Cálculo de características geométricas para la calibración de tanques cilíndricos verticales con el uso de técnicas fotogramétricas.

Calculation of geometric characteristics for the calibration of vertical cylindrical tanks with the use of photogrammetric techniques.

Ing. Dayans Rafael Lanz Acosta[.] Grupo Empresarial Geocuba. Geodesa. La Habana. Cuba. Especialista B en Ingeniería. Teléfonos: 78820444, (+535) 8358710. Email: <u>lanza@civilmail.cujae.edu.cu</u> dayanslanz540@gmail.com dlanz@nauta.cu

MSc. Ing.Tomás Enrique Martínez Rojo Universidad Tecnológica de la Habana "José Antonio Echeverría" (CUJAE). La Habana. Cuba. Profesor en el Departamento de Ingeniería Vial de la Facultad de Ingeniería Civil. Teléfonos: 76432797, (+535)3055886. Email: <u>tmrojo670717@gmail.com</u>

Recibido:14-9-18 Aceptado:15-11-18

RESUMEN:

La investigación se centró en comprobar que mediante técnicas fotogramétricas se podían obtener características geométricas para la calibración de esta tipología de tanque. La experimentación se llevó a cabo en los dos primeros rolos de un tanque cilíndrico vertical de Fuel Oil. Las mediciones fueron realizadas por el método geométrico: Método electro-óptico de distancias ordenadas mediante mediciones externas; y la técnica fotogramétrica a partir del estacionamiento de la cámara alrededor del tanque y el análisis de las imágenes en el software PhotoModeler Scanner, para determinar finalmente los radios de la circunferencia por mínimos cuadrados. La investigación arrojó como resultado que la diferencia entre los radios medios obtenidos de la circunferencia del tanque, a nivel horizontal, por ambos métodos no era significativa, por lo que se demostró que la técnica fotogramétrica es una alternativa real para la calibración de tanques de almacenamiento cilíndricos verticales a partir de sus características geométricas.

Palabras claves: calibración, tanques de almacenamiento cilíndrico vertical, técnicas fotogramétricas.

ABSTRACT: The research focused on verifying that by means of photogrammetric techniques, geometric characteristics could be obtained for the calibration of this type of tank. The experimentation was carried out in the first two circles of a vertical cylindrical Fuel Oil tank. The measurements were made by the geometric method: Electro-optical method of distances ordered by external measurements; and the photogrammetric technique from the parking of the camera around the tank and the analysis of the images in the software PhotoModeler Scanner, to finally determine the radii of the circumference by least squares. The investigation showed as a result that the difference between the average radii obtained from the circumference of the tank, at horizontal level, by both methods was not significant, so it was demonstrated that the photogrammetric technique is a real alternative for the calibration of storage tanks vertical cylindrical from their geometric characteristics.

Key words: calibration, vertical cylindrical storage tanks, photogrammetric techniques.

INTRODUCCIÓN

La calibración de tangues de almacenamiento se realiza en Cuba hace más de 100 años. Los métodos de calibración que actualmente se utilizan, métodos geométricos, conllevan un extenso y laborioso trabajo de campo, así como un elevado costo de ejecución. El experimento se llevó a cabo en un tanque cilíndrico vertical, ubicado en la Central Eléctrica UEB Habana 220 cercana a la CUJAE. De los cinco rolos que tiene el tanque, se le realizaron las mediciones sólo a los dos primeros, por razones de seguridad. La fotogrametría ha evolucionado a la par con los avances tecnológicos, incorporando técnicas más eficientes y más fáciles de realizar para la obtención de modelos tridimensionales. La fotogrametría terrestre, se muestra como una alternativa económica para el levantamiento tridimensional, siendo de gran importancia para la ingeniería civil. Los resultados asociados al método geométrico fueron dados por el cálculo de las coordenadas de los puntos de referencia con los errores obtenidos, y el de las marcas sobre la superficie exterior del tanque y por último la determinación de los radios medios de la circunferencia. El procedimiento fotogramétrico arrojó el error de orientación de la cámara y el cálculo de coordenadas de las marcas de cada nivel horizontal, a partir del procesamiento automático de las imágenes mediante el empleo del PhotoModeler Scanner y luego determinó los radios medios de la circunferencia, para compararlos con los del método anterior. Los resultados obtenidos demostraron las potencialidades del software PhotoModeler Scanner para la obtención de coordenadas y dimensiones bastantes certeras en comparación con el método geométrico usado en la investigación, ya que la diferencia entre los radios obtenidos por ambos métodos, no fue significativa. La investigación validó las técnicas fotogramétricas como procedimiento alternativo para la obtención de dimensiones geométricas en la calibración de tanques de almacenamiento cilíndricos verticales.

