
Revista Colombiana de Computación, 2018, Vol 19, No. 1, pp. 39-55
https://doi.org/10.29375/25392115.3228

A Tangible System for Learning Relational Algebra

Un sistema tangible para el aprendizaje de álgebra relacional

Antonio Xohua-Chacón1 , Edgard Benítez-Guerrero1 , Carmen Mezura-Godoy1

1 Faculty of Statistics and Informatics, Universidad Veracruzana, Xalapa, Veracruz, México
axohua@uv.mx, edbenitez@uv.mx, cmezura@uv.mx

(Received: 1 December 2017; Accepted: 17 January 2018)

Resumen. Las interfaces tangibles de usuario (TUIs) son aquellas en donde el usuario interactúa con
un sistema digital a través de la manipulación directa de objetos físicos (tokens), ligados
directamente a cierta funcionalidad/datos dentro del sistema, por lo que su manipulación afecta el
comportamiento del sistema. Este artículo presenta TanQuery, un sistema tangible para ayudar en el
proceso de aprendizaje de Algebra Relacional. TanQuery incorpora componentes de detección y
seguimiento de tokens, para analizar y ejecutar árboles de consulta. El sistema fue probado por
estudiantes universitarios y, como se puede observar por los resultados obtenidos, ellos encontraron
útil y agradable este tipo de interfaz.

Palabras clave: interfaces tangibles, álgebra relacional.

Abstract. Tangible User Interfaces (TUIs) are those in which users interact with a digital system
through the direct manipulation of physical objects (tokens). Tokens are directly linked to a certain
data/functionality within the system, so manipulation of these objects affects the system behavior.
This paper introduces TanQuery, a tangible system to support the process of learning Relational
Algebra. TanQuery incorporates components to detect and track tokens, and to analyze and execute
query trees. The system was tested by university students, and obtained results allowed to observe
and analyze that students found this type of interface useful and pleasant.

Keywords: Tangible user interfaces, relational algebra.

1. Introduction

Over the last decades, Tangible User Interfaces (TUIs) [1] have become an important approach to the
interaction between users and computer systems. In this kind of interface, users interact with a digital
system through direct manipulation of physical objects linked to a system functionality, causing that the
manipulation of these objects affects the behavior of the system. The types of interaction between users
and computers have evolved over time thanks to several upgrades in computer technology and
communications. These technological breakthroughs not only include traditional advances such as
command line interfaces, WIMP systems (windows, icons, menus, pointer) [2], but also recent advances

Cite this work as Xohua-Chacón, A., Benítez-Guerrero, E., S., & Mezura-Godoy, C.(2018). A Tangible
System for Learning Relational Algebra Revista Colombiana de Computación, 19(1), 39-55. https://
doi.org/10.29375/25392115.3228

https://orcid.org/0000-0001-8174-6426
https://orcid.org/0000-0001-5844-4198
mailto:axohua@uv.mx
mailto:edbenitez@uv.mx
mailto:cmezura@uv.mx
https://doi.org/10.29375/25392115.3228
https://doi.org/10.29375/25392115.3228
https://orcid.org/0000-0001-8174-6426
https://orcid.org/0000-0001-5844-4198
mailto:axohua@uv.mx
mailto:edbenitez@uv.mx
mailto:cmezura@uv.mx

40

such as interaction through objects (TUIs). TUIs have been used in different application domains [3], for
example in educational settings, where tangibility and its potential benefits for learning have been
explored [4].

In the TUI research domain it is possible to find works related to databases, such as [5], [6], [7].
However, to the best of our knowledge, there is no research or work that deals with the subject of
relational algebra (RA). Relational algebra is a query language associated to the relational database
model which includes operators based on set theory. Such operators allow one to manipulate relations
(tables) stored in databases. This language is important because it facilitates the understanding of some of
the SQL language constructions that are basis for query processing in database management systems [8].

