted additive model. However, 
this author mixed the Malmquist formulation, multi-
plicative in nature, with something additive in nature, 
the selected measure. Additionally, the non-radial index 
just estimates productivity change partially since it only 
takes input inefficiencies into account. More recently, 
Vidal et al. (2013) resorted to the BAM (Cooper et al., 
2011b), a ‘graph’ weighted additive model, in order to 
measure productivity change and its sources from a 
dataset of the Spanish wine sector. They defined a 
Biennial Malmquist productivity index (Pastor et al., 
2011) from the BAM values. The biennial index consid-
ers for each pair of consecutive time periods the com-
mon frontier of the pooled data for both periods. In this 
sense, it uses a methodology based on aggregating data. 
However, aggregation loses information. In contrast, 
our approach is a way of using ‘graph’ weighted addi-
tive models for estimating and decomposing productiv-
ity change without the necessity of pooling data.

The Luenberger indicator and its 
decomposition

In many practical situations it is desirable to use 
measures that are non-oriented in which DMUs are able 
to change both inputs and outputs. In contrast to the 
usual Malmquist index, which is based on the input or 
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Data

The units and periods under study are the PDOs of 
virgin olive oil in Spain and the six-year time frame of 
2008-2013. As mentioned in the previous section, there 
are currently 29 PDOs in this particular sector in Spain. 
However, after ruling out those that have not provided 
relevant data to official records or have only done so 
partially (not covering the six years analyzed), we have 
found a total of 15 PDOs that have been finally ana-
lyzed. Nonetheless, in order to show that the selected 
units are representative of the whole industry we next 
report the percentage of total volume of marketed pro-
duction in the sector for each year analyzed: 78.58% 

(2008), 83.95% (2009), 82.53% (2010), 74.43% (2011), 
81.45% (2012) and 76.97% (2013).

For each PDO, data referring to surface area (hec-
tares), number of oil mills and packaging/marketing 
companies have been selected, as well as the volume 
of marketed production (millions of euros) in the pe-
riod studied (MAGRAMA, 2016). The first three 
variables will be inputs for the model, while the eco-
nomic value of production comprises the only output 
for the model (the main descriptive statistics of these 
variables appear in Table 1). Our selection of variables 
is due to two facts. First, it is in line with the variables, 
inputs and outputs, utilized in the previous studies on 
Spanish PDOs (see Vidal et al., 2014). Second, al-

Table 1. Main descriptive statistics of virgin olive oil Protected Designations of Origin (PDOs) in the 2008-2013 period. Aver-
age (standard deviation).

PDO

INPUTS 
(average values 2008-2013)

OUTPUT 
(average value 

2008-2013)

Surface area (ha) No. of oil mills No. of packaging/marketing 
firms Value (M€)

Aceite Campo de Montiel 31,579.26 
(2,546.95)

15.83
(1.67)

8.83
(1.07)

1.16
(0.63)

Aceite de Mallorca 1,658.03 
(149.69)

7.00
(0.00)

13.17
(1.86)

1.54
(0.45)

Aceite de Terra Alta 4,108.33 
(346.91)

7.33
(2.29)

15.33
(1.80)

2.97
(3.10)

Aceite del Baix Ebre-Montsià 12,111.00 
(0.00)

12.00
(0.00)

5.00
(0.00)

0.30
(0.18)

Aceite del Bajo Aragón 19,333.33 
(2,702.88)

32.17
(1.57)

14.50
(15.56)

6.31
(0.90)

Aceite de Monterrubio 9,666.67 
(745.36)

2.00
(0.00)

2.00
(0.00)

0.26
(0.26)

Baena 60,000.00 
(0.00)

19.33
(0.47)

22.00
(0.00)

12.29
(2.52)

Estepa 38,000.00 
(0.00)

19.00
(0.00)

3.83
(0.90)

8.49
(1.63)

Montes de Toledo 27,364.93 
(1,180.19)

38.50
(3.10)

27.50
(3.30)

1.96
(0.89)

Poniente de Granada 21,410.00 
(1,471.33)

12.33
(0.47)

14.17
(0.69)

1.88
(1.23)

Priego de Córdoba 29,628.00
(0.00)

13.50
(0.76)

11.83
(2.03)