1. MATERIALES Y MÉTODOS

1.1. Descripción del tanque de almacenamiento cilíndrico vertical y ubicación de las marcas.

El experimento tuvo lugar en el tanque cilíndrico vertical metálico que se muestra en la figura 1a, ubicado en la Central Eléctrica UEB Habana 220, cercano a la Rotonda de la CUJAE. Este tanque cuenta con un total de 5 rolos, cada rolo tiene una altura de 2.2 m, sumando una altura total de 11 m, el diámetro del tanque es de 15,5 m y su perímetro es de 48,7 m. Por no contar con el equipamiento necesario, que garantizara la seguridad del trabajo, se decidió realizar el estudio solamente, para los dos primeros rolos del tanque, de abajo hacia arriba, contando con una altura total de 4,4 m, como se muestra en la figura 1b.

a) b) Figura 1: Vista del tanque de almacenamiento cilíndrico vertical seleccionado: a) imagen real, b) sección de estudio.

Se colocaron las marcas sobre las paredes exteriores del tanque a 1/4 de la altura del anillo por encima del fondo del tanque, a 1/4 de la altura del anillo por encima y por debajo de la primera costura horizontal y a 1/4 de la altura del anillo por debajo de la segunda costura horizontal [1], como se refleja en la figura 2.

Figura 2: Esquema general de la colocación de las líneas de marcas [2].

1.2. Especificaciones técnicas de los equipos principales para ambos métodos.

El método geométrico se basó fundamentalmente en el empleo de la Estación Total representada en la figura 3a y la técnica fotogramétrica con la cámara Nikon D300S mostrada en la figura 3b.

a)

b)

Figura 3: a) Estación total. LEICA FLEXLINE TS02 b) Cámara digital Nikon D300S con lente Nikon 18 - 55 mm.

Tabla 1: Características de la Estación Total LEICA FLEXLINE TS02

MEDICIÓN ANGULAR (Hz, V)							
Precisión	3"						
MEDICIÓN DE DISTANCIAS CON PRISMA							
	Preciso +: 1,5 mm + 2,0 ppm						
Precisión	Preciso rápido: 3,00 mm + 2,0 ppm						
	Tracking: 3,0 mm + 2,0 ppm						
MEDICIÓN DE DISTANCIAS SIN PRISMA							
Precisión	2 mm + 2 ppm						

Datos de la cámara utilizada

Formato: 23,6 x 15,8 mm

Tamaño de la imagen: 4288 x 2848 pixeles (12.1 MP) Distancia focal: 18 mm Resolución: 5,5 µm

1.3. Procedimiento para realizar las mediciones por el método topográfico.

Según [1], el número de estacionamientos para la Estación Total se fijó en 8, marcándose dichos puntos equidistantes alrededor del tanque a una distancia aproximada de 5.5 m de la superficie de este, y procurando de que cada punto quedara frente a dos líneas verticales de marcas en la superficie del tanque como se representa en la figura 5.

Figura 5: Esquema de la colocación de las estaciones sobre el terreno.

Primeramente, se estacionó la Estación Total en el punto 1 y se ubicaron los bastones con prismas en el punto anterior 8 y posterior 2. Con el instrumento en posición directa (LI), se orientó al punto anterior 8 y se midió el ángulo horizontal, la distancia horizontal y el desnivel, girando el instrumento se midieron estos valores en los 8 puntos en la superficie del tanque frente a la estación 1, cerrando con la medición en el punto posterior 2, se giró y transitó el instrumento (LD), volviéndose a medir en los mismos puntos en sentido contrario, finalizando en el punto anterior 1. El procedimiento antes mencionado se conoce como Regla de Bessel, el cual permite evitar equivocaciones ya que las lecturas con anteojo directo (LI) y anteojo inverso (LD) deben cumplir con la condición: $LD = LI \pm 180^{\circ}$

Las medidas de distancia hacia los puntos de estacionamiento anterior y posterior se realizaron con el modo Infrarrojo (IR) y hacia las marcas en la superficie del tanque con el modo Laser (RL). Se repitió este procedimiento en el resto de los estacionados midiéndose la totalidad de las marcas sobre la superficie del tanque (64 marcas).

1.4. Procedimiento para realizar las mediciones por técnica fotogramétrica.

Primeramente, se deben definir los datos iniciales necesarios, relacionados con el elemento a fotografiar, para la planificación de la toma fotográfica. Una vez definidos los datos iniciales es necesario calcular los parámetros necesarios para la realización de la toma fotográfica tales como: distancia de toma de las fotografías, escala de las fotografías, largo y ancho de la foto y la distancia necesaria entre fotos para cumplir con el solape definido, según norma. Los parámetros de la toma fotográfica resultantes fueron los siguientes:

- Solape longitudinal: 78 %
- Distancia: 5,5 m
- Ancho de fotografía: 7,2 m
- Alto de fotografía: 4,8 m
- GSD: 1,7 mm
- Base: 1,3 m
- Cantidad de fotografías: 52

La figura 6 representa el esquema de la toma fotográfica.

Figura 6: Esquema de la toma fotográfica.