Tools to support the learning process of relational algebra have been developed as a consequence of
the topic’s level of difficulty. Although students can understand how RA works by using paper-based
materials, tools that enable students to explore and understand interactively its concepts, are more useful.
An interactive system can help the students to see the results of a RA expression and to enable them to
learn through exploration.

On the one hand, there are some applications as WinRDBI [9], iDFQL [10], RALT [11], DBSnap [12],
RAPT [13] that cover RA topics and that have different ways to achieve them; for example, building
algebraic expressions through trees or using graphical elements to represent the queries. However, the
type of interaction presented in those tools is WIMP type. On the other hand, database-related works that
use tangible interaction do not cover topics of RA and they are not focused on the educational field. The
aim of our work is then to propose a solution based on a tangible interface to support the learning process
of RA.

This paper introduces TanQuery, a tangible system that supports the learning of RA. In this system,
RA operators and operands are represented by tokens that can be manipulated by the user to interactively
create query trees. For educational purposes, TanQuery generates equivalent RA and SQL expressions
from the query trees built by the user and executes query trees on data to get a result. The design of
TanQuery incorporates components to detect and track tokens, and to analyze and execute query trees.

The paper is organized as follows: first, Section 2 introduces the modeling of the TUI; then, Section 3
describes the system architecture and its components; section 4 explains system implementation; after
that, Section 5 presents the system test, while Section 6 discusses results and section 7 discusses related
works. Finally, Section 8 concludes this paper and discusses future work.

2. TUI modeling

This section presents the modelling for TanQuery’s tangible user interface. This modelling is described in
terms of the TAC paradigm, so it is briefly explained (see [14] for details). The rest of the section
explains the elements of the TUI and its relationships.

2.1 TAC paradigm

The TAC paradigm was proposed by Shaer et al. [9] to describe the structure and the functionality of a
TUI in terms of the following elements: Pyfo, Token, and Constraint, which are explained below.

A Pyfo is a physical object that takes part in a TUI, and that it may be comprised for a number of other
pyfos; for example, a cube can have six pyfos or sides. This term was suggested as a way to avoid the term
“physical object” because it may lead to confusion with the common use term “physical object”, that makes
reference to elements of the physical world, and that has no connection with TUIs. For instance, imagine a

table with a book and a cell phone on it, both of these are physical objects; however, if only the book is used
to interact with the TUI system then it is a pyfo and the cell phone is merely a physical object.

 A Token is a graspable pyfo that represents digital information or a computational function within an
application. The user interacts with the token so as to access or manage the digital information. Taking up
the example showed above, let us suppose that the book is located on a specific area of the table. The
system links that pyfo with a system variable (at that moment the pyfo becomes a token) that can be
altered by manipulating the book.

A constraint is a pyfo that limits the behavior of the token it is associated with. The physical properties
of the constraint guide the user to understand how to manipulate the token and also show the user how to
interpret token compositions and constraints. In the example presented above, the size of the table can be
a constraint to the book, if it is considered that the book can only be used on it.

2.2 TanQuery Pyfos design

We considered physical features in pyfos design, such as color, texture, weight, size, and shape. It is
important to avoid some possible issues as user fatigue due to the use of a token with inadequate weight,
or to reach a negative mental state due to the color of the token.

As mentioned above, a pyfo becomes a token when it is associated with a digital variable in the
system. In TanQuery, pyfos are pieces of wood that are identified by color (see Figure 1) depending on
the category to which they belong, and additionally they are labeled with a fiducial marker that identifies
them uniquely within the system. The pyfos categories are listed below:

Database (black): A database pyfo is used to select the database that is going to be used during the
interactions. To assign its value, it must be placed in the assignment area and then it has to be rotated it order
to select a new value. If the value of this token is changed, the value associated with each token is deleted.

Relation (green): This category represents a relation (table) within a database. In order to assign a
value to a relation pyfo, it is necessary to previously assign a value to the token representing the database.
To associate a value to a relation pyfo, the pyfo needs to be placed in an assignment area and then it has
to be rotated it, in order to select the value (the name of the relation).