6.91
(3.80)

Sierra de Cádiz 28,000.00
(0.00)

7.33
(1.25)

7.67
(0.94)

0.46
(0.78)

Sierra de Cazorla 37,833.33 
(745.36)

11.83
(0.37)

13.17
(0.69)

10.31
(3.09)

Sierra Mágina 60,833.33 
(372.68)

28.17
(0.37)

24.67
(1.11)

5.37
(0.65)

Siurana 11,971.13 
(647.07)

36.50
(1.12)

37.67
(2.69)

15.27
(1.89)
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one biennium with a productive downturn, 2009-2010 
in the case of Montes de Toledo (although with a very 
negative value in productivity change) and 2010-2011 
in the case of Siurana. The opposite happened with 
Sierra de Cazorla, that presented a productive decline 
between each pair of years, except for the 2011-2012 
biennium (see also Fig. 1).

If we closely examine the decomposition of these 
changes in productivity, and starting with changes in 
technical efficiency (Table 3), a divergent behaviour 
to that expressed before could be observed. So, techni-
cal efficiency increased in the first part of the six-year 
period before declining in the last. At the same time, 
Montes de Toledo stood out as a PDO with ongoing 
improved productivity in all the time-frame used, while 
Baena presented the worst of the trends, with three of 
its indexes in negative (from 2009 to 2012). Finally, 
both Estepa and Sierra de Cazorla presented zero val-
ues for four of their indexes, thereby indicating that 
both units were technically efficient in the periods in 
question. 

In the case of technological change (Table 4), the 
behaviour was identical to that of global change, the 
change even being more intense in the first part of the 
period. Moreover, in this component of change in pro-
ductivity, the majority of PDOs presented the same 
behaviour, except the PDOs of oils from Mallorca, Bajo 
Aragon, Priego de Córdoba, Sierra de Cazorla and 
Siurana.

In the case of change in scale (Table 5), the behav-
iour did not follow the previous trends of alternating 
improvements and subsequent deteriorations. In any 
event, the PDOs of Oil from Mallorca, Monterrubio, 
Estepa, Sierra de Cazorla and Siurana stood out for 
corresponding to units that operate at an optimal scale 
(CRS) throughout the whole six-year period. 

though the literature related to the Spanish olive oil 
industry in general has resorted to a very different set 
of variables, we could not directly include the most 
part of this information because of lack of data on our 
database (MAGRAMA, 2016). In particular, Amores 
& Contreras (2009) considered production, employ-
ment generated and oil content as outputs and land, 
productive olive trees, irrigated land for each farm, 
rain in the farm area (as a non-discretional variable) 
and total expenses as inputs. Dios-Palomares & Mar-
tínez-Paz (2011) utilized olive oil production, a qual-
ity index and an environmental management index as 
outputs and skilled labor, unskilled labor, floating 
capital, fixed capital and olives milled as inputs. Dios-
Palomares et al. (2013) used oil, a quality index and 
an environmental impact index as outputs and milled 
olives, floating capital, fixed capital and staff costs as 
inputs. Finally, Alcaide-López-de-Pablo et al. (2014) 
suggested to use olive oil and table olives as outputs 
and unskilled labor, skilled labor, floating capital and 
fixed capital as inputs.

Results

The global productivity change of Spanish virgin 
olive oil PDOs was analyzed. The results are shown in 
Table 2. A reduction in productivity could be seen, in 
average terms, in the first periods analyzed, followed 
by an improvement, that in the last period analyzed, 
however, returned to adverse figures. This same behav-
iour of the index was observed for two of the units 
assessed: Oil from Baix Ebre and Sierra de Cádiz. Ad-
ditionally, both Montes de Toledo and Siurana pre-
sented a more positive trend within all the PDOs ana-
lyzed. In particular, the methodology only estimated 

4.00
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2.00

1.00

Average values
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Sierra de Cazorla

Siruana

0.00
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Figure 1. Productivity change of virgin olive oil PDOs in the 2008-2013 period.
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Discussion

In this paper, we have resorted to a Luenberger-type 
indicator, based in particular on the weighted additive 
distance function, for estimating productivity change 
over time for the 15 considered Spanish PDOs (bal-
anced panel). In contrast to other existing metodolo-
gies, the approach utilized presented some advantages: 
it considered all sources of inefficiency, it was always 
feasible and it did not aggregate all the units by means 
of metafrontiers.

