
Comunicaciones en Estad́ıstica
Diciembre 2018, Vol. 11, No. 2, pp. 219–238

cubm package in R to fit CUB models

cubm package

Freddy Hernández Barajasa

fhernanb@unal.edu.co
Olga Cecilia Usuga Mancob

olga.usuga@udea.edu.co

Sebastián Garćıa Muñozc
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Abstract

The class of CUB models is commonly used by practitioners to model ordinal
data, in this paper we propose the cubm package which provides the class of
CUB models in the R system for statistical computing. The cubm package allows
to specify a formula for each parameter of the model, the Maximum Likelihood
(ML) estimation is performed by optimization via the functions nlminb, optim
and DEoptim and the variance-covariance matrix can be obtained by numerical
approximation of the Hessian matrix or by bootstrap method. The utility of the
package is illustrated by an application and a simulation study.
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Resumen

La clase de modelos CUB es usada comunmente por investigadores para modelar
datos ordinales. En este art́ıculo se describe el paquete cubm que proporciona la
clase de modelos CUB en el sistema de computación estad́ıstica R. El paquete cubm
permite especificar una fórmula para cada parámetro del modelo, las estimaciones
de máxima verosimilitud se obtienen por medio de optimización através de las
funciones nlminb, optim y DEoptim y la matriz de varianza-covarianza se puede
obtener por medio de aproximación numérica de la matriz Hessiana o por medio
del método bootstrap. La utilidad del paquete se ilustra mediante una aplicación
y un estudio de simulación.

Palabras clave: Modelos CUB, Sentimiento e incertidumbre, Datos ordinales,
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1. Introduction

The usual statistical approach for modeling ordinal data has been Generalized
Linear Models (GLM). When data are collected as ordered responses to a sequence
of items (concerning preferences, evaluations, proficiency, etc), current literature
has developed a vast amount of results known as Item Response Theory, Iannario
(2010). In the last thirteen years, a different approach has been introduced for
explaining the behavior of respondents when faced to a single item characterized by
ordinal choices, this class of statistical models known as CUB (Combined Uniform
and Binomial) has been derived by Piccolo (2003b), Piccolo (2003a), and D’Elia
& Piccolo (2005). The model is based on a mixture model that is able to express
the stated evaluation via the subject’s covariates. Specifically, it examines and
compares the uncertainty of the answer and the feeling towards the items.

The recent interest in well-being measurements, initially developed in behavioral
contexts, has inspired the application of CUB models to the selection of response
categories in a number of research areas. In the food industry, for example, studies
have been developed to evaluate preferences and satisfaction from the use of CUB
models. Iannario et al. (2012) performed a sensory analysis in the food industry in
order to obtain useful information for marketing management; Piccolo et al. (2013)
studied the importance that respondents assign to a list of intrinsic and extrinsic
attributes and the level of agreement that consumers express with a number of
statements concerning extra virgin olive oil; Boatto et al. (2016) carried out a
study to detect segments of markets based on consumption opinions, purchase
characteristics and price of Parmesan cheese, and Arboretti & Bordignon (2016)
conducted an investigation with the objective of evaluating the preferences of fresh
food packaging. Other studies have been developed in areas such as education and
work, Cafarelli & Crocetta (2016) evaluated the student satisfaction in a Faculty
of Economics in Foggia, Gambacorta & Iannario (2013) modeled job satisfaction
based on data collected in a Survey in Italy and Capecchi (2015) measured the
experience of conflict between personal and organizational ethnics in a large sample
of respondents.

Due to the use of the model in many contexts, several authors have developed
generalizations, and have improved the initial model. Iannario (2008) specified the
statistical implications of dummy covariates by emphasizing the interpretation of
the estimated parameters, Iannario (2010) studied the identifiability of the CUB
model, Corduas (2011) proposed a test procedure in order to compare CUB models,
Innario (2012) and Iannario (2014) studied ordered categorical data with overdis-
persion in the framework of CUB models, Capecchi & Piccolo (2014) and Grilli
et al. (2014) studied and applied latent class CUB models, Oberski & Vermunt
(2015) showed the equivalence of loglinear latent class models and CUB models
and Piccolo (2015) studied inferential issues on CUB models with covariate.