Attributes (blue): A pyfo of this category is used to represent the attributes that compose the relation
schema. The assignment of a value for this kind of pyfo depends on the presence a relation pyfo has
associated with a value, in order to be able to select the values of the attributes that belong to that relation.

Constants (brown): These represent possible values of a particular attribute; for example, the possible
values for attribute “username” could be “John” or “Mary”. A constant pyfo depends on an attribute token.

Relational operators (yellow): These ones refer to relational operators such as union, project, select,
and semi-join. It is possible to assign a value to each of these pyfos without depending on another token.

Comparison operators (red): They represent operators that can be used to test whether one value is
equal to, greater than, or less than another. As well as relational operators, they do not depend on another
token. Their available values are: “>” (greater than), “<” (less than), “>=” (greater than or equal to), “<=”
(less than or equal to), “=” (equal to), “!=” (different).

41

Figure 1. Sample of pyfos used for user and system interaction.

42

2.3 Main Interactions

In TanQuery, there are two main interactions that can be made with tokens (see Figure 2) rotation and
touch. These terms will be explained bellow.
Rotation: It is useful when it is required to assign a value to the pyfo; for example, to refer to a particular
relational operator or a relation.
Touch: This interaction is used to build two relationships 1) parent-child to indicate that a token is the
parent of another. It can only be established if the token parent is a relational operator and the children
token are relations or relational operators, 2) operator-condition touch is used to add the condition to a
relational operator as a parameter; for instance, in Figure 2, if “A” represent a relational operator, “B”,
“C” and “D” can be attributes, comparison operator or constants.

Figure 2. Interactions: 1) Rotation 2) Touch to add a parent-child relationship 3) Touch to add a condition to
relational operator.

2.4 Logical constraints

To assign a value to a pyfo (to turn the pyfo into a token), there are different restrictions that must be
complied depending on the type of pyfo in question.

Coupling: The coupling of a variable with an pyfo can be done 1) by the designer at design time; for
example, the list of values for comparison operators are predefined to “>”, “<”, “>=”, “<=”, “=”, “!=” and
these values cannot be changed, 2) by the user at runtime when he/she assigns a value to a relational
pyfo; for example, “Students”, and in this case this value can be overwritten.

Relative Definition: It refers to existing constraints between pyfos when obtaining their associated
value. For example, to assign a value to a pyfo relation, the database must be selected first to obtain a list
of possible relations to choose from. This also happens with attribute pyfos, where it is necessary to know
the token relation in order to retrieve its attributes list. Tokens that are also constraints are: database
(relation token depends on a database one), relation (an attribute token depends on a relation value) and
attribute (a constant depends on an attribute value).

Association: It is when a token is physically associated to a constraint, during query tree creation, new
constraints are created; for example, the relation between parent node (relational operator) and child node
(relational operator).

Computational interpretation: This is the way in which the manipulation of tokens is interpreted
regarding constraints. When tokens are in a correct order, the system shows results retrieved from a
database server; however, if the tree created is not coherent, the system will not show any results.

3. System architecture

Figure 3 shows the architecture of TanQuery. The user interacts with the system by means of tokens and
in return he/she obtains feedback from the system by means of RA and SQL expressions, and data. The
main components of the system are:

Figure 3. TanQuery Architecture.

Objects Tracking: It detects pyfos and tracks all of them over the surface.
Interactions Manager: The two main types of interactions (see Figure 2) are identified and filtered by

this component, and subsequently to be sent to a tree generator when these are performed.
Tree generator: The workspace is divided into three areas: assignment area, work area and results area.

Tree generator reacts to the interactions performed by user on the work area. When there is only one
object of relation type, this one is taken as if it was the root of the query tree. Then, the system shows
contents for that relation and their equivalent AR and SQL expressions in the results area. When tokens
touch, nodes are added to the tree. These can be either be children nodes or conditions for the relational
operator located next to the relational operator.

