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Article

Abstract

Growth and production models are widely used to predict yields and support forestry decisions. 
Artificial Neural Networks (ANN) are computational models that simulate the brain and nervous 
system human functions, with a memory capable of establishing mathematical relationships 
between independent variables to estimate the dependent variables. This work aimed to 
evaluate the efficiency of eucalypt biomass modeling under different spacings using Multilayer 
Perceptron networks, trained through the backpropagation algorithm. The experiment was 
installed in randomized block, and the effect of five planting spacings was studied in three 
blocks: T1 – 3.0 x 0.5 m; T2 – 3.0 x 1.0 m; T3 – 3.0 x 1.5 m; T4 – 3.0 x 2.0 m e T5 – 3.0 x 3.0 m. A 
continuous forest inventory was carried out at the ages of 48, 61, 73, 85 and 101 months. The leaf 
area, leaf perimeter and specific leaf area were measured at 101 months in one sample tree 
per experimental unit. Two thousand ANN were trained, using all inventoried trees, to estimate 
the eco-physiological attributes and the prognosis of the wood biomass. The artificial neural 
networks modeling was adequate to estimate eucalypt wood biomass, according to age and 
under different spacings, using the diameter-at-breast-height and leaf perimeter as predictor 
variables.
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Introduction
Clean energy production from forest 

biomass is a sustainable alternative to fossil fuels 
(non-renewable). Technological advances that 
aim to increase productivity are necessary and 
provide subsidies in choice of the most adapted 
genetic material, better planting methods, 
conducting and harvesting a forest stand.

Dry matter accumulation is an integrated 
measure of plant physiological performance over 
time (Merchant et al., 2010). The correlation of 
this accumulation with photosynthesis indicates 
that it is able to express competition for space, 
nutrients, water, solar energy, temperature, 
carbon dioxide, utilization efficiency of these 

resources and interaction among them (Almeida 
et al., 2007; Montaldo et al., 2008; Costa et al., 
2009).

Biomass quantity and quality can be 
affected by competition imposed by the planting 
spacing. Greater initial biomass production by 
area is expected in more densely planted and 
growth stagnation occurs at younger ages, 
due to intensification of resource utilization. 
Throughout the rotation, differences in growth 
between different densities tend to be minimized 
(Campos & Leite, 2013).

Growth and production models are 
widely used to predict yields and assist silvicultural 
decision making. Mechanistic models (or process 
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models) are flexible to certain environmental 
characteristics, encompassing growth trends 
and biological assumptions (Miehle et al., 2009; 
Campos & Leite, 2013). These models provide 
estimates of forest productivity by weighing the 
influence of environmental factors (Almeida et 
al., 2007). The leaf area, specific leaf area and 
perimeter are eco-physiological parameters that 
influence photosynthetic capacity and leaves 
respiration (Alcorn et al., 2008; Montaldo et al., 
2008; Ferreira et al., 2016), besides being useful to 
characterize plant adaptations to environmental 
conditions. Among these, specific leaf area is 
routinely used in prediction models, such as 3-PG 
(Physiological Processes Predicting Growth) and 
CABALA (Nouvellon et al., 2010).

As alternative to traditional regression 
modeling, Artificial Neural Networks (ANNs) are 
composed of a massive parallel system integrated 
of simple processing units (artificial neurons), 
which calculate certain mathematical functions 
and allow to generalize assimilated knowledge 
to unknown data (Gorgens et al., 2009; Binoti, 
2010; Binoti et al., 2015; Zanuncio et al., 2016). 
For the training of multilayer perceptron networks 
(multilayer), traditionally, backpropagation 
algorithm is adopted to optimize predictive 
capacity. This algorithm extends network's ability 
to solve non-linearly separable problems (Braga 
et al., 2007).

This work aimed to evaluate the efficiency 
of eucalypt biomass production modeling under 
different spacings using artificial neural networks 
technique.

Material and Methods
This work was conducted in Itamarandiba 

municipality – MG, at 17º 50' south latitude and 
42º 49' west longitude, Aperam Bioenergia area. 
The predominant climate in region is classified as 
Cwa by Köppen international system (Köppen, 
1936), with mild and dry winters and hot, rainy 
summers. The dry season is well defined, from 
April to September, with a monthly water deficit 
of 30 to 50 mm (INMET, 2010). Annual averages of 
rainfall and temperature are 1,160 mm and 20ºC, 
respectively (Pulrolnik et al., 2009).

The experiment was installed in 
December 2002 using a hybrid of Eucalyptus 

grandis W. Hill ex Maiden x E. camaldulensis 
Dehnh, on flat relief terrain, Red-Yellow Latosol 
and at 1,097 m altitude. The design was in three 
random blocks. The treatments consisted of the 
following planting spacings: T1 – 3.0 x 0.5 m; 
T2 - 3.0 x 1.0 m; T3 - 3.0 x 1.5 m; T4 - 3.0 x 2.0 m 
and T5 - 3.0 x 3.0 m, 3 m was the fixed distance 
between planting lines. Each experimental unit 
was defined as six lines with 28 trees, totaling 168 
individuals, of which 48 were measured, due to 
adoption of double border.