Some generalizations of the CUB models have been introduced, Iannario (2012)
proposed a Hierarchical CUB models which is a generalization in which parameters
are allowed to be random, and Manisera & Zuccolotto (2013, 2014, 2015, 2016)
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generalized CUB models by introducing a new class of models, called Nonlinear
CUB, which are able to describe precision processes. The CUB models was im-
plemented in the CUB package (Iannario et al. 2016) written in R system for
statistical computing (R Core Team (2017)). The implementation of CUB models
relies on one Formula interface (Zeileis & Croissant, 2010), the Maximum Like-
lihood (ML) estimation is performed by classical EM procedures (McLachlan &
Krishnan, 1997) and the optimization procedure is run via the optim function.

Although there is already a package in R for the analysis of CUB models, the
cubm package proposed in this paper gives other options to the user to estimate
the parameters and variance-covariance matrix, and also allows the user to define a
formula for each parameter of the model. In this paper, we describe the cubm pac-
kage which can be used to estimate parameters. The package is implemented in R
system for statistical computing (R Core Team (2017)) and it is available from the
GitHub repository. Implementation of CUB models relies on the formula interface
of GAMLSS package (Rigby & Stasinopoulos, 2005), allowing to specify a formula
for each parameter, the first one for the feeling and the second one for the uncer-
tainty. cubm package fits the CUB models using ML estimation trough different
optimization methods: a bounds constrained quasi-Newton method (nlminb), the
Differential Evolution algorithm for global optimization of a real-valued function of
a real-valued parameter vector (DEoptim, (Mullen et al., 2011)), a relatively robust
method that does not require derivatives (optim: Nelder-Mead), a low-memory op-
timizer for unconstrained problems with large numbers of parameters (optim: CG),
a simple unconstrained variable metric/quasi-Newton method (optim: BFGS), a
modest-memory optimizer for bounds constrained problems (optim: L-BFGS-B)
and a stochastic method that does not require derivatives (optim: SANN). The
variance-covariance matrix can be obtained by numerical approximation to the
Hessian matrix (Hessian: numDeriv, (Gilbert & Varadhan, 2016)). If the variance-
covariance matrix is not positive definite the procedure uses bootstrap method to
estimate the standard deviation of the parameters.

In the remainder of this manuscript we elaborate on cubm’s implementation and
use. In Section 2 the notation for CUB models is introduced. Section 3 describes
the cubm package. Then, Section 4 shows an application. A simulation study is
presented in Section 5. Some concluding remarks end the paper.

2. CUB models

The class of CUB models is built on the basic assumption that, when a subject
is asked to express a rating about a given issue on an ordered response scale with
m categories, his/her response derives from the combination of a feeling attitude
towards the evaluated issue and an intrinsic uncertainty component surrounding
the discrete choice. CUB models fit rating data by means of a mixture of two
random variables, namely a Shifted Binomial V (m, ξ) with trial parameter m
and success probability 1 − ξ, modelling the feeling component, and a discrete
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Uniform U(m) defined over the support {1, . . . ,m}, aimed to model the uncertainty
component (Manisera & Zuccolotto 2015). The random variable R represents the
observed ratings and has probability mass function given by

Pr(R = r|θ) = π

(
m− 1

r − 1

)
ξm−r(1− ξ)r−1 + (1− π)

1

m
, (1)

where r = 1, . . . ,m, with θ = (π, ξ)
>
, π ∈ (0, 1] and ξ ∈ [0, 1].

On left panel of Figure 1 we can find the probability mass function for four π
values and ξ = 0.70 with m = 5. The 1 − π quantity measures uncertainty that
accompanies the choice, for small values of π, the value of 1 − π increases and
the form of the distribution tends to be uniform. For the case of π = 0.01 we
can see that black line is constant around 0.2. As π increases, 1 − π decreases
and the shape of the probability mass function changes, when π = 0.99 the cub
distribution in expression (1) corresponds to a shifted binomial distribution with
success probability 1−ξ. On right panel of Figure 1 we can observe the probability
mass function for four ξ values and π = 0.99. For small values of ξ, the value of
1− ξ increases and the distribution tends to give more probability for high values
of R, at the contrary, for high values of ξ, the value of 1 − ξ decreases and the
distribution tends to give more probability for lower values of R.
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Figure 1: Probability mass function for ξ = 0.70, different values of π and m = 5
on left panel, probability mass function for π = 0.99, different values of ξ and
m = 5 on right panel.