Query translator: This component creates two tree traversals. The first one is in charge of generating
equivalent AR expressions, and the other one is in charge of constructing its equivalent expression in
SQL language. The latter is sent for execution to the database server (can be local or remote), and the
results of such query are projected on the work surface, along with the expressions in relational algebra
and SQL.

Output generator: It processes information (token values, messages, data sets, SQL and RA queries
and other messages) and displays information-related terms on the surface.

43

44

4. Implementation

The system was implemented using hardware and software elements that are going to be described below.

4.1 Hardware

In Figure 4, one can see the hardware setting used in the system: one mini display port to HDMI cable
adapter, one Microsoft LifeCam hd-300 webcam, one Optoma DS316L projector, one TV stand, one
meter of 1/4 pvc tube, one desk table with white cardboard, some pieces of Medium Density Fibreboard
(MDF) such as pyfos, and additionally a computer MacBook Pro with Processor Core i5 2.5 GHz and 8
GB RAM.

Figure 4. Hardware used in system.

Source: Infraestructura para el Desarrollo de Interfaces de Usuario Tangibles en Escritorios Inteligentes [15].

4.2 Software

TanQuery was developed using ECLIPSE programming environment Luna Version: Luna Service
Release 2 (4.4.2), Java 1.7.0_67 language, Processing version 2.2.1, reacTIVision framework 1.5 (1410).
As database server we used MySQL (version 5.5.42). The system implementation is described as follows:

Workspace distribution: The workspace is divided in three areas for user interaction (see Figure 5). (1)
Assignment area: a pyfo is placed in this area in order to assign a value to it (depending on the type of
pyfo, the system generates its possible values), and the user must rotate the pyfo until the desired value is
displayed on the surface. (2) Work area: this is where the user builds the query tree executing connections
between child and parents nodes. (3) Results area: this is where the results are displayed (in form of a
chart) generated from the tree built by the user, and in the lower part both AR and SQL expressions are
also displayed.

45

Figure 5. Workspace distribution: 1. Assignment area, 2. Work area, 3. Results area.

Token Detection and tracking: The reacTIVision engine [16] acquires images from the camera. Then, it
searches video stream for fiducial markers and sends (using its own communication protocol TUIO [17]) data
about all identified symbols by means of a network socket to a listening application (in our case TanQuery,
which implements a TUIOClient). The client application retrieves a list with that information calling the
tuioClient.getTuioObjectList() method, and then it can get information of each element (see Figure 6).

Figure 6. Code to get the list of fiducial markers on the workspace.

Figure 7 shows three main methods used in TanQuery for identifying object events. addTuioObject
method is called when user adds a pyfo to the surface, while updateTuioObject method is executed when a

46

pyfo is manipulated on the table (rotated, moved). Finally removeTuioObject method is activated when
the reacTIVision engine detects an object that was removed from the surface. The obtained data from the
reacTIVision makes reference to pyfo’s location within the x and y axes, the angle and speed of the
pyfo’s motion, as well as, a unique identifier to recognize the pyrfo in the system. Tokens are classified in
categories according to their id (see Figure 8) as follows: (i) 1 = "Database", (ii) 6 - 15 = "relation", (iii)
16 - 25 = "attribute", (iv) 26 - 35 = "constant", (v) 36 - 45 = "relational operator", and (vi) 46 - 55 =
"comparison operator".

Figure 7. Principal reacTIVision methods used to identify object events.

Figure 8. Classification of pyfos by range.

Interaction detection: To detect user-token interactions, the system uses the token location within the
workspace (assignment or work area) and then it acts accordingly. For example, when a token is rotated
in the assignment area, its possible values are retrieved from the database (as a result of a query issued to
the database server), and then the 360 degrees are divided by the total number of possible values in order
to obtain the number of degrees between each value. However, if the rotation is done outside the
assignment area, then the value of the token is not modified.

In the case of touch interaction, the distance between all tokens, identified by the camera, is computed.
Distance ranges are predefined in order to know if two tokens are “touching”. When the system identifies
a touch, this one needs to know which side is touching; and to do so, the lowest value token located in the

47

y axis is taken as reference (parent), meanwhile the left or right location of the other token that is
touching is calculated, see Figure 9.