Para la toma fotográfica se colocaron sobre el tanque un conjunto de dianas, representadas en la figura 7a y 7b que además de ser reconocidas automáticamente por el software utilizado para el procesamiento de los datos, también sirvieron de guía para el levantamiento por el método geométrico.

Se muestran a continuación los datos relativos a las dianas.

- Radio de la diana: 8,4 mm
- Diámetro del anillo de código: 58,8 mm
- Cantidad de líneas de dianas: 4
- Cantidad de dianas en cada línea: 16
- Cantidad total de dianas: 64
- Distancia entre las dianas de cada línea: 3,0 m
- Distancias desde las costuras horizontales: 0,55 m
- Distancias desde las costuras verticales: > 0,3 m

a) b) Figura 7: Representación de la diana (a) y esquema de colocación de las mismas [2] (b). La figura 8 muestra el estacionamiento de la cámara.

Figura 8: Vista en planta de los estacionados para la toma fotográfica.

1.5. Empleo del software PhotoModeler Scanner en el procesamiento fotogramétrico. A continuación se detalla el procedimiento de trabajo con el software.

- 1- Crear un nuevo provecto [3].
- 2- Importación de las fotografías [3].

Primeramente, es necesario importar las fotografías del proyecto. Es recomendable que las imágenes estén en formato TIF y en caso de que se encuentren en modo vertical, solo se pueden girar dentro del programa. Estas fotografías se encuentran guardadas en el ordenador y serán seleccionadas una a una o el conjunto total de las

fotografías con las que se van a trabajar. Una vez seleccionadas las fotos se asignan los parámetros de la cámara de calibración que se va a utilizar. Estos parámetros se pueden seleccionar de un proyecto que tengamos hecho con anterioridad, en caso de que se halla usado la misma cámara, o se asigna una cámara de la librería, en caso de que sea un proyecto nuevo.

Nota: Las fotografías tienen unas cruces rojas debido a que no se le han asignado ningún punto para su orientación, estas marcas van a ir desapareciendo a medida que se vallan asignando los puntos homólogos en cada una de ellas.

3- Idealización del proyecto [3].

El módulo Idealize toma un proyecto existente y usa los parámetros de la cámara calibrada para producir imágenes idealizadas. El módulo redibuja (píxel a píxel) las imágenes, eliminando la distorsión de la lente. De este modo se obtiene una imagen "plana".

Este módulo no es un requisito para eliminar la distorsión de la lente en todos los proyectos con PhotoModeler, ya que los algoritmos internos cuentan con esta distorsión de las lentes. El objetivo es obtener imágenes ideales cuando son necesarias para paquetes externos. Una vez idealizado el proyecto se procede a marcar los puntos homólogos en cada fotografía.

4- Referencia de los puntos [4].

La esencia del PhotoModeler es referenciar los puntos. El modo de referencia es el que nos permite marcar los puntos homólogos en las diferentes fotos que se usen para el proyecto. Este puede ser automático, seleccionando un conjunto de marcas o manual, seleccionando uno a uno los puntos.

5- Procesamiento del proyecto [4].

Una vez referenciados, correctamente, todos los puntos homólogos en cada una de las fotos se puede procesar el proyecto. Antes del procesamiento las fotografías en la parte superior de la ventana me indican que no están orientadas, es decir que no están situadas en el espacio, pues, una vez terminado el proceso, estas quedarán orientadas, queriendo decir esto que sabremos en un plano 3D desde donde fueron tomadas dichas fotografías. 6- Escalar y rotar el provecto [4].

Esta opción sirve para situar el modelo en el espacio. Luego de que las fotos fueran orientadas es necesario indicar los ejes en el plano tridimensional para que la ubicación de las cámaras sea la real al momento de la toma fotográfica. Para ello es necesario indicar dos puntos de los cuales conocemos la distancia entre ellos, ya sea medido en el terreno con algún instrumento o por medio del procesamiento de los datos obtenidos con la estación total.

7- Obtención de la tabla de puntos [5].

Una vez escalado y rotado el modelo obtenemos un conjunto de tablas que nos aportan los datos necesarios para el cálculo de los radios.

8- Modelo en 3D [5].

Una vez escalado y rotado el modelo, este se ubica perfectamente en el espacio y se puede proceder al texturizado del objeto.

9- Texturizado del modelo [5].

Luego de crear el modelo en 3D se realiza el texturizado. PhotoModeler crea una textura fotorrealista integrando los datos del color de las imágenes en el modelo obtenido. PhotoModeler construye la superficie del modelo tridimensional, obtenido en el paso anterior, y se le asigna a dicho modelo la textura escogiendo la herramienta más adecuada a partir de las características del objeto que se modeló.

2. RESULTADOS

2.1. Resultados obtenidos por el método geométrico.

Con los valores de las mediciones de los puntos de referencia y de las marcas sobre sobre la superficie exterior del tanque, obtenidos en el trabajo de campo a partir de las mediciones realizadas con la Estación Total, se calcularon las coordenadas de los puntos necesarios para la obtención de los radios medios de las circunferencias de cada nivel horizontal establecido.