As mentioned in the introduction, there are very few 
studies that analyse changes in productivity of PDOs 
in the virgin olive oil sector in our country. Our results, 
and particularly those related to global changes, were 
consistent with those presented by Vidal et al. (2015). 
The only difference is that experienced in the last bien-
nium analyzed and this is because this work discrimi-

Figure 2 shows the evolution of the productivity 
change and its components over time (on average).

Finally, we compared our results with those obtained 
from a standard or traditional Luenberger indicator, 
resorting to the well-known directional distance function. 
To that end, we reported the corresponding productivity 
change estimations in Table 6. The estimated trends were 
similar to those determined by the WADF. However, the 
determined values for each pair of years and PDO were 
very different. In order to compare both approaches, we 
calculated the Pearson’s correlation coefficients between 
each column of Tables 2 and 6, obtaining: 0.8399 for 
(2008, 2009), 0.3094 for (2009, 2010), 0.7335 for (2010, 
2011), 0.8063 for (2011, 2012) and 0.7711 for (2012, 
2013). In this way, the results were correlated except for 
the period (2009, 2010), where the presence of slacks in 
the optimization models was more important than for 
the remaining analyzed periods of time.

Table 2. Productivity change (PC) of virgin olive oil PDOs in the 2008-2013 period.

PDO PC
(2008,2009)

PC
(2009,2010)

PC
(2010,2011)

PC
(2011,2012)

PC
(2012,2013)

Aceite Campo de Montiel 1.30 -2.18 1.01 0.45 -0.51
Aceite de Mallorca 0.03 -1.06 -0.06 1.09 1.10
Aceite de Terra Alta -2.53 -2.47 0.56 -0.28 1.42
Aceite del Baix Ebre-Montsià -0.17 -1.65 0.02 0.02 -0.02
Aceite del Bajo Aragón 0.60 -4.87 11.28 -1.04 -11.73
Aceite de Monterrubio 0.05 -0.33 -0.21 0.15 0.28
Baena -2.21 -1.40 0.17 0.06 3.69
Estepa -0.56 0.34 1.67 0.18 -1.57
Montes de Toledo 0.89 -5.66 0.23 1.86 0.28
Poniente de Granada -0.29 -1.58 -1.95 0.23 2.18
Priego de Córdoba 1.60 0.78 -0.06 2.50 -4.09
Sierra de Cádiz -1.33 -1.43 0.16 0.16 -0.01
Sierra de Cazorla -2.87 -0.38 -0.30 2.45 -1.06
Sierra Mágina 1.15 -3.37 -0.28 0.25 -0.04
Siurana 2.50 0.54 -0.47 0.06 2.98
Average -0.12 -1.65 0.79 0.54 -0.47

–2.50

–2.00

–1.50

–1.00

–0.50

–0.00

0.50

1.00
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Figure 2. Productivity change (PC), technical efficiency change (ECVRS), technological change 
(TC), and scale efficiency change (SC) of virgin olive oil PDOs in the 2008-2013 period. Average 
values.
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premise used in this work. This trend also coincided 
with that observed in Vidal et al. (2015). 

However, there are no precedents in the literature of 
the measurement of changes in the scale component. 
Consequently, this work is the first that addresses the 
estimation of the evolution of the mentioned source of 
change in productivity. 

The applied methodology has allowed us to show 
the productivity change trend of each Spanish PDO 
considered. Although, in general, we observed that the 
sector experienced a decline from 2008 to 2010, fol-
lowed by an improvement from 2010 to 2012 and end-
ing with a negative biennium (2012-2013), two PDOs 
presented better figures with respect to the rest of units: 
Montes de Toledo and Siurana. Both PDOs are the units 

nated the different sources of inefficiency to a larger 
extent; in effect, in the work mentioned earlier, com-
mon frontiers (metafrontiers) were estimated, which 
implies less information motivated by the aggregation 
of units for different periods, and on the other hand, 
that the distance calculated by the aforementioned 
authors was only output-oriented, and, in our case inef-
ficiencies in inputs and outputs were considered simul-
taneously. What we highlight here for global change, 
can be applied to the component that measures the 
technological change experienced by the PDOs.

