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Una descripción breve de operadores asociados al

oscilador armónico cuántico sobre las clases de

Schatten-von Neumann

Resumen. En esta nota se estudia una clase de operadores definidos a través
del espectro del oscilador armónico y conocidos en la literatura como pseu-
do multiplicadores (pseudo multiplicadores de Hermite). Se analizan criterios
óptimos para clasificar estos operadores en las clases de Schatten-von Neu-
mann sobre L2(Rn). El trabajo culmina con una investigación sobre la traza
espectral y/o nuclear de tales operadores.
Palabras clave: Oscilador armónico, multiplicador de Fourier, multiplicadores
de Hermite, operador nuclear, trazas.

1. Introduction

1.1. Outline of the paper

Pseudo-multipliers and multipliers associated to the harmonic oscillator arise from the
study of Hermite expansions for complex functions on R

n (see Thangavelu [23], [24],
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[25], [26] [27], [28], Epperson [11] and Bagchi and Thangavelu [1]). At the same time,
we note that pseudo-multipliers are pseudo-differential operators on R

n in view of the
quantization process developed by Ruzhansky and Tokmagambetov in [17] and [18] when
the reference operator is the harmonic oscillator. In this note, we are interested in
the membership of pseudo-multipliers associated to the harmonic oscillator (also called
Hermite pseudo-multipliers) in the Schatten classes, Sr(L

2) on L2(Rn). With this paper
we finish the classification of pseudo-multipliers in classes of r-nuclear operators on Lp-
spaces (see Barraza and Cardona [2], [3]), which on L2(Rn) coincide with the Schatten-
von Neumann classes of order r. Our main result is Theorem 1.1 where we establish
some criteria in order that pseudo-multipliers belong to the classes Sr(L

2), 0 < r ≤ 2.
In order to present our main result we recall some notions. Let us consider the sequence
of Hermite functions on R

n,

φν = Πn
j=1

φνj , φνj (xj) = (2νjνj !
√
π)−

1

2Hνj (xj)e
−

1

2
x2

j (1)

where x = (x1, · · · , xn) ∈ R
n, ν = (ν1, · · · , νn) ∈ N

n
0
, and Hνj (xj) denotes the Hermite

polynomial of order νj . It is well known that the Hermite functions provide a complete
and orthonormal system in L2(Rn). If we consider the operator L = −∆ + |x|2 acting
on the Schwartz space S (Rn), where ∆ is the standard Laplace operator on R

n, then
we have the relation Lφν = λνφν , ν ∈ N

n
0
. The operator L is symmetric and positive in

L2(Rn) and admits a self-adjoint extension H whose domain is given by

Dom(H) =





∑

ν∈Nn
0

〈f, φν〉L2φν :
∑

ν∈Nn
0

|λν〈f, φν〉L2 |2 < ∞



 . (2)

So, for f ∈ Dom(H), we have

(Hf)(x) =
∑

ν∈N0

λν f̂(φν)φν(x), f̂(φν) = 〈f, φν〉L2 . (3)

The operator H is precisely the quantum harmonic oscillator on R
n (see [15]). The

sequence {f̂(φv)} determines the Fourier-Hermite transform of f, with corresponding
inversion formula

f(x) =
∑

ν∈Nn
0

f̂(φv)φν(x). (4)

On the other hand, pseudo-multipliers are defined by the quantization process that as-
sociates to a function m on R

n × N
n
0

a linear operator Tm of the form

Tmf(x) =
∑

ν∈Nn
0

m(x, ν)f̂(φν)φν(x), f ∈ Dom(Tm). (5)

The function m on R
n × N

n
0

is called the symbol of the pseudo-multiplier Tm. If in (5),
m(x, ν) = m(ν) for all x, the operator Tm is called a multiplier. Multipliers and pseudo-
multipliers have been studied, for example, in the works [1], [20], [21], [22], [23], [24] (and
references therein) principally by its mapping properties on Lp spaces. In order that the
operator Tm : L2(Rn) → L2(Rn) belongs to the Schatten class Sr(L