Figure 9. Adding child node to a relational operator.

4.3 Tree construction.

A query tree is built by identifying token-user interactions within the work area. At this point, additional
conditions must be satisfied, apart from the location of a token, there are conditions to be analyzed, such
as validating the type of a token (relation, relational operator or comparison, attribute, constant) that
participates in the interaction.

A parent-child relationship can only occur when the parent token is a relational operator and its
children are relational operators or relations. If the parent is a binary relational operator (for example
union, join, semi-join), it is possible to assign both left and right child (see Figure 10).

Figure 10. Add child to binary operator.

48

An attribute token can only be used to add a condition to a relational operator, comparison operators,
constants or another attribute (lateral touch, see Figure 2-3).
When the conditions mentioned above are satisfied, the tree is created. If a token of type relational
operator is added in the upper part, this is considered as a new root of the tree, then the latter one creates
one connection to the previous root.

4.4 Query generation

Once a tree has been created, a traversal is made in order to obtain an equivalent expression in relational
algebra. Another tree traversal is done to generate the query in SQL language, which is sent to the
database server so to get the results of the query (see Figure 11).

Figure 11. Tree traversal to get both AR and SQL queries.

The results are finally projected into the workspace. If the results are empty, then the result area remains
unchanged (see Figure 12).

Figure 12. SQL query monitor.

49

5. Testing

The aim of the test was to obtain qualitative information about the satisfaction of potential users while
using the system. The participants were asked to solve five exercises related to relational algebra with
different complexities (taking as reference the number of tokens needed to solve it). At the end of test, an
interview was conducted with the participants. The objective of this one was to obtain relevant
information about the system.

5.1 Data

The default database used by system is “SCHOOL”; however, the user can select any database in the
server by manipulating a database pyfo. Figure 13 show the fictitious data stored in the SCHOOL
database.

Figure 13. Possible values for relation pyfos type.

The exercises used in the test are listed below:

1. Select Database “SCHOOL”.
2. Show the contents of the following relations: “PROFESSORS_MX”, “PROFESSORS_XA”,

“SUBJECT”,” ASSIGNED”, “STUDENTS_INF”, and observe both its structure and contents.

50

3. Perform the PROJECTION of attributes “NAME”, “EMAIL_ST” that belong to the relation
“STUDENTS_INF”.

4. Perform the UNION of relations “PROFESSORS_MX” and “PROFESSORS_XA”.
5. Get the attributes of the tuples of the “PROFESSORS_MX” relation which have at least one

assigned subject, using the SEMI_JOIN operator.

Figure 14 shows the workspace with a correct solution for exercise 5, where six tokens were used to
solve it. In Figure 15, one can see specific values for each token: two relation tokens
(PROFESSORS_MX, ASSIGNED), two attribute tokens (CVE_PROF, PROF), one relational operator
(SEMI_JOIN) and one comparison operator (equal).

Figure 14. Sample tree built by a student using a relational operator with a condition.

Figure 15. Zooming in of tree build for student.

To construct an RA tree, users do not need to follow specific steps. The important thing is that they are
able to identify necessary tokens, assign a value for each token, and execute the appropriate interactions
for each case. For example, a possible path to solve the exercise is: (i) the user places a relation-type pyfo
within the assignment area, and then assigns it to the value "PROFFESSORS_MX", (ii) the user places
an attribute-type pyfo and assigns it the attribute value "CVE_PROF", (iii) the user places a relation-type

51

pyfo and assigns it the value "ASSIGNED", (iv) the user places an attribute-type pyfo and assigns it the
value “PROF”, (v) the user uses a relational operator type pyfo and assigns it the value "SEMI_JOIN",
and then (vi) assigns the value of "=" to comparison operator pyfo. After all these conditions are
completed, the necessary tokens are ready to use.