A continuous forest inventory was carried 
out at the ages of 48, 61, 73, 85 and 101 months. 
The Diameter-at-Breast-Height overbark (DBH 
- at height of 1.30 m from the ground, cm) and 
total Height (H, m) of all trees were measured. 
At 101 months, 50 trees were felled in each 
spacing for rigorous cubage up to commercial 
height (diameter 4 cm), distributed in classes with 
regular intervals of 5 cm DBH.

Wood biomass (Mg.ha-1) was estimated 
for all trees measured in the inventories, using 
multiplicative relationship between underbark 
Volume (V, m3) and Basic Density (BD, g cm-3). 
Volume was estimated fitting linearized model of 
Schumacher & Hall (1933) (Table 1). At the age 
of 101 months, 6 cm thick discs were removed 
at 0% (base), 25%, 50%, 75% and 100% (top) of 
commercial height in one sample tree (the one 
with mean square diameter ) per experimental 
unit, totaling 15 trees. From each disc, opposite 
wedges were obtained, which were used to 
determine BD according with water immersion 
method. The BD for wood biomass estimation 
ranged from 0.518 to 0.567 g cm-3 between 
spacings.

In the same sample trees, it was measured: 
Leaf Area (LA), Leaf Perimeter (LP), Specific Leaf 
Area (SLA), leaves number and leaves biomass. 
LA and LP were obtained with leaf area meter 
(CI-203, CID Inc., USA) of 10 leaves collected 
in each third of the canopy (upper, middle 
and lower), adding up to 30 units per canopy. 
Leaves were collected from the fifth insertion of 
branches, which were in the center of thirds. The 
leaves were dried at 65°C until constant weight in 
a oven with forced air circulation and, from the 
dry biomass, specific leaf area was calculated 
using the formula:
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Table 1. Equations used to estimate underbark volume and average values found for Basic Density (BD) of eucalypt 
in different planting spacings

Spacings Equations BD (g cm-3)
3.0 x 0.5 m 0.995 0.524 ± 0.006
3.0 x 1.0 m 0.991 0.554 ± 0.001 
3.0 x 1.5 m 0.994 0.559 ± 0.003
3.0 x 2.0 m 0.989 0.564 ± 0.003
3.0 x 3.0 m 0.983 0.546 ± 0.023

*significant at 5% probability by t-test; DBH (cm); H (m); V = underbark volume (m3); and  = adjusted determination coefficient. Residual 
standard errors of the equations were lower than 0.1m3. BD values indicate mean ± standard deviation, calculated from 3 trees with mean 
diameter by spacing (totaling 15 units).

  (eq 1), where DM represents 
foliar dry mass. LA, LP and SLA data were 
submitted to Pearson correlation analysis. Leaves 
number per hectare was estimated as a function 

of number versus biomass ratio of leaves sampled. 
To obtain leaves biomass, this component was 
weighed in field and subsamples were collected 
to obtain dry mass.

Table 2. Identification and inputs used in Artificial Neural Networks (ANN) to estimate eucalypt biomass up to 101 
months old

ANN N Architecture Numerical inputs
1 60 MLP 8-5-1 A1, A2, Spa, DBH1, H1, LA1, LP1, SLA1

2 60 MLP 7-12-1 A1, A2, Spa, DBH1, LA1, LP1, SLA1

3 60 MLP 7-4-1 A1, A2, Spa, H1, LA1, LP1, SLA1

4 60 MLP 6-4-1 A1, A2, Spa, LA1, LP1, SLA1

5 60 MLP 6-10-1 A1, A2, Spa, DBH1, LA1, LP1

6 60 MLP 6-8-1 A1, A2, Spa, DBH1, LA1, SLA1

7 60 MLP 6-3-1 A1, A2, Spa, DBH1, LP1, SLA1

8 60 MLP 5-11-1 A1, A2, Spa, LA1, LP1

9 60 MLP 5-6-1 A1, A2, Spa, LA1, SLA1

10 60 MLP 5-7-1 A1, A2, Spa, LP1, SLA1

11 60 MLP 5-9-1 A1, A2, Spa, DBH1, H1

12 60 MLP 5-4-1 A1, A2, Spa, DBH1, LA1

13 60 MLP 5-3-1 A1, A2, Spa, DBH1, LP1

14 60 MLP 5-3-1 A1, A2, Spa, DBH1, SLA1

15 60 MLP 4-7-1 A1, A2, Spa, DBH1

16 60 MLP 4-5-1 A1, A2, Spa, H1

17 60 MLP 4-10-1 A1, A2, Spa, LA1

18 60 MLP 4-3-1 A1, A2, Spa, LP1

19 60 MLP 4-3-1 A1, A2, Spa, SLA1
n = observations number.