2.1. Parameter estimation without covariates

Suppose a group of n individuals are asked to rate a product service in a scale
from 1 to m. Let R a random variable and r1, r2, . . . , rn the ratings given by the
individuals. If R ∼ CUB(π, ξ,m), the likelihood function of the CUB model is:
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L(θ) =

n∏
i=1

Pr(R = ri|θ), (2)

where θ = (π, ξ, )> and the associated log-likelihood function is:

`(θ) =

n∑
i=1

log Pr(R = ri|θ)

=

n∑
i=1

log

[
π

(
m− 1

ri − 1

)
ξm−ri(1− ξ)ri−1 + (1− π)

1

m

] (3)

There are not closed forms for maximum likelihood estimates of π and ξ, therefore
we need to use numerical methods (Iannario & Piccolo 2012).

2.2. Parameter estimation with covariates

Suppose a group of n individuals are asked to rate a product service in a scale from
1 to m. Suppose also that for each individual there is additional information such
as age, marital status, salary, among others. This additional information corres-
ponds to t variables denoted by X1, X2, X3, . . . , Xt. The Table 1 shows a summary
of the information available in a CUB model with covariates.

Individual Score X1 X2 X3 · · · Xt

1 r1 x11 x21 x31 · · · xt1
2 r2 x12 x22 x32 · · · xt2
...

...
...

...
...

. . .
...

n rn x1n x2n x3n · · · xtn

Table 1: Illustration of the information of a CUB model with covariates

Assuming that the responses of the n individuals are distributed CUB(πi, ξi,m),
it is possible to model the parameters π and ξ using subsets of the t covariates
shown in the Table 1.

The parameter π for the i-th individual can be modeled using p of the t covariates
as follows:

g(πi) = β>Zi, (4)

where β = (β0, β1, ..., βp)> and Zi = (1, x1i, x2i, . . . , xpi)
>. The link function g(·)

ensures that the values of β>Zi lies within the (0, 1] interval. The most commonly
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choices for the link functions are logit and probit.

In a similar way, the parameter ξ for the i-th individual can be modeled using q
of the t covariates as follows:

g(ξi) = γ>Wi, (5)

where γ = (γ0, γ1, . . . , γq)> and Wi = (1, x1i, x2i, . . . , xqi)
>.

Substituting the expressions 4 and 5 in the expression 1, we have the following
probability mass function:

P (R = ri|Zi,Wi,β,γ) = πi

(
m− 1

ri − 1

)
(1− ξ)ri−1 ξm−ri + (1− πi)

1

m

= g−1
(
β>Zi

)(m− 1

ri − 1

)(
1− g−1

(
γ>Wi

))ri−1
g−1

(
γ>Wi

)m−ri
+
(
1− g−1

(
β>Zi

)) 1

m
(6)

The likelihood function of the CUB model with covariates is given by:

L(θ) =

n∏
i=1

Pr(R = ri|Zi,Wi,β,γ), (7)

with Pr(R = ri|Zi,Wi,β,γ) defined in 6 and θ = (β,γ)
>

.

Again for this case we do not have closed forms to estimate β and γ, so we need
to use numerical methods.

3. cubm package

In this section we present the cubm package and some useful functions made in R
to fit cub models through maximum likelihood estimation.

3.1. Installation

The current version of the cubm package is hosted in github which is a web-based
Git repository hosting service. For installation the user need to use the next code
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that automatically install the devtools package necessary to download the cubm
package.

if (!require('devtools')) install.packages('devtools')

devtools::install_github('fhernanb/cubm', force=TRUE)

require(cubm) # To load the package

3.2. dcub function

The dcub function is used to obtain the probabilities for a cub model given the
parameters π, ξ and m as in expression (1). The structure of the function is as
follows

dcub(x, pi, xi, m, log = FALSE)

The arguments for the function are:

x: vector of quantiles.
pi: uncertainty parameter belongs to (0, 1].
xi: feeling parameter belongs to [0, 1].
m: the maximum value for the response variable.