Now it is necessary to follow the next steps in order to make connections for building the AR tree, for
example: (i) place "SEMI_JOIN" token on the work area, (ii) touch the “SEMI-JOIN” on the lower left
corner with “PROFFESSORS_MX” token (the system draws a line between both tokens), (iii) touch the
lower right corner of “SEMI_JOIN” token with the “ASSIGNED” token, (iv) place the “CVE_PROF”
token on the right side of “SEMI_JOIN” token, (v) place the token “=” on the right side of “CVE_PROF”,
(vi) place the token "PROF" on the right side of the "=" token. The result is shown in Figure 15.

Figure 16 illustrates the results obtained from the RA tree construction. Figure 16(A) corresponds to the RA
and SQL statements, so the user can see differences and equivalences between them. Figure 16(B) corresponds
to the resulting data set, which is retrieved from a database server after the SQL query is executed.

Figure 16. A) AR and SQL query. B) Data result set.

6. Results

As can be seen in Table 1, the exercises that required most of the time to be solved by the students, were
3 and 5. The exercise that took less time was the first one, while exercises number 2 and 4 were solved in
similar times. The above is due to the complexity of exercises: 3 and 5 required to use certain conditions
for their solutions, whereas 1 and 2 only required the assignment of values. In the case of exercise 4, it
was necessary to connect two relations as child nodes to a parent operator.

Table 1. Time information about exercises.

Minimum Maximum Average S t d .
Deviation

Exercise 1 00:00:06 00:00:42 00:00:15 00:00:13

Exercise 2 00:02:00 00:05:00 00:03:45 00:01:28

Exercise 3 00:03:00 00:16:00 00:06:57 00:04:34

Exercise 4 00:01:27 00:05:00 00:02:23 00:01:19

Exercise 5 00:07:17 00:18:00 00:10:42 00:03:56

52

Figure 17 shows the time spent by students for each one of the exercises. In general terms, it can be seen
that students took most of the time to solve exercise number 5. It can also be analyzed that student
number 5 required more time for completing exercises 1, 3 and 5. This student’s individual time is higher
than the time spent by other students, affecting the total time required for participants to solve exercises;
however, in exercises 2 and 4, student number 5 performed equally to the rest of the students.

Figure 17. Student time by exercise.

Figure 18 shows the total time spent by student to solve these five exercises. It can be seen that the
shortest time to solve all the exercises was the one of student number 4, who spent 14 minutes with 17
seconds, and the longest time was the one of student number 5, who spent 41 minutes 42 seconds.

Figure 18. Total time used by the students for the resolution of the exercises.

Apart from times and answers to questions, it was possible to observe certain situations that arose during
the sessions. Firstly, the participants had difficulties to use attribute type tokens. Most of them did not
read the message that appear in the workspace indicating that they had to put a relation type token in
order to obtain the list of possible values for the attribute token. Another circumstance that arose was that
they sometimes were confused between tokens of the relation operator type and the comparison operator
type. While students were creating a tree, it was difficult for them to identify where to place the tokens
that composed the operator condition, so they first performed the type 2 interactions shown in Figure 2.

53

Finally, some comments of the students were: (i) “Sometimes it is hard to see the information because
of the lighting”, (ii) “The quality of the colors need to be clearer, especially for red”, (iii) “The space in
the assignment area is reduced”, (iv) “It would be better if the shape of objects was a polygon, so that it
would easier to rotate”, (v) “I found the system helpful to learn relational algebra, but I feel that it lacks a
manual that specifies instructions on how to use the objects”, (vi) “I would like the system to have an
interactive tutorial”, (vii) “it would be useful to have auditory feedback”.

7. Related work

Some tools have been developed to support the teaching-learning process of relational algebra, such as
WinRDBI [9], iDFQL [10], RALT [11], DBSnap [12], RAPT (Relational Algebra Parsing Tools) [13],
among others. However, these tools have been developed as traditional WIMP systems.