The ANN input variables for simultaneous 
estimation of eco-physiological attributes were 
numerical (DBH, H and spacing between plants 
(Spa, m) and categorical (ECF: LA (dm2) – 1, LP 
(m) – 2 and SLA (cm2 g-1) – 3). From the generated 
network, LA, LP and SLA were estimated for all 
measured trees in the inventories, which average 
results per plot extrapolated to a hectare unit.

For the wood biomass future projection 
(B2), ANN models were looked for from the 

functional relations between numerical variables.
                           

	 (eq. 2)

where: A1 (age, months); DBH1 (cm); H1 
(m); LA1 (m2), LP1 (Km) and SLA1 (cm2 g-1) refer to 
the current values of these variables; B2 (Mg ha-1) 
and A2 (months) at their future values and Spa 
(m,) plant spacing. We defined 19 ANN models 
(Table 2).

Feedforward networks trained through 
the backpropagation algorithm were employed. 
Data normalization and equalization were 
realized in all pre-processing. The data was 
randomly divided into training groups (80% of 

samples) and validation (20%), mutually exclusive 
(Holdout method).

Two thousand ANN of the Multilayer 
Perceptron (MLP) type were trained: 100 for 
estimation of eco-physiological attributes and 
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Figure 1. Percentage errors dispersion as a function of DBH and errors classes for artificial neural network constructed to 
eco-physiological attributes estimate (leaf area, leaf perimeter and specific leaf area) of eucalypt at 101 months old.

1900 for projection of wood biomass (100 for 
each functional relation). From these ANN, one 
was selected per functional relationship based 
on deviations between observed and estimated 
values. We chose MLP due to its ability to solve 
greater complex problems in input space, which 
increases the number of adjusted parameters 
(Braga et al., 2007). The layers amount and of 
neurons per layer was optimized by Intelligent 
Problem Solver (IPS) tool of Statistica 7.0 software 
(Statsoft, 2007).

Points that extrapolated the general 
trend, in each planting spacing, were not 
removed in order to verify networks' ability 
to deal with outliers. Accuracy assessment 
and comparison between phases of training 
and validation of networks were based on 
the correlation coefficient, relative error, Root 
Mean Square Error (RMSE,%), bias (%) and visual 
analysis of dispersion graphs and distribution of 
percentage frequency of residues. Estimated 
and observed values were compared among 
themselves by paired t-test at 5% significance, as 
suggested by Gorgens et al. (2009), Lafetá et al. 
(2014) and Cabacinha & Lafetá (2017).

All statistical analyzes were performed 
using with the help of Statistica 7.0 software 
(Statsoft, 2007).

Results and Discussion
The artificial neural network structure for 

eco-physiological attributes estimation was 6-8-
1 (neurons number in input, intermediate and 
output layers, respectively) with exponential 
activation functions in intermediate and output 
layers. In view of eco-physiological interaction 
complexity and of plant growth, the accuracy 
was considered satisfactory. Training and 
validation phases presented around 6.58% RMSE 
and 0.48% Bias. Distribution behavior of percent 
residuals was homocedastic, concentrating 
deviations between -12.5 to + 7.5% (Figure 1). This 
interval was acceptable and it is in accordance 
with observed for projections of dendrometric 
attributes of ± 12.5% error for the projections of 
DBH, total height and eucalypt volume (Binoti, 
2010) and up to ± 17.5% for height estimation in 
pine and eucalypt plantations (Campos et al., 
2016), using ANN.

Eco-physiological attributes estimates 
from ANN generalization were able to 
discriminate differences between spacing 
as a function of age (Figure 2). This fact has 
great practical importance, since it enables to 
make inferences related to established stands 
competition in different planting densities, as 
well as potential inputs for mechanistic models 
adjustment of growth and production. Leaf area, 
leaf perimeter and specific leaf area increased 
as planting density and DBH increased, although 

there was little variation as a function of age. This 
same trend for LA, LP and SLA was observed by 
Maire et al. (2011), which investigated MODIS 
reflectance time series to estimate leaf attributes 
in eighteen Eucalyptus spp. management units. 
Adaptive anatomical changes in leaves can 
occur when there is change intensity / light 
quantity in the canopy (Nascimento et al., 2015). 
These results are consistent with number and 
amount of leaves estimated as a function of 
biomass sampling (Figure 3).
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Figure 2. Eco-physiological attributes estimates of eucalypt plants, per hectare, through artificial 
neural networks throughout ages, grown at different spacings.

Figure 3. Number (LN) and biomass (LB) of eucalypt plants leaves, per hectare, as a function of 
distance between plants (D) at 101 months old. *significant at 5% probability by t-test.