Furthermore, the results for change in technical ef-
ficiency were consistent with those estimated by Vidal 
et al. (2014) for the 2008-2010 period, that is, improve-
ment in technical efficiency under CRS, which is the 

Table 3. Technical efficiency change (ECVRS: Efficiency Change under Variable Returns to Scale) of virgin olive oil PDOs in 
the 2008-2013 period.

PDO ECVRS
(2008,2009)

ECVRS
(2009,2010)

ECVRS
(2010,2011)

ECVRS
(2011,2012)

ECVRS
(2012,2013)

Aceite Campo de Montiel 1.34 0.39 0.88 -0.04 -0.48
Aceite de Mallorca 0.00 0.00 0.00 0.00 0.00
Aceite de Terra Alta 0.00 -1.89 0.47 -0.92 2.35
Aceite del Baix Ebre-Montsià -0.08 -0.20 0.11 -0.12 -0.10
Aceite del Bajo Aragón 0.00 -9.79 9.79 0.00 -13.51
Aceite de Monterrubio 0.00 0.00 0.00 0.00 0.00
Baena 4.51 0.00 0.00 -6.35 6.35
Estepa 0.00 0.00 0.00 0.00 0.00
Montes de Toledo 1.34 1.44 0.28 1.21 0.43
Poniente de Granada 0.17 0.91 -1.74 0.00 1.97
Priego de Córdoba 2.13 3.35 0.00 0.00 -2.66
Sierra de Cádiz -0.88 0.95 0.18 0.06 -0.10
Sierra de Cazorla 0.00 0.00 0.00 0.00 0.00
Sierra Mágina 2.11 -0.02 -0.96 -0.76 0.47
Siurana 0.00 0.00 0.00 0.00 0.00
Average 0.71 -0.32 0.60 -0.46 -0.35

Table 4. Technological change (TC) of virgin olive oil PDOs in the 2008-2013 period.

PDO TC
(2008,2009)

TC
(2009,2010)

TC
(2010,2011)

TC
(2011,2012)

TC
(2012,2013)

Aceite Campo de Montiel -0.18 -2.29 0.22 0.42 -0.25
Aceite de Mallorca -0.46 -1.42 -0.04 0.23 2.10
Aceite de Terra Alta -2.53 -2.70 0.19 0.32 -0.13
Aceite del Baix Ebre-Montsià -0.15 -1.70 0.03 0.04 -0.03
Aceite del Bajo Aragón 0.60 -5.84 0.57 5.33 -3.81
Aceite de Monterrubio -0.03 -0.35 0.04 0.03 -0.08
Baena -5.18 -0.79 1.23 3.09 -2.03
Estepa -0.56 -0.34 1.67 0.18 -1.57
Montes de Toledo -0.56 -5.88 0.16 0.42 -0.45
Poniente de Granada -0.56 -1.79 0.23 0.11 -0.36
Priego de Córdoba -1.01 0.19 -0.06 2.50 -1.04
Sierra de Cádiz -0.32 -1.44 0.03 0.04 -0.01
Sierra de Cazorla -2.87 0.38 -0.30 2.45 -1.06
Sierra Mágina -1.46 -4.12 0.92 1.09 -0.89
Siurana -6.92 -0.54 -0.47 0.06 2.98
Average -1.48 -1.91 0.30 1.09 -0.44
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with the combination of a larger number of oil mills 
and packaging/marketing firms, compared to the rest 
of the units in the sample. The opposite trend is the 
case of Sierra de Cazorla that experienced drops in its 
production levels in almost all the periods analyzed 
and, at the same time, had very high values in surface 
area, generally speaking, but relatively low values in 
the combination of oil mills and packaging/marketing 
firms. In part, the trend globally observed in regard to 
the evolution of productivity in the six-year period 
under study is a result of the trend itself, followed by 
the economic value of the total market production in 
the sector (sum of the output of the units that make up 
the sample). This fell drastically in the first few years 
of the period (from 85.53 M€ in 2008 to 63 M€ in 
2010) and remained practically constant in 2011 before 

picking up again in 2012 (84.5 M€) and 2013 
(83.14 M€). These zigzags of the output resulted in 
periods of downward technology and upward technol-
ogy trends, as evidenced by the technical change com-
ponent. This term was the component with the largest 
value in comparison with all sources of productivity 
change in the sector for all the periods but 2010-2011, 
where efficiency change and scale efficiency change 
presented bigger values. Therefore, we may conclude 
that the impact of the world economic crisis on the 
productivity of the sector was negative in its most dif-
ficult years (2009 and 2010), leading to improvements 
mainly in 2012. However, although 2013 was not a bad 
year regarding revenues, reaching the same level of 
sales than before the crisis and being slightly lower 
than the previous year, the number of packaging/retail 