Tangible user interfaces, on [5] a table (not digital), are combined with a bi-dimensional screen. In this
combination the user makes queries placing or removing the tokens on the table while the screen shows
the result of the query made by the user. Although the used database makes reference to demographic
data of radio station listeners, the system can also query other databases. The screen only shows results in
graphic form, while the source queries cannot be viewed. Sources’ particular role of collaboration can be
a differentiating factor between tangible interfaces and WIMP. Thus, TanQuery queries and their results
are shown to allow the user to see different ways to do the same thing.

Another work is presented by Ullmer, Ishii and Jacob [6]. They propose two systems of tangible
interfaces to execute queries: “parameter wheels” and “parameter bars”. They focus on using tokens with
physical constraints to express, manipulate and visualize database queries within the parameters. These
are based on ideas exposed in the "Dynamic Homefinder" GUI [18], where the concept of "dynamic
queries" was introduced. This concept allows the user to make queries by adjusting graphical elements,
like sliders, and observing the result immediately. They make use of a realty database to locate homes
that met specific search criteria. The difference with TanQuery is that queries have a predefined structure
and the position of tokens cannot be modified (the placement of the tokens only allows their values to be
modified). This situation limits the freedom of manipulation by the user on the workspace. Still, this work
could be useful for teaching how to use information filters.

CubeQuery is other tangible system that possess the ability to display a physical form, not only for
creating databases, but also to modify queries. Proposed by Langer [7], CubeQuery uses active tangibles
(tangible equipped with some kind of electronics, for example a display, sensors or wireless
communication within them) to perform searching tasks within a music information database. To input
data into the system, the user can combine the manipulation of tokens with gestures that are used to
assign a value to each token. This work, as shown in [5], does not display the queries that were used to
generate the information. TanQuery do not use any sensors within the pyfos, so any object with same
dimensions can be used only when labeling it with a fiducial marker, for this extend, decreasing the cost.

In short, the difference between TanQuery and other projects above mentioned is that they do not
consider topics of relational algebra. Instead they focus on different goals, such as collaboration issues or
exploration of the spatial arrangement practicality of tangibles. At least for RA teaching, these projects
focus on fields other than education.

54

8. Conclusions and future work

This paper proposed TanQuery as a system that can support the teaching of relational algebra. Using TAC
paradigms terms, this system can explain relational algebra’s functional architecture and describe its
elements. Moreover, the objective of this paper was to present an interpretation for the interactions that
can be made between tokens and elements used for tokens’ development (hardware and software). The
paper also intended to present some of the problems identified during the test, as well as some
recommendations to improve the system. It is important to note that a recurrent recommendation done by
participants was (1) the integration of an interactive tutorial so to explain the system interactions, (2) the
inclusion of menus with a list of all possible values for tokens, and (3) the need to include auditory
feedback.

As future work, we plan to improve the system with actuation tokens, so to enhance the feedback
provided to the user, and to study broken links between the digital data and the physical objects; for
example, when users perform and undo an action.

Acknowledgments

This research was supported by3 Consejo Nacional de Ciencia y Tecnología (CONACYT Mexico),
thanks to a Ph. D. scholarship (Ref. 326140, Support No. 449513) and the Project “Infraestructura para
Agilizar el Desarrollo de Sistemas Centrados en el Usuario” (Ref. 3053).

References

[1] H. Ishii, “The tangible user interface and its evolution,” Commun. ACM, vol. 51, no. 6, p. 32, Jun. 2008.
[2] M. Green and R. Jacob, “Software architectures and metaphors for non-WIMP user interfaces,” ACM SIGGRAPH

Comput. Graph., vol. 25, no. 3, pp. 229–235, 1991.
[3] O. Shaer, “Tangible User Interfaces: Past, Present, and Future Directions,” Found. Trends® Human–Computer

Interact., vol. 3, no. 1–2, pp. 1–137, 2009.
[4] P. Marshall, “Do tangible interfaces enhance learning?,” Proc. 1st Int. Conf. Tangible Embed. Interact. - TEI ’07,

p. 163, 2007.
[5] A. Jofre, S. Szigeti, S. T. Keller, D. Czarnowski, F. Tomé, and S. Diamond, “A Tangible User Interface for