The following code calculates the probability for the cub(π = 0.4, ξ = 0.7, m = 5)
distribution shown in Figure 1.

dcub(x=1:5, pi=0.4, xi=0.7, m=5)

## [1] 0.21604 0.28464 0.22584 0.15024 0.12324

3.3. rcub function

The rcub function is used to generate random values from a cub distribution given
the parameters π, ξ and m. The structure of the function is as follows

rcub(n, pi, xi, m = 5)

The arguments for the cub function are:

n: number of observations.
pi: uncertainty parameter belongs to (0, 1].
xi: feeling parameter belongs to [0, 1].
m: the maximum value for the response variable.
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The following code generates 20 observations for cub(π = 0.4, ξ = 0.7, m = 5)
distribution. The set.seed function is used to create random numbers that can
be reproduced by the user.

set.seed(12345)

rcub(n=20, pi=0.4, xi=0.7, m=5)

## [1] 3 2 5 4 2 1 2 2 3 3 4 1 3 1 2 2 5 2 4 4

3.4. cub function

The cub function is used to estimate the parameters via maximum likelihood for a
cub model with or without explanatory variables. The structure of the cub function
is as follows:

cub(pi.fo, xi.fo, m, data=NULL, optimizer="nlminb",

pi.link="probit", xi.link="probit")

The arguments for the cub function are:

pi.fo: a “formula” object for π parameter with two parts using a tilde ope-
rator to separate the dependent variable y from the independent variables.
For example, y ∼ x1 + x2 is interpreted as modeling y as a linear function
of x1 and x2, it can be included interactions and polynomials.
xi.fo: a “formula” object for ξ parameter without left part. For example,
∼ x1 + x2 means that we want to model ξ parameter as a linear function
of x1 and x2.
m: maximum value for the response variable, it must be an integer.
shift: minimum value for the response variable, by default is 1.
data: an optional data frame with the response and independent variables.
optimizer: optimizer to find the parameter vector, by default is nlminb but
are available optim and DEoptim from DEoptim package created by Mullen
et al. (2011) that implements the global optimization by differential evolution
(Ardia et al. 2011).
pi.link: link function for model π parameter, could be "probit" or "logit",
by default is "probit".
xi.link: link function for model ξ parameter, could be "probit" or "logit",
by default is "probit".

3.4.1. Example 1

In the next example we simulate 1000 observations from a cub(π = 0.4, ξ =
0.7, m = 5) using the seed 1234. The cub function is used with the formula pi.fo

= y ∼ 1 to indicate the response variable is y, the ∼ 1 in the formula of pi.fo
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and xi.fo indicates that we do not have explanatory variables to model π neither
ξ. The parameter vector for this example is Θ = (π = 0.4, ξ = 0.7)>.

set.seed(1234)

y <- rcub(n=1000, pi=0.4, xi=0.7, m=5)

mod <- cub(pi.fo=y~1, xi.fo=~1, m=5, optimizer='nlminb')

To obtain the summary table for the model mod we can use:

summary(mod)

## ---------------------------------------------------------------

## Fixed effects for probit(pi)

## ---------------------------------------------------------------

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.29616 0.11592 -2.5549 0.01062 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## ---------------------------------------------------------------

## Fixed effects for probit(xi)

## ---------------------------------------------------------------

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.55050 0.06407 8.5922 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## ---------------------------------------------------------------

From the last result we obtain the estimates -0.29616 and 0.55050 for π and ξ
respectively. Note that in the summary table there is the information about the
link function used, for this reason, to obtain the estimated values we need to
calculate Φ(−0.29616) = 0.38355 and Φ(0.55050) = 0.70901 that match with the
true values π = 0.4 and ξ = 0.7, respectively.

3.4.2. Example 2

In the next example we are going to simulate 1000 random variables yi following
the cub model:

yi ∼ cub(πi, ξi, m = 5)

Φ−1(πi) = β0 + β1x1

Φ−1(ξi) = γ0 + γ1x2 (8)

x1 ∼ U(0, 1)

x2 ∼ U(0, 1)
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where the parameter vector is Θ = (β0 = −1, β1 = 1, γ0 = −2, γ1 = 1.5)>. To
simulate the 1000 random variables we fixed the seed to obtain the same outputs,
the code below can be used to simulate the yi.

n <- 1000; m <- 5

b0 <- -1; b1 <- 1

g0 <- -2; g1 <- 1.5

set.seed(123) ; x1 <- runif(n)

set.seed(124) ; x2 <- runif(n)

pi <- pnorm(b0 + b1 * x1) # Using probit link function

xi <- pnorm(g0 + g1 * x2) # Using probit link function

set.seed(12345); y <- rcub(n=n, pi=pi, xi=xi, m=m)

Now, to estimate the parameter vector Θ for the cub model (8) we can use the
next code.