Cálculo de las coordenadas de los puntos de referencia.

A partir del punto de estacionamiento No.1, al que se le fijaron como coordenadas iniciales: (0.00 ,0.00, 0.00) y del acimut de la línea 1-8: 0° 0' 0.00", se le determinaron las coordenadas al resto de los puntos de referencia (tabla 2). Para ello se realizó el cálculo y ajuste de una poligonal de rodeo (Anexo 1).

PTO	X	Y	Z
1	0.000	0.000	0.000
2	7491.273	-6560.312	44.297
3	16981.670	-5981.364	93.656
4	23405.399	940.212	45.209
5	23224.942	10528.999	-3.325
6	17281.557	17962.796	-50.666
7	6939.191	17377.065	-96.035
8	-0.263	10887.376	-46.526

Tabla 2: Coordenadas de los puntos de estacionamiento en milímetros.

Los errores obtenidos en el cálculo y ajuste de la poligonal de rodeo y sus permisibles se muestran en la tabla 3: Tabla 3: Errores obtenidos y sus permisibles.

ERRORES		PERMISIBLES	OBSERVACIONES
Error de cierre angular (")	-20.5	± 28,3	ep= 10" √n
Precisión	1:7 300	1: 5 000	

Como puede apreciarse los errores obtenidos se encuentran dentro de los permisibles establecidos.

Cálculo de las coordenadas de las marcas sobre la superficie exterior del tanque.

Conocidas las coordenadas de los puntos de referencia y con los valores medidos de los ángulos horizontales, distancia horizontal y desnivel a cada una de las marcas, se calcularon las coordenadas de estas.

A los acimutes de las líneas del punto de referencia, desde el que se midió la marca, al punto de referencia anterior, se le suma el ángulo horizontal medido, obteniendo el acimut a la marca. Con los acimutes calculados y las distancias horizontales medidas se determinaron las coordenadas horizontales (x, y) de todas las marcas sobre la superficie del tanque. Para determinar la altura (z) se suma el desnivel medido a la altura del punto de referencia.

La tabla 4 muestra las coordenadas calculadas para las 64 marcas situadas en la superficie exterior del tanque, los puntos K1, K2 y L2 no pudieron bisecarse por encontrarse detrás de obstáculos y se le determinaron las coordenadas promedio del resto de las marcas de la línea vertical para las coordenadas horizontales (x, y) y del nivel horizontal para la altura (z).

Tabla 4: Coordenadas de las marcas de cada nivel horizontal en mm, determinadas por el método topográfico.

	NIN	el horizonta	11	Nb	el horizonta	12	Nb	vel horizonta	13	Nb	el horizonta	14
A	3974.745	3686.278	881.000	3983.424	3649.567	1987.000	3986.149	3642.886	3072.000	3992.837	3645.943	4223.500
B	5355.649	799.531	877.000	5383.957	768.301	1979.000	5375.829	768.631	3099.000	5369.309	782.301	4216.000
С	7609.503	-1208.618	908.297	7583.051	-1195.097	2024.797	7653.345	-1233.277	3115.297	7666.349	-1237.190	4258.797
D	10409.839	-2184.891	952.297	10391,467	-2185.883	2038.297	10447.245	-2202.218	3074.797	10449,425	-2204.302	4275.297
E	13427.786	-2033.967	1036.656	13423.904	-2040.159	2167.656	13436.956	-2061.385	3197.656	13384,246	-2094.700	4404.156
F	16105.359	-789.803	1021.656	16081.465	-809.118	2205.656	16098.272	-797.598	3198.656	16111.908	-787.181	4394.156
G	18166.872	1431.355	1001.209	18154.564	1417.695	2215.709	18160.167	1418.570	3105.709	18200.166	1411.220	4391.709
н	19208.764	4193.572	1009.209	19204.008	4177.607	2175.209	19207.916	4200.636	3123.209	19236.318	4248.954	4406.209
1	19116.535	7215.651	952.675	19118.111	7209.719	2175.675	19114.328	7223.972	3145.675	19109.753	7211.317	4371.675
J	17932.187	9930.378	967.675	17958.863	9891.714	2100.675	17913.766	9960.636	3188.675	17879.588	10004.758	4339.675
ĸ	15774.307	12020.997	923.897	15774.307	12020.997	2083.468	15765.118	12030.550	3139.834	15783.496	12011.444	4219.834
L	13049.609	13140.383	915.334	13075.318	13133,433	2066.611	13087.234	13133,421	3180.334	13089.111	13126,496	4245.834
м	10042.053	13129.732	842.966	10056.241	13138.891	1970.966	10078.164	13158.841	3089.966	9873.622	13108.399	4170.466
N	7295.045	12024.381	839.966	7336.098	12061.363	1952.966	7384.009	12095.263	3178.966	7216.520	11977.182	4225.466
0	5132.518	9926.211	844.474	5126.178	9908.826	2042.474	5134.525	9915.254	3119.474	5141.325	9913.541	4199.474
P	3946.283	7208.220	847,474	3946.844	7224.240	2014.474	3940.654	7223.453	3027,474	3943.545	7206.750	4230,474

Determinación de los radios medios de las circunferencias.