The greater specific leaf area in smaller 
spacings may be a plant morphological response 
to compensate greater shading between leaves 
imposed by competition, which begins with 
canopies contact. Similarly, Ferreira et al. (2016) 
studying Bertholletia excelsa Bonpl. plantations 

to identify spatial and temporal factors effects 
on leaf attributes, observed a greater specific 
leaf area in leaves subjected to shading. It is 
important to note that both perimeter and 
leaf area can be regulated by environmental 
variables such as temperature, precipitation and 
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Table 3. Pearson correlation coefficients between dendrometric variables, conventionally measured in forest 
inventories, and eucalyptus eco-physiological variables

Variables LA LP SLA
DBH -0.819* -0.851* -0.789*

H -0.637* -0.686* -0.788*

*significant at 5% probability by t-test; LA = leaf area; LP = leaf perimeter and SLA = specific leaf area.

Table 4. Artificial Neural Networks (ANN) characteristics built to eucalypt wood biomass projection up to 101 months 
old

ANN Architecture
Correlation coefficients

Cycles
Activation Functions

Training Validation Intermediate Output
1 MLP 8-5-1 0.9846* 0.9382* 878 Logistic Exponential
2 MLP 7-12-1 0.9730* 0.9403* 121 Identity Identity
3 MLP 7-4-1 0.9660* 0.9063* 235 Tangential Logistic
4 MLP 6-4-1 0.9529* 0.8542* 709 Tangential Identity
5 MLP 6-10-1 0.9494* 0.9399* 83 Identity Exponential
6 MLP 6-8-1 0.9702* 0.9474* 451 Logistic Logistic
7 MLP 6-3-1 0.9722* 0.9614* 10000 Exponential Exponential
8 MLP 5-11-1 0.9112* 0.7869* 2321 Logistic Exponential
9 MLP 5-6-1 0.9220* 0.7851* 771 Tangential Tangential

10 MLP 5-7-1 0.9145* 0.5769* 517 Logistic Tangential
11 MLP 5-9-1 0.9657* 0.9486* 319 Logistic Logistic
12 MLP 5-4-1 0.9757* 0.9493* 215 Logistic Tangential
13 MLP 5-3-1 0.9715* 0.9262* 264 Logistic Identity
14 MLP 5-3-1 0.9747* 0.9485* 395 Logistic Identity
15 MLP 4-7-1 0.9769* 0.9635* 10000 Exponential Exponential
16 MLP 4-5-1 0.9608* 0.8383* 10000 Exponential Exponential
17 MLP 4-10-1 0.9033* 0.7802* 473 Logistic Logistic
18 MLP 4-3-1 0.8873* 0.7241* 215 Logistic Tangential
19 MLP 4-3-1 0.8698* 0.8207* 1177 Exponential Logistic

*significant at 5% probability by t-test.

light intensity (Vieira et al., 2014; Ferreira et al., 
2016). As it reduces spacing, trees tend to get 
smaller due to increased competition. In general, 
trees height and diameter growth, per hectare, 
correlated negatively with the eco-physiological 

attributes (Table 3). Correlations were significant 
(p <0.05), the highest value (in modulus) was 
observed between DBH and leaf perimeter (|-
0,851*|)

ANN for wood biomass estimation 
showed a predominance of non-linear 
activation functions in intermediate layers 
(Table 4). According to Braga et al. (2007), this 
behavior allows successive layers composition 
to have greater predictive capacity, facilitating 
generation of global receptive fields by 

MLP. Considering dendrometric and eco-
physiological inputs (ANNs 15 to 19), greater 
complexity expressed by neurons number in the 
intermediate layer was observed for leaf area. 
ANNs 7, 13, 14, 18 and 19 were the simplest, as it 
can be observed by smaller neurons number in 
their architecture.

Networks complexity was not necessarily 
caused by a greater number of times in which 
training set was presented to architecture, since 
network 7 had few neurons in intermediate 
layer (3 units) and more cycles (10000) when 
compared to ANNs 5 and 17. Cycles and 
number neurons in the intermediate layer had a 
correlation coefficient of -0.15ns. Most correlation 
coefficients were above 0.80. The difference 
between training and validation coefficients 

were, on average, 0.08, being higher in ANN 10 
(difference of 0.34). It is likely that this difference 
found in ANN 10 related to higher variation 
amplitudes of relative error during the validation 
phase; in this network, the ratio between relative 
error amplitudes of validation and training phases 
was 1.43. In addition, performance of training 
and validation phases can be influenced by 
neurons and cycles number (Braga et al., 2007; 
Maeda et al., 2009).
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Table 5. Artificial Neural Networks (ANN) accuracy built to eucalypt wood biomass projection up to 101 months old

ANN Phases RMSE (%) Bias (%)