mod <- cub(pi.fo=y~x1, xi.fo=~x2, m=5, optimizer='optim')

summary(mod)

## ---------------------------------------------------------------

## Fixed effects for probit(pi)

## ---------------------------------------------------------------

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.96030 0.16687 -5.7547 8.680e-09 ***

## x1 1.22862 0.25633 4.7931 1.642e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## ---------------------------------------------------------------

## Fixed effects for probit(xi)

## ---------------------------------------------------------------

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.29608 0.26155 -8.7789 < 2.2e-16 ***

## x2 1.84114 0.35999 5.1145 3.147e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## ---------------------------------------------------------------

The cub function returns an object of class cub and the summary function can be
applied to this object to obtain an usual summary table. From the summary we
obtain that Θ̂ = (−0.96, 1.23,−2.30, 1.84)> which is close to the true parameter
vector Θ = (−1, 1,−2, 1.5)>.

Note that in last examples we used two different optimizers, nlminb and optim,
by default cub function uses nlminb.
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4. Simulation study

In this section we present the results from a simulation study to explore the para-
meter estimation procedures for a model without and with covariates. The scena-
rios considered here were taken from the structure given in the application from
last section.

4.1. Simulation study without covariates

To study the estimation procedure without covariates we considered the next mo-
del.

globali ∼ cub(π, ξ, m = 7), with i = 1, 2, . . . , n

π = 0.87 (9)

ξ = 0.17

We considered sample size values of n = 10, 20, . . . , 490, 500. For each n we simu-
lated 1000 samples to estimate π and ξ, then we calculated the mean for π̂ and
ξ̂. To estimate the values of π and ξ we considered the optimizers nlminb, optim
and DEoptim available in the cub function.

The results from this simulation study are shown in the Figure 2. From this figure
we note that the sequence of π̂ and ξ̂ obtain by the cub function goes to the real
value very quickly. We observe that even for small samples, the mean estimated
parameter is very close the target value given by the dotted line. It can be observed
that for n ≤ 30, the blue and orange lines for nlminb and DEoptim respectively,
are quite similar.
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Figure 2: Mean value for π̂ and ξ̂ versus sample size n given the optimizer nlminb,
optim and DEoptim. Dotted lines represent true parameter values.
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4.2. Simulation study with covariates

To study the estimation procedure with covariates we considered the next model

globali ∼ cub(πi, ξi, m = 7), with i = 1, 2, . . . , n

Φ−1(πi) = β0 + β1 × genderi (10)

Φ−1(ξi) = γ0 + γ1 × lagei

The fixed parameters assumed values of β0 = 0.93, β1 = 0.47, γ0 = −0.95 and γ1 =
−0.33. The values for the covariates genderi and lagei where taken from the ori-
ginal dataset univer. We considered sample size values of n = 10, 20, . . . , 490, 500.
For each n we simulated 1000 samples to estimate the parameters, then we calcu-
latde the mean for each estimated parameter. In the same way as in the previous
case, we considered the optimizers nlminb, optim and DEoptim available in cub

function. The results from this simulation study are shown in the Figure 3.
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Figure 3: Mean value for β̂0, β̂1, γ̂0 and γ̂1 versus sample size n given the optimizer
nlminb, optim and DEoptim. Dotted lines represent true parameter values.

From the Figure 3 we note that the sequences for β̂0, β̂1, γ̂0 and γ̂1 tend to go to the
real value (in dotted line) as n increases. It can be observed that mean estimations
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Figure 4: Observed proportion for global satisfaction.

for the intercepts in π and ξ have less variability than mean estimations for the
slopes. From this figure is clear that maximum likelihood estimations for each
parameter go to the real value as n increases.

5. Application

In this section we re-analyzed the univer data from Iannario et al. (2016) related
to a sample survey conducted in 13 faculties of University of Naples in Italy. The
participants were asked to express their opinion about orientation services on a 7
point scale (1 = very unsatisfied, 7 = extremely satisfied). The univer data has
12 variables (faculty, freqserv, age, gender, diploma, residenc, changefa, informat,
willingn, officeho, compete, and global) and 2179 observations, the variable called
global corresponds to the response variable related to global satisfaction. Figure
4 shows the observed proportion for global satisfaction, from this figure we note
that almost 35 % of the participants rated the orientation services with 6 and 31 %
of the participants rated the services with a 7, the participants tend to measure
the service with high values.