Por último, procedimos al cálculo de los radios medios de cada circunferencia, a partir de las coordenadas de todos los puntos de cada nivel horizontal, por el método de los mínimos cuadrados [2] (Anexo 2).

Para ello se utilizó Microsoft Excel, donde se programó una macro para realizar las iteraciones requeridas por el método de los mínimos cuadrados, en la tabla 5 se muestran los resultados obtenidos para cada nivel horizontal. Tabla 5: Parámetros geométricos de cada nivel horizontal obtenidos por el método geométrico.

	Nivel Hz 1	Nivel Hz 2	Nivel Hz 3	Nivel Hz 4
a (mm)	11537	11536	11536	11535
b (mm)	5506	5506	5504	5506
r (mm)	7776	7777	7781	7782

Dónde:

(a, b) – coordenadas del centro de la circunferencia media.

r – radio de la circunferencia media.

2.2. Resultados obtenidos por el método fotogramétrico.

Como resultado del procesamiento fotogramétrico de las imágenes obtenidas de la superficie del tanque en todo su perímetro, se obtuvieron las coordenadas de todas las marcas y sus errores. Además, se obtuvo el modelo 3D del segmento del tanque estudiado, con la textura de las imágenes correspondientes.

Procesamiento fotogramétrico de las imágenes.

Una vez añadidas las imágenes al proyecto, el programa toma de los metadatos de las imágenes los parámetros de la cámara utilizada, necesarios para la orientación interior. Se marcan en cada imagen las dianas ubicadas sobre la superficie del tanque, el software posee herramientas que facilitan esta laboriosa tarea, reconociendo automáticamente las dianas por su anillo de código.

Marcado todos los puntos en las imágenes correspondientes, procesamos el proyecto, dando como resultado la orientación del mismo, es decir la posición espacial de cada cámara (orientación exterior) respecto a los puntos medidos.

El error de la orientación obtenido fue de 0.973 pixeles, inferior a la unidad como se establece en la literatura.

Seguidamente procedimos a orientar y escalar el modelo, marcando parejas de puntos e introduciendo la distancia entre ellos medida en la superficie del tanque.

Realizado este importante paso obtenemos las coordenadas de todas las marcas, así como su evaluación de la exactitud (Anexo 3). En la tabla 6 se muestran las coordenadas de las marcas sobre la superficie exterior del tanque determinadas por el método fotogramétrico.

Con el modelo orientado y escalado procedimos a texturizarlo a partir de las imágenes de la superficie (Anexo 4), este modelo puede ser exportado a diferentes formatos 3D para su tratamiento y análisis posterior.

	Nh	vel horizonta	11	NI	vel horizonta	1 2	Nb	vel horizonta	ni 3	N	vel hortzonta	14
A	-14954.141	-6988.261	-615.411	-15002.617	-7008.866	496.147	-128.198	-9967.248	1497.615	-7851.618	-2352.679	2734.928
В	-13309.111	-4573.431	-612.382	-13249.864	-4512.644	516.389	-850.552	-7057.266	1512.567	-13460.486	4687.462	2763.438
С	-62.487	-9374.620	-604.050	-4907.970	-2968.195	532.286	-2498.478	-4571.343	1575.019	-10760.491	-2942.289	2767.501
D	-15601.487	-9974.620	-604.050	-13113.144	-15900.903	546.290	-610.815	-12917.687	1582.602	-5024.981	-2951.029	2776.970
Ε	-7360.271	-2371.341	-597.566	-10564.303	-17440.629	550.295	-4568.391	-17172.484	1596.383	-15738.612	-9974.620	2778.020
F	-10840.763	-2959.693	-595.164	-4549.366	-17155.888	556.152	-2168.943	-15455.535	1597.304	-570.361	-12801.970	2787.353
0	-2161.286	-4755.892	-594.395	-7733.534	-17928.299	560.208	-15192.274	-12923.854	1602.967	-10408.322	-17483.049	2792.209
н	-642.998	-7008.684	-589.738	-2215.714	-15425.635	560.581	-4968.447	-2891.656	1615.716	-7427.129	-17877.664	2797.370
1	-15076.772	-12901.260	-580.652	-777.909	-6897.207	562.969	-13137.777	-15833.628	1639.042	-15137.921	7113,298	2801.320
J	-621.031	-12983.193	-580.348	-15147.234	-12908.723	581.074	-7871.544	-2372.319	1640.638	-13152.791	-15844.463	2802.363
к	-4666.946	-3012.925	-574.575	-860.998	-12928.045	587.305	-7447.352	-17860.108	1649.751	-2473.124	4556.382	2803.176
L	-4472.126	-17089.979	-565.967	-15670.247	-9991.217	590.857	-13280.135	-4551.317	1652.726	-824.064	-7030.198	2805.389
м	-2273.034	-15479.860	-556.821	-8453.122	-2418.838	592.010	-10387.239	-17480.624	1668.505	-4545.007	-17193.891	2810.354
N	-13196.972	-15731.050	-550.956	-177.991	-9577.285	593,630	-15714.628	-9978.482	1680.565	-88.333	-9662.342	2821.140
0	-7892.339	-17866.448	-535.102	-2410.823	-4610.233	606.601	-10752.284	-2955.668	1682.707	-15214.384	-12945.043	2822.238
Ρ	-10581.341	-17375.719	-530.619	-10968.657	-3000.122	609.186	-15032.011	-8931.133	1738.648	-2288.069	-15517.753	2838.310