Interactive Data Visualization,” 2015.
[6] B. Ullmer, H. Ishii, and R. J. K. Jacob, “Tangible Query Interfaces: Physically Constrained Tokens for

Manipulating Database Queries,” Science (80-.)., vol. 3, no. c, pp. 279–286, 2003.
[7] R. Langner, “CubeQuery: Tangible Interface for Creating and Manipulating Database Queries,” pp. 423–426,

2014.
[8] D. C. Costa, “El modelo relacional y el álgebra relacional,” Barcelona, Eureca Media SL, p. 58, 2005.
[9] S. W. Dietrich, E. Eckert, and K. Piscator, “WinRDBI: A Windows-based Relational Database Educational Tool,”

SIGCSE Bull., vol. 29, no. 1, pp. 126–130, 1997.
[10] A. P. Appel, E. Q. Silva, C. Traina Jr, and A. J. M. Traina, “iDFQL-A query-based tool to help the teaching

process of the relational algebra,” in World Congress on Engineering and Technology Education. WCETE, 2004.
[11] P. Mitra and F. Sadri, “Relational algebra learning tool,” Imp. Coll. London, 2009.
[12] Y. N. Silva and J. Chon, “DBSnap: Learning Database Queries by Snapping Blocks,” in Proceedings of the 46th

ACM Technical Symposium on Computer Science Education, 2015, pp. 179–184.
[13] O. Karpova, N. D. Souza, D. Horton, and A. Petersen, “RAPT : Relational Algebra Parsing Tools,” p. 2015, 2015.
[14] O. Shaer, N. Leland, E. Calvillo-Gamez, and R. K. Jacob, “The TAC paradigm: specifying tangible user

interfaces,” Pers. Ubiquitous Comput., vol. 8, no. 5, pp. 359–369, Jul. 2004.
[15] P. Omar and S. Vásquez, “Infraestructura para el Desarrollo de Interfaces de Usuario Tangibles en Escritorios

Inteligentes ,” 2017.

55

[16] M. Kaltenbrunner and R. Bencina, “reacTIVision: a computer-vision framework for table-based tangible
interaction,” Proc. 1st Int. Conf. Tangible Embed. Interact., pp. 69–74, 2007.

[17] M. Kaltenbrunner, T. Bovermann, R. Bencina, and E. Costanza, “TUIO: A protocol for table-top tangible user
interfaces,” Neuroinformatics, no. May 2005, pp. 1–5, 2005.

[18] B. Shneiderman, “The Dynamic HomeFinder  : Evaluating Dynamic Queries in a Real-Estate Information
Exploration,” 1992.

About the authors

MSICU. Antonio Xohua
Graduated from the Computer Science undergraduate program at Universidad Veracruzana, he obtained a
master’s degree in Interactive Systems with a focus on user from the Universidad Veracruzana. Professor
at the Faculty of Statistics and Informatics of Universidad Veracruzana.

Dr. Edgard Iván Benítez Guerrero
Computer Systems engineer graduated from Universidad de las Américas Puebla and Master in Artificial
Intelligence from Universidad Veracruzana. He holds a PhD program in Computer Science from Joseph
Fourier University (University of Grenoble I, Grenoble, France). Full Time Professor (Titular "C") at the
Faculty of Statistics and Informatics of Universidad Veracruzana. His areas of interest range from
databases, artificial intelligence, and human computer interaction to mobile and ubiquitous computing,
and context aware computing.

Dra. María Del Carmen Mezura Godoy
She holds a degree in Computer Science from Instituto Tecnológico de Tijuana-ITT. She also finished her
Master program in Artificial Intelligence from Universidad Veracruzana and her PhD program in
Computer Science that specialized in Groupware from University of Savoie in France. Full time
Professor (Titular "C"). Her areas of interest include CSCW, IHC, context-aware computing, e-learning
and multiagent systems.