The model considered here can be summarised as:

globali ∼ cub(π, ξ, m = 7)

Φ−1(π) = β0 (11)

Φ−1(ξ) = γ0
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To estimate the π and ξ parameters for the global satisfaction variable with the
proposed cubm package we created the model mod0 using the next code.

require(cubm) # Loading the cubm package

mod0 <- cub(pi.fo=global~1, xi.fo=~1, m=7, data=univer)

summary(mod0)

The results for mod0 are shown below. From this output we found that Φ−1(π̂) =

1.118 which implies that π̂ = 0.868, and in a similar way we found that ξ̂ = 0.171.
The model mod0 has a log-likelihood value of −3245.474 with two parameters. In
Figure 5 we observed the proportion for global satisfaction in black line and the
estimated proportion in red line, we can note that the estimated curve follows the
observed curve.

## ---------------------------------------------------------------

## Fixed effects for probit(pi)

## ---------------------------------------------------------------

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.11810 0.05888 18.989 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## ---------------------------------------------------------------

## Fixed effects for probit(xi)

## ---------------------------------------------------------------

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.948689 0.016254 -58.367 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## ---------------------------------------------------------------

Iannario et al. (2016) considered a cub model to explain the parameters π and ξ
as a function of gender and lage respectively, the model can be summarised as:

globali ∼ cub(πi, ξi, m = 7)

Φ−1(πi) = β0 + β1 × genderi (12)

Φ−1(ξi) = γ0 + γ1 × lagei

where global is the response variable with values from 1 to 7, gender = 0 corres-
ponds to man and gender = 1 corresponds to woman, lage is the transformation
of age variable given by lagei = log(agei)− log(age).

To fit the model (12) with the proposed cubm package we used the next code.
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Figure 5: Observed and estimated proportion (with π̂ = 0.868 and ξ̂ = 0.171) for
global satisfaction.

mod <- cub(pi.fo=global~gender, xi.fo=~lage, m=7,

data=univer, optimizer='optim')

summary(mod)

The results obtained from the summary table for model mod are shown next. From
this output we note that the two variables considered gender and lage were signi-
ficant, this model has a log-likelihood value of −3233.465 with four parameters.
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## ---------------------------------------------------------------

## Fixed effects for probit(pi)

## ---------------------------------------------------------------

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.926428 0.074291 12.4702 < 2.2e-16 ***

## gender1 0.467235 0.119935 3.8957 9.79e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## ---------------------------------------------------------------

## Fixed effects for probit(xi)

## ---------------------------------------------------------------

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.949215 0.016243 -58.4399 < 2.2e-16 ***

## lage -0.325423 0.108465 -3.0003 0.002698 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## ---------------------------------------------------------------

From summary table we can write the fitted model as:

globali ∼ cub(π̂i, ξ̂i, m = 7)

Φ−1(π̂i) = 0.926428 + 0.467235× genderi (13)

Φ−1(ξ̂i) = −0.949215− 0.325423× lagei (14)

From expression (13) we obtain that the uncertain parameter 1 − π̂ is 0.1771118
for male and 0.0817097 for female, this means that female tends to respond the
survey with less uncertain than male.

From expression (14) we obtain that the feeling parameter is 1− ξ̂ = Φ(0.949215+
0.325423 × lage), this means that the age is related to feeling in a positive way,
elder people tend to response the survey with more feeling than young people.
Figure 6 shows the relation between feeling (1 − ξ) with age (left panel) and the
transformed age lage (right panel), from both panels we can note that the feeling
increases as age increases.

Figure 7 shows estimated probabilities for global satisfaction given gender and
two selected ages, 25 and 45 years old. From this figure we confirm that older
participants tend to rate the service with upper values and we also note that
there is not evidence of greater uncertain in the responses because the individual
uncertains are 0.17 and 0.08 for male and women respectively.
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Figure 6: Relation between feeling parameter (1 − π) with age (left panel) and
with transformed age (rigth panel).
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Figure 7: Estimated probabilities for participants with 25 years old (left) and 45
years old (right).
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6. Conclusions

This paper addressed the CUB models by the cubm package. We have presented
the CUB models, described how the user can model ordered responses using cubm
package and we have presented practical examples. From the simulation study we
conclude that cubm package fits CUB models in a correct way. Future researches
and implementations in R will focus on residuals, adjustment measures, influence
measures and Bayesian estimation.
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