Tabla 6: Coordenadas de las marcas de cada nivel horizontal en mm, determinadas por el método fotogramétrico.

Determinación de los radios medios de las circunferencias.

Con las coordenadas de los puntos obtenidas en PhotoModeler, se determinaron los parámetros geométricos de las circunferencias medias de cada nivel horizontal, de forma análoga a lo explicado para el método topográfico. En la tabla 7 se muestran los resultados obtenidos.

Tabla 7: Parámetros geométricos de cada nivel horizontal obtenidos por el método fotogramétrico.

	Nivel Hz 1	Nivel Hz 2	Nivel Hz 3	Nivel Hz 4
a (mm)	-7 905	-7 904	-7 908	-7 906
b (mm)	-10 147	-10 141	-10 141	-10 143
r (mm)	7 771	7 770	7 773	7 786

2.3. Comparación de los radios obtenidos por ambos métodos.

Obtenidos los parámetros geométricos de las circunferencias medias de cada nivel horizontal, obtenidos por ambos métodos, procedimos a comparar los mismos, obteniendo los resultados que se muestran en la tabla 8: Tabla 8: Comparación de los radios y sus diferencias en mm.

Nivel Hz	Método topográfico	Método fotogramétrico	Diferencia
1	7 776	7 771	5
2	7 777	7 770	7
3	7 781	7 773	8
4	7 782	7 786	-4

3. DISCUSIÓN

En el cálculo y ajuste de la poligonal de rodeo, existieron sus imprecisiones, ya que las estaciones no se encontraban exactamente alineadas alrededor del tanque, es por eso que el error de cierre angular (-20.5"), aunque está dentro del permisible (± 28,3"), se encuentra cerca del extremo. Para el cálculo de los parámetros geométricos, coordenadas del centro de la circunferencia y radio medio de la circunferencia, las diferencias en cada nivel horizontal estuvieron dadas por las pequeñas irregularidades en la superficie del tanque. El posicionamiento de la cámara, tuvo también sus imprecisiones, reflejándose luego en el error de orientación de

la misma de 0.973 pixeles, por debajo de 1.0, por norma. Esto fue debido a que la cámara no se colocó encima de un trípode o soporte, sino que fue sujetada manualmente en cada posición. Un mal posicionamiento de la cámara, traería consigo que no se cumpliera el porcentaje de solape adecuado o la altura de la cámara, y por consiguiente el software presentaría coordenadas erróneas, por lo que el resultado final no sería el esperado, alejándose de la realidad.

Las coordenadas de los centros de las circunferencias medias (a, b) de los métodos empleados, no pudieron compararse por estar referidas a distintos sistemas de referencia. Los resultados obtenidos demuestran las potencialidades del software PhotoModeler Scanner para la obtención de coordenadas y dimensiones precisas, en comparación con los métodos geométricos usados para la calibración de tanques cilíndricos verticales. Como pudo apreciarse las diferencias entre los radios medios, para cada nivel horizontal, es pequeña, por lo que se puedo garantizar que la técnica fotogramétrica puede utilizarse en la calibración de tanques cilíndricos verticales. Además, es un software que brinda ventajas para el análisis y tratamiento de diversas estructuras, ya que nos da la posibilidad de texturizarlas y crear su modelo 3D a partir de la nube de puntos (Anexo 5).

4. CONCLUSIONES

La calibración de tanques cilíndricos verticales de almacenamiento de gran capacidad reviste gran importancia económica, pues tomando como base sus resultados se establecen la contabilidad y los inventarios de los productos. Para la realización de esta actividad de control metrológico en nuestro país, las normas ISO constituyen una guía indispensable para la obtención de resultados precisos y confiables. Los equipos utilizados en la calibración deben ser equipos con características de la más alta calidad metrológica, pero su elevado costo unido a la ardua labor en el trabajo de campo, nos impulsó a la investigación y desarrollo de técnicas alternativas. El desarrollo alcanzado por la fotogrametría, ha permitido lograr grandes avances no solo en el campo de la topografía también en el levantamiento tridimensional de objetos cercanos, explorando así otras esferas de la ingeniería civil. PhotoModeler Scanner presenta grandes potencialidades para la creación de modelos tridimensionales de objetos cercanos, aportando detalles y características muy exactos a la realidad, avalado por la calidad de los resultados obtenidos en el presente trabajo.