2), in this paper we
provide some (sharp) conditions on the symbol m.
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1.2. Pseudo-multipliers in Schatten classes

By following A. Grothendieck [12], we can recall that a linear operator T : E → F (E
and F Banach spaces) is r-nuclear, if there exist sequences (e′n)n∈N0

in E′ (the dual space
of E) and (yn)n∈N0

in F such that

Tf =
∑

n∈N0

e′n(f)yn, and
∑

n∈N0

‖e′n‖rE′‖yn‖rF < ∞. (6)

The class of r−nuclear operators is usually endowed with the quasi-norm

nr(T ) := inf





{
∑

n

‖e′n‖rE′‖yn‖rF

} 1

r

: T =
∑

n

e′n ⊗ yn



 . (7)

In addition, when E = F is a Hilbert space and r = 1 (resp. r = 2), the definition above
agrees with the concept of trace class operators (resp. Hilbert-Schmidt). For the case of
Hilbert spaces H , the set of r-nuclear operators agrees with the Schatten-von Neumann
class of order r (see Pietsch [13], [14]). We recall that a linear operator T on a Hilbert
space H belong to the Schatten class of order r, Sr(H), if

sr(T ) :=
∑

n∈N0

λn(T )
r < ∞, (8)

where {λn(T )} denotes the sequence of singular values of T, which are the eigenvalues
of the operator

√
T ∗T . It was proved in [2] that a multiplier Tm, with symbol satisfying

conditions of the form

κ(m, p1, p2) :=

n∑

s=0

∑

ν∈Is

αr,p1,p2
(s, ν)|m(ν)|r < ∞, (9)

where {Is}ns=0
is a suitable partition of N

n
0
, and αr,p1,p2

(s, ν) is a suitable kernel, can
be extended to a r-nuclear operator from Lp1(Rn) into Lp2(Rn). Although is easy to see
that similar necessary conditions apply for pseudo-multipliers, the r-nuclearity for these
operators in Lp-spaces was characterized in [3] by the following condition:

a pseudo-multiplier Tm can be extended to a r-nuclear operator from Lp1 into Lp2

if and only if there exist functions hk and gk satisfying

m(x, ν) = φν(x)
−1

∞∑

k=1

hk(x)ĝ(φν), φν(x) 6= 0, with

∞∑

k=0

‖gk‖r
L

p′
1

‖hk‖rLp2 < ∞.

(10)

If we consider p1 = p2 = 2, and a multiplier Tm, the conditions above can be replaced
by the following more simple one,

κ(m, 2, r) :=
∑

ν∈N0

|m(ν)|r < ∞, (11)
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because the set of singular values of a multiplier Tm consists of the elements in the
sequence {|m(ν)|}ν∈Nn

0
. The condition (10) characterizes the membership of pseudo-

multipliers in Schatten classes in terms of the existence of certain measurable functions.
However, in this paper we provide explicit conditions on m in order to guarantee that
Tm ∈ Sr(L

2), because explicit conditions allow us to known information about the dis-
tribution of the spectrum of these operators. Our main result is the following theorem.

Theorem 1.1. Let Tm be a pseudo-multiplier with symbol m defined on R
n × N

n
0
. Then

we have:

Tm is a Hilbert-Schmidt operator on L2(Rn), i.e., Tm ∈ S2(L
2), if and only if

∑

ν∈Nn
0

∫

Rn

|m(x, ν)|2φν(x)
2dx < ∞. (12)

If Tm is a positive operator, then Tm is trace class, i.e., Tm ∈ S1(L
2), if and only

if ∑

ν∈Nn
0

∫

Rn

m(x, ν)φν (x)
2dx < ∞. (13)

Tm ∈ Sr(L
2), 0 < r ≤ 1, if

∑

ν∈Nn
0

(∫

Rn

|m(x, ν)|2φν(x)
2dx

) r
2

< ∞. (14)

If 1 < r < 2 and there exists σ > n(1
r
− 1

2
) such that

∑

ν∈Nn
0

|ν|2σ
∫

Rn

|m(x, ν)|2φν(x)
2dx < ∞, (15)

then Tm ∈ Sr(L
2).