Table 5. Scale efficiency change (SC) of virgin olive oil PDOs in the 2008-2013 period.

PDO SC
(2008,2009)

SC
(2009,2010)

SC
(2010,2011)

SC
(2011,2012)

SC
(2012,2013)

Aceite Campo de Montiel 0.14 -0.29 -0.10 0.07 0.21
Aceite de Mallorca 0.49 0.36 -0.02 0.86 -1.00
Aceite de Terra Alta 0.00 2.12 -0.10 0.32 -0.80
Aceite del Baix Ebre-Montsià 0.06 0.25 -0.13 0.10 0.11
Aceite del Bajo Aragón 0.00 10.76 0.91 -6.38 5.59
Aceite de Monterrubio 0.08 0.02 -0.24 0.12 0.36
Baena -1.54 -0.61 -1.06 3.31 -0.62
Estepa 0.00 0.69 0.00 0.00 0.00
Montes de Toledo 0.11 -1.22 -0.21 0.23 0.29
Poniente de Granada 0.10 -0.70 -0.44 0.12 0.57
Priego de Córdoba 0.49 -2.76 0.00 0.00 -0.39
Sierra de Cádiz -0.13 -0.94 -0.05 0.06 0.10
Sierra de Cazorla 0.00 -0.77 0.00 0.00 0.00
Sierra Mágina 0.50 0.77 -0.24 -0.08 0.38
Siurana 9.43 1.07 0.00 0.00 0.00
Average 0.65 0.58 -0.11 -0.08 0.32

Table 6. Productivity change (PC) of virgin olive oil PDOs in the 2008-2013 period using the traditional Luenberger indicator.

PDO PC
(2008,2009)

PC
(2009,2010)

PC
(2010,2011)

PC
(2011,2012)

PC
(2012,2013)

Aceite Campo de Montiel 1.42 -0.08 2.16 1.07 -1.39
Aceite de Mallorca 0.00 -0.02 0.04 0.09 0.13
Aceite de Terra Alta -5.00 -2.03 0.04 -0.09 0.08
Aceite del Baix Ebre-Montsià -0.06 -0.15 0.01 0.01 -0.01
Aceite del Bajo Aragón 1.20 -7.78 5.54 -0.28 -6.21
Aceite de Monterrubio 0.13 0.38 -0.46 0.67 0.26
Baena -7.45 -1.04 0.21 -0.12 8.23
Estepa -2.49 -5.16 6.29 1.59 -4.19
Montes de Toledo -0.12 -0.23 -0.04 0.71 -1.20
Poniente de Granada 1.35 0.12 -0.64 0.12 1.68
Priego de Córdoba 2.47 5.22 -0.12 10.27 -9.40
Sierra de Cádiz -2.30 1.14 0.35 0.20 -0.02
Sierra de Cazorla -14.68 1.81 -1.08 10.81 -3.46
Sierra Mágina 1.34 -1.45 -0.47 0.64 0.31
Siurana 1.23 -4.66 -0.55 0.40 2.72
Average -1.53 -0.93 0.75 1.74 -0.83
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firms increased considerably from 2012 to 2013 (by 
12%), which finally implied a decline in productivity. 
This increase could have been due to investments in 
anticipation of a market recovery.

In the future, and when new data become available, 
the maturity of PDOs in the virgin olive oil sector in 
Spain should be checked again. Additionally, the new 
approach could be applied to other PDOs and PGIs, for 
example in the wine sector, for measuring productiv-
ity change over time taking into account all sources of 
technical inefficiency. Another possible field of ap-
plication would be the Spanish olive oil industry in 
general, given the relevance of this sector in Spain.
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