5. ANEXOS

Anexo 1: Cálculo y ajuste de la poligonal de rodeo para determinar las coordenadas de los puntos de referencia.

РТО	AN	G. ME	DIDO	AN	g. coi	RREG.		ACIMI	JT	DIST (mm)	DX	DY	DZ	DX Corr	DY Corr	DZ Corr	х	Y	Z
	0	I	п	0	I		0	•	11										
8																			
							0	0	0.0										
1	131	12	51.0	131	12	53.6											0.000	0.000	0.000
							131	12	53.6	9958.25	7491.03	-6561.34	43.45	7491.273	-6560.312	44.297			
2	135	17	57.5	135	18	0.1											7491.273	-6560.312	44.297
							86	30	53.6	9507.75	9490.17	577.97	48.55	9490.397	578.948	49.359			
3	136	21	3.5	136	21	6.1											16981.670	-5981.364	93.656
							42	51	59.7	9442.25	6423.50	6920.60	-49.25	6423.729	6921.576	-48.447			
4	136	3	11.0	136	3	13.7											23405.399	940.212	45.209
							358	55	13.2	9589.50	-180.69	9587.80	-49.35	-180.457	9588.787	-48.534			
5	142	25	53.5	142	25	56.1											23224.942	10528.999	-3.325
							321	21	9.3	9517.00	-5943.61	7432.81	-48.15	-5943.385	7433.797	-47.340			
6	125	23	58.0	125	24	0.6											17281.557	17962.796	-50.666
							266	45	9.9	10359.25	-10342.62	-586.80	-46.25	10342.366	-585.730	-45.369			
7	140	9	41.0	140	9	43.6											6939.191	17377.065	-96.034
							226	54	53.4	9502.00	-6939.68	-6490.67	48.70	-6939.454	-6489.689	49.508			
8	133	5	4.0	133	5	6.6											-0.263	10887.376	-46.526
							180	0	0.0	10888.50	0.00	-10888.50	45.60	0.263	-10887.376	46.526			
1																	0.000	0.000	0.000

Anexo 2: Determinación de los parámetros geométricos de la circunferencia por el método de los mínimos cuadrados. (Ejemplo).

"

Pto	х	У	x - a	y - b	ri	(x - a)/ri	(y - b)/ri	v	v^2
1	3 974.745	3 686.278	-7 562.461	-1 819.734	7 778.319	-0.972	-0.234	1.798	3.232
2	5 355.649	799.531	-6 181.557	-4 706.480	7 769.337	-0.796	-0.606	-7.184	51.606
3	7 609.503	-1 208.618	-3 927.703	-6 714.629	7 779.016	-0.505	-0.863	2.496	6.228
4	10 409.839	-2 184.891	-1 127.366	-7 690.902	7 773.090	-0.145	-0.989	-3.431	11.770
5	13 427.786	-2 033.967	1 890.580	-7 539.978	7 773.388	0.243	-0.970	-3.132	9.812
6	16 105.359	-789.803	4 568.154	-6 295.814	7 778.516	0.587	-0.809	1.995	3.979
7	18 166.872	1 431.355	6 629.667	-4 074.656	7 781.729	0.852	-0.524	5.208	27.126
8	19 208.764	4 193.572	7 671.558	-1 312.439	7 783.014	0.986	-0.169	6.493	42.158
9	19 116.535	7 215.651	7 579.330	1 709.639	7 769.756	0.975	0.220	-6.765	45.768
10	17 932.187	9 930.378	6 394.981	4 424.366	7 776.298	0.822	0.569	-0.223	0.050
11	15 774.307	12 020.997	4 237.101	6 514.986	7 771.619	0.545	0.838	-4.901	24.024
12	13 049.609	13 140.383	1 512.403	7 634.371	7 782.736	0.194	0.981	6.216	38.634
13	10 042.053	13 129.732	-1 495.152	7 623.720	7 768.950	-0.192	0.981	-7.571	57.313
14	7 295.045	12 024.381	-4 242.161	6 518.370	7 777.215	-0.545	0.838	0.694	0.482
15	5 132.518	9 926.211	-6 404.687	4 420.200	7 781.914	-0.823	0.568	5.393	29.088
16	3 946.283	7 208.220	-7 590.923	1 702.208	7 779.436	-0.976	0.219	2.915	8.496
	186 547.054	88 489.410			124 424.334	0.251	0.051		23.984

Anexo 3: Coordenadas de las marcas determinadas por el método fotogramétrico con sus respectivos errores (Muestra representativa para 25 marcas de 64 sobre el tanque).