In general, on a Banach space compact linear operators are bounded operators. Taking
into account that Schatten-von Neumann classes on Hilbert spaces are families of com-
pact operators, our main theorem gives conditions for the L2(Rn)-continuity of pseudo-
multipliers. The problem of finding “satisfactory” conditions for the L2(Rn)-boundedness
of pseudo-multipliers remains open, and it was proposed by Bagchi and Thangavelu in [1];
with our main result and the conditions proposed in Cardona and Barraza [3], we solve
partially such problem. However, Bagchi-Thangavelu’s problem will be “satisfactorily”
solved in the work Cardona and Ruzhansky [4].

1.3. Related works

Now, we include some references on the subject. Sufficient conditions for the r-nuclearity
of spectral multipliers associated to the harmonic oscillator, but in modulation spaces
and Wiener amalgam spaces, have been considered by J. Delgado, M. Ruzhansky and B.
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Wang in [8], [9]. The Properties of these multipliers in Lp-spaces have been investigated in
the references S. Bagchi, S. Thangavelu [1], J. Epperson [11], K. Stempak and J.L. Torrea
[20], [21], [22], S. Thangavelu [23], [24] and references therein. Hermite expansions for
distributions can be found in B. Simon [19]. The r-nuclearity and Grothendieck-Lidskii
formulae for multipliers and other types of integral operators can be found in [7], [9]. On
Hilbert spaces the class of r-nuclear operators agrees with the Schatten-von Neumann
class Sr(H); in this context operators with integral kernel on Lebesgue spaces and, in
particular, operators with kernel acting of a special way with anharmonic oscillators of
the form Ea = −∆x + |x|a, a > 0, has been considered on Schatten classes on L2(Rn)
in J. Delgado and M. Ruzhansky [10]. A complete treatment for Lp-boundedness and
Lp-compactness properties in terms of the Littlewood-Paley theory and the Hörmander
condition will be considered in Cardona and Ruzhansky [4]. The proof of our results will
be presented in the next section.

2. Pseudo-multipliers in Schatten-von Neumann classes

In this section we prove our main result for pseudo-multipliers Tm. Our criteria will be
formulated in terms of the symbols m. First, let us observe that every pseudo-multiplier
Tm is an operator with kernel Km(x, y). In fact, straightforward computation shows that

Tmf(x) =

∫

Rn

Km(x, y)f(y)dy, Km(x, y) :=
∑

ν∈Nn
0

m(x, ν)φν (x)φν (y) (16)

for every f ∈ D(Rn). We will use the following result (see J. Delgado [5], [6]).

Theorem 2.1. Let us consider 1 ≤ p1, p2 < ∞, 0 < r ≤ 1 and let qi be such that
1

pi
+ 1

qi
= 1. Let (X1, µ1) and (X2, µ2) be σ-finite measure spaces. An operator T :

Lp1(X1, µ1) → Lp2(X2, µ2) is r-nuclear if and only if there exist sequences (gn)n in
Lp2(µ2), and (hn) in Lq1(µ1), such that

∑

n

‖gn‖rLp2‖hn‖rLq1 < ∞, and Tf(x) =

∫
(
∑

n

gn(x)hn(y))f(y)dµ1(y), a.e.w. x, (17)

for every f ∈ Lp1(µ1). In this case, if p1 = p2 (see Section 3 of [5]) the nuclear trace of
T is given by

Tr(T ) :=

∫ ∑

n

gn(x)hn(x)dµ1(x). (18)

Now, we prove our main theorem.

