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RESUMEN / ABSTRACT 
In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented. 
Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good 
solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution 
space. 
Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have 
demonstrated very good performance as global optimizers in many types of applications, including inverse problems. 
In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography. 
Keywords: Chromatography, Genetic Algorithms, Inverse problems, Parameter estimation. 
 
En el proceso de cromatografía se presentan problemas inversos relacionados con la estimación de parámetros y la 
optimización del proceso. 
Los métodosmetaheurísticos son conocidos como algoritmos aproximados de propósito general que buscan y encuentran 
satisfactoriamente buenas soluciones con un costo computacional razonable. Estos métodos son procesos iterativos que 
realizan una búsqueda robusta en un espacio de solución. 
Los algoritmos genéticos son técnicas de optimización basadas en los principios de la genética y la selección natural. Han 
demostrado un buen rendimiento como optimizadores globales en varios tipos de aplicaciones, incluyendo los problemas 
inversos. 
En este trabajo se analiza la efectividad de los algoritmos genéticos para estimar parámetros en la cromatografía líquida de 
columna. 
Palabras Clave: Algoritmos Genéticos, Estimación de Parámetros, Problemas Inversos, Cromatografía. 
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INTRODUCTION  
Liquid chromatography (LC) is a common separation method very important in chemistry, pharmaceutical and 
biotechnological industries. It is used to isolate one or more compounds in a mixture. In LC, a sample of molecules are 
injected into a column of adsorbing porous material (stationary phase), frequently silica, and a liquid (mobile phase) is 
pumped through the column, and the different kinds of molecules are distributed differently between the two phases1-3. The 
structureof a chromatographic column is shown in figure 1. 

 

Figure 1 Anatomy of a chromatographic column.4 

In LC, numerical values of several parameters have to be well estimated. Since geometrical and physical characteristics of 
the column and of the adsorbent particles are usually known, other parameters like adsorption equilibrium, mass transport 
and axial mixing parameters have to be estimated, usually through experimental measurements. 
Parameters like film mass transfer coefficient, axial dispersion coefficient and effective diffusivity are often not available 
from literature, or not easily measured by experiments. Nevertheless, they can be estimated with certain accuracy. 
Opportunely, rate models are not very sensitive to mass transfer parameters. Errors up to a certain degree do not affect the 
outcome largely.4 
 

MATHEMATICAL MODELING OF LIQUID CHROMATOGRAPHY 
Consider a fixed-bed adsorption column packed with uniform porous, spherical and solid adsorbents. The process is 
supposed isothermal and there is no concentration gradient in the radial direction of the column. Another assumption is that 
there exist local equilibrium for each component between the pore surface and the liquid phase in the macropores inside 
particles. 
Under these suppositions, two differential equations are used to modeling the process of chromatography in this work.4,6 
Continuity Equation in the Flowing Mobile Phase 
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The flowing mobile phase equation is: 
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where ���  is the bulk-fluid phase concentration of component �, ��� is the axial dispersion coefficient of component �, Z is 
the axial coordinate,� is the interstitial velocity,�  is the bed void volume fraction, �� is the film mass transfer coefficient of 
component � and �
 is the particle radius. 

Continuity Equation inside the Macropores 

The particle phase equation in spherical coordinates is: 
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where�
� is the concentration of component � in the stagnant fluid phase inside the particle macropores, �
� � is the 
concentration of component � in the solid phase of particle (based on unit volume of particle skeleton), �
 is the particle 
porosity, �
� is the effective diffusivity of component �, porosity not included and � is the radial coordinate for particle. 

Boundary (B.C.) and initial(I.C.) conditions 

The column is initially equilibrated and the initial state may be represented by the followingequations: 
 At 
 � 0,  ��� � ���	0, ��  �
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Dimensionless equations 

Let us define the following dimensionless terms: 
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The Peclet number (234�) reflects the ratio of the convection rate to the dispersion rate while the Biot number (5��) reflects 
the ratio of the external film mass transfer rate to the intraparticle diffusion rate. Parameters 6� and 8� are dimensionless 
constants. 
The equations model becomes: 
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Using the Langmuir isotherm, the model becomes nonlinear. For such a nonlinear multicomponent model, there is no 
analytical solution. These equations must be solved numerically. 

Model Solution  

A robust and efficient numerical procedure has been developed byGu4,6to solve the system. First, the model is converted to 
a dimensionless model. Later, the spatial axes, 1and 0, are discretized. 
The bulk-fluid phase equation is discretized using the finite elements method (FE) and the particle equation using 
orthogonal collocation method (OC). 
Solution to the ODE system 
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Finally, if ;1 quadratic nodes are used for z-axis in the bulk fluid phase equation and ;0 interior OC points are used for the 
 r-axis in the particle phase equation, the discretization procedure gives a total of ;<;1	;0 � 1� equations that are solved 
simultaneously by any of the stiff ordinary differential equations solver (function ode15s from MATLAB is used in the 
simulation). 
 

PARAMETER ESTIMATION 
The proposed technique assumes a first principle model structure where some of the parameters are unknown. 
The identification objective consists of finding a set of parameters (ζ>) which minimizes differences between the real 
response vector of the process (?	
�) and the model output vector (?@	
�). A cost function for a minimization in a time 
intervalA0B, 
C�, known as Sum of Squared Errors, is: 
 

D	E� � F!?�	G� � ?@�	G�"�H

I�:
 

 
where; is the number of samples, ?�	G�the component i of vector ?	G� and ?@�	G� the component i of vector ?@	G�. 
Once the cost function is established, it is necessary to choose an optimization technique. For complicated models 
(nonlinearities, saturation, high order, etc.) the optimization problem can be very complicated, and then a powerful 
optimization technique is required.Genetic Algorithm is a very good candidate for this role, even more so if there is no 
restriction on computational cost (it is an off-line identification). 
 

PARAMETER ESTIMATION BASED ON GENETIC ALGORITHMS 
Genetic algorithms method (GA) is an optimization technique based on the principles of genetics and natural selection. It 
was pioneered by J. Holland and his collaborators in the years 1960 and 19707. This technique is based on applying natural 
selection laws onto a population to achieve individuals that are better adjusted to their environment. 
A population is a set of points in the search space. Each individual of the population represents a point in that space by 
means of his chromosomes. The adaptation degree of the individuals is given by the objective function. 
The evolution mechanism of individuals is achieved by genetic operators. The usual operators are: 

• Selection: its main goal consists of selecting the chromosomes to integrate the next population (these would depend 
on the cost function for each individual). 

• Crossover: new individuals are generated and integrated by combining the chromosomes of two individuals. 
• Mutation: randomly varying of some part of the chromosome of an individual in the population generates new 

individuals. 
GA implementation have some inherent parameters such as size population, number of generations, crossover and mutation 
probability. There are others parameters that have to be determined before the operation, but definitive general approaches 
do not exist. These algorithms should work in a wide interval of their parameters, but with differences in the efficiency. 
Another aspect to consider in genetic algorithms is the fitness function, which offers information about the quality from the 
possible solutions to a problem. Execution parameters and fitness function define the genetic algorithms completely. 
A possible method for parameters estimation based on genetic algorithms, according to the previous algorithm of inverse 
solution of a partial differential equations system, can be: 

• Generate an initial population of individuals in the genetic algorithms, which represent possible values of the 
parameters. 

• Execute the solution algorithm of the partial differential equation for each individual in a sequential way. 
• Compare the result of solution algorithm with the simulated concentration in different instants, assigning to each 

individual a fitness value, according to the grade of correspondence. 
• Select the best individuals to create the next generation, considering the metric established previously. 
• When the stopping criterion is satisfied, stop the genetic algorithms. 
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Parameter estimation based on Genetic Algorithms in Liquid Chromatographic model 

In chromatography models, the objective is to estimate the parameters related with protein mass transfer as �, ��and �
and 
particle porosity (�
). Protein concentration in the liquid phase (*�) is the variable to be simulated. 
In the genetic algorithms, each individual (group of parameters selected) represents a solution to the defined problem. In 
this case, the codification of the parameters is A� �� �
 �
J. 
 

RESULTS AND DISCUSSION 
All calculations were performed on a PC with a 1,67 GHz Intel Core 2 Duo processor and 1 GB of internal memory. The 
solver and estimation routines were implemented in MATLAB 7.6 (R2008a), over Windows 7. 
In the GA implemented, a tournament selection scheme by two individuals was used. A uniform crossover operator is 
applied with a probability of 0,95 and a uniform mutation operator where each individual has a probability 0,05 of being 
mutated. Population size is 20. 
For simulation, synthetic data were generated running the direct solution of the model. Parameters values were estimated in 
ten runs of the algorithm with equal operation characteristics. The results are presented in Table 1 and Table 2. In figures 1 
and2 is shown breakthrough curves resulting for average estimated values. 
 
Table 1.Best, worst and average estimated values with noiseless data. 
 

 L	*M/M�O� PQ	*M�/M�O� PR	*M�/M�O� SR Fitnessfunction 
Exact 0,01670 0,000200 0,009600 0,400 0,000 
Bestparameter set 0,01699 0,000228 0,008819 0,411 4,339·10-4 
Worstparameter set 0,01903 0,000306 0,009656 0,381 4,884·10-3 
Average 0,01798 0,000218 0,009203 0,401 3,170·10-4 

 
Table 2.Best, worst and average estimated values with 2% noisy data. 
 

 L	*M/M�O� PQ	*M�/M�O� PR	*M�/M�O� SR Fitnessfunction 
2% Noisydata 0,01670 0,000200 0,009600 0,400 6,286·10-2 
Bestparameter set 0,01971 0,000069 0,007991 0,393 1,881·10-3 
Worstparameter set 0,01316 0,000044 0,006775 0,546 1,408·10-1 
Average 0,01577 0,000132 0,008652 0,424 3,576·10-3 
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Figure 2Breakthrough curves (up) and error (down) for real and estimated parameters with GA. 

 

Figure 3 Breakthrough curves (up) and error (down) for real and estimated parameters with GA. (2% noisy data) 

 
The time was approximately 30 minutes per run, with 390 evaluations of the fitness function. The method obtains a 
relatively accurate. 
An improvement of the solution is to use a hybrid method, implying a considerable lower computational effort than simple 
genetic algorithm, with accurate results. 
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CONCLUSIONS 
Liquid chromatography is a complex process, where numerical values of several parameters have to be well estimated. 
Genetic algorithms are efficient global optimizers, and they demonstrate their strength in parameters estimation. 
In this work, a simple genetic algorithm was used to estimate four parameters in the liquid chromatography model. Its 
implementation was made in MATLAB. Ten runs of the method were made, and relatively accurate results were obtained. 
In further works, hybrid methods will be applied to decrease the computational effort. 
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