ld	Fotos	X(mm)	Y (mm)	Z (mm)	Precisión X (mm)	Precisión Y (mm)	Precisión Z (mm)
1	1,2,3,50,51,52	-7427.12899	-17877.6641	2797.37023	1.94046295	2.97618732	2.02018022
2	1,2,3,50,51,52	-7447.352	-17860.108	1649.75063	1.93849723	2.27413423	1.535475006
3	1,2,3,50,51,52	-7733.53361	-17928.299	560.208152	1.13445185	2.02009967	1.709877946
4	1,2,3,50,51,52	-7892.33934	-17866.448	-535.101557	1.34343086	2.06688374	1.009536072
5	1,7,2,5,3,4,6,52	-4545.00743	-17193.8912	2810.35413	1.74036417	1.19947877	1.033737982
6	1,7,2,5,3,4,6,52	-4568.39091	-17172.4844	1596.38289	1.53781429	1.70156156	1.871017291
7	1,7,2,5,3,4,6,52	-4549.36645	-17155.8879	556.151882	1.62105427	1.61993807	1.177987259
8	1,7,2,5,3,4,6,52	-4472.12645	-17089.9786	-565.967331	1.87441092	1.73381927	1.12019036
9	7,9,2,5,3,4,6,8,10	-2288.06909	-15517.7528	2838.30965	1.29743971	1.19896577	1.59579552
10	9,2,5,3,4,6,8,10	-2168.94313	-15455.5348	1597.3045	1.83076496	1.95330283	1.713525683
11	7,9,2,5,3,4,6,8,10	-2215.71395	-15425.6349	560.581372	1.73316981	1.82814577	1.064831501
12	7,9,2,5,3,4,6,8,10	-2273.03388	-15479.8604	-556.821304	1.94842251	1.98737047	1.95524407
13	7,9,11,12,14,5,6,8,10,13	-570.360693	-12801.9704	2787.35322	1.90077133	1.35719187	1.171526719
14	7,9,11,12,14,5,6,8,10,13	-610.814503	-12917.6869	1582.60154	1.30999352	1.29141549	1.498896897
15	7,9,11,12,14,5,6,8,10,13	-660.998458	-12928.045	587.305179	1.11681355	1.36276482	1.120436502
16	7,9,11,12,14,5,6,8,10,13	-621.030649	-12983.1932	-580.347956	1.28669517	1.52235033	1.182685129
17	9,11,12,14,8,10,13,18	-88.333068	-9662.34194	2821.13999	2.79745149	1.40004989	1.321286997
18	9,11,12,14,10,13,18	-128.197726	-9967.24838	1497.61469	2.43727813	1.47271662	1.537398816
19	9,11,12,14,10,13,18	-177.991382	-9577.28469	593.630198	2.44136304	1.56576149	1.120849077
20	9,11,12,14,10,13,18	-62.4868774	-9374.62032	-604.050356	2.74633268	1.74549694	1.090289278
21	14,19,16,17,20,13,15,18,21,22	-824.064255	-7030.19776	2805.38868	1.91021135	1.16019338	1.53294778
22	14,19,16,17,20,13,15,18,21,22	-850.552012	-7057.26581	1512.55749	1.18785485	1.69935471	1.232663874
23	14,19,16,17,20,13,15,18,21,22	-777.909319	-6897.20721	562.968708	1.74769174	1.83280173	1.614750406
24	14,19,16,17,20,13,15,18	-642.99775	-7008.68367	-589.735965	2.77253869	1.84634843	1.009757553
25	19,25,16,17,20,23,15,18,21,22,24,26	-2473.12421	-4556.3817	2803.17565	1.45671246	1.35520969	1.59833706

Anexo 4: Modelo tridimensional del segmento del tanque estudiado.

Anexo 5: Diferentes vistas de la nube de puntos del tanque con posicionamiento de la cámara.

6. REFERENCIAS

- 1. ISO, ISO 7507-5, in Petroleum and liquid petroleum products —Calibration of vertical cylindrical tanks. Part 5: External electro-optical distance-ranging method. 2000. p. 4-8.
- 2. ISO, ISO 7507-3, in Petroleum and liquid petroleum products Calibration of vertical cylindrical tanks Part 3: Optical-triangulation method. 2006. p. 7-15.
- 3. Photomodeler. *Tutoriales.* Available from: http://www.photomodeler.com/tutorialvids/media/DSMWalkthroughSM/DSMSmartMatch.html.
- 4. Photomodeler. *Tutoriales sobre modificación de puntos.*; Available from: <u>http://www.photomodeler.com/tutorialvids/media/ModifyPointMesh/ModifyPointMeh.html</u>.
- 5. Photomodeler. *Tutoriales sobre edición de puntos del mallado.*; Available from: <u>http://www.photomodeler.com/tutorialvids/media/PointMeshEdit/PointMeshEdit.html</u>.