Proof of Theorem 1.1. Let us consider a pseudo-multiplier Tm. By definition, Tm is a
Hilbert-Schmidt operator if and only if there exists an orthonormal basis {eν}ν of L2(Rn)
such that ∑

ν

‖Tmeν‖2L2 < ∞. (19)

In particular, if we choose the system of Hermite functions {φν}, which provides an
orthonormal basis of L2(Rn), from the relation Tm(φν) = m(x, ν)φν we conclude that

Vol. 36, N◦ 1, 2018]



54 D. Cardona

Tm is of Hilbert-Schmidt type, if and only if

∑

ν

‖m(·, ν)φν‖2L2 =
∑

ν∈Nn
0

∫

Rn

|m(x, ν)|2φν(x)
2dx < ∞. (20)

So, we have proved the first statement. Now, if we assume that Tm is positive, then Tm

is of class trace if and only if there exists an orthonormal basis {eν}ν of L2(Rn) such
that ∑

ν

〈Tmeν , eν〉L2 < ∞. (21)

As in the first assertion, if we choose the basis formed by the Hermite functions, Tm is
of class trace if and only if

∑

ν

〈Tmeν , eν〉L2 =
∑

ν∈Nn
0

∫

Rn

m(x, ν)φν (x)
2dx < ∞, (22)

which proves the second assertion. Now, we will verify that (14) implies that Tm ∈
Sr(L

2) for 0 < r ≤ 1. For this, we will use Delgado’s Theorem (Theorem 2.1) to the
representation (16) of Km,

Km(x, y) :=
∑

ν∈Nn
0

m(x, ν)φν (x)φν (y). (23)

So, Tm ∈ Sr(L
2) if

∑

ν

‖m(·, ν)‖rL2‖φν‖rL2 =
∑

ν∈Nn
0

(∫

Rn

|m(x, ν)|2φν(x)
2dx

) r
2

< ∞, (24)

where we have used that the L2−norm of every Hermite function φν is normalised. In
order to finish the proof, we only need to prove that (15) assures that Tm ∈ Sr(L

2) for
1 < r < 2. This can be proved by using the following multiplication property on Schatten
classes:

Sp(H)Sq(H) ⊂ Sr(H),
1

r
=

1

p
+

1

q
. (25)

So, we will factorize Tm as

Tm = TmHσH−σ, σ > 0, (26)

where H is the harmonic oscillator. Let us note that the symbol of A = TmHσ is given
by a(x, ν) = m(x, ν)(2|ν| + n)σ. So, from the first assertion, A ∈ S2(L

2) if and only if

∑

ν∈Nn
0

|ν|2σ
∫

Rn

|m(x, ν)|2φν(x)
2dx ≍

∑

ν∈Nn
0

(2|ν|+ n)2σ
∫

Rn

|m(x, ν)|2φν(x)
2dx < ∞.

In order to prove that Tm ∈ Sr(L
2), in view of the multiplication property

S2(L
2)S 2r

2−r
(L2) ⊂ Sr(L

2),
1

r
=

1

2r/(2− r)
+

1

2
, (27)
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we only need to prove that H−σ ∈ Sp(L
2) with p = 2r

2−r
. The symbol of H−σ is given by

a′(ν) = (2|ν|+ n)−σ. By using the hypothesis σ > n(1
r
− 1

2
) we have that

∑

ν

|a′(ν)|p =
∑

ν

(2|ν|+ n)−σp < ∞,

because σp = σ(1
r
− 1

2
)−1 > n. So, we finish the proof. �XXX

2.1. Trace class pseudo-multipliers of the harmonic oscillator

In order to determinate a relation with the eigenvalues of Tm we recall the following
result (see [16]).

Theorem 2.2. Let T : Lp(µ) → Lp(µ) be a r-nuclear operator as in (6). If 1

r
= 1+| 1

p
− 1

2
|,

then,

Tr(T ) :=
∑

n∈Nn
0

e′n(fn) =
∑

n

λn(T ), (28)

where λn(T ), n ∈ N, is the sequence of eigenvalues of T with multiplicities taken into
account.

As an immediate consequence of the preceding theorem (or the classical Grothendieck-
Lidskii Theorem), if Tm : L2(Rn) → L2(Rn) is trace class (1-nuclear) then,

Tr(Tm) =

∫

Rn

∑

ν∈Nn
0

m(x, ν)φν (x)
2dx =

∑

n

λn(T ), (29)

where λn(T ), n ∈ N, is the sequence of eigenvalues of Tm with multiplicities taken into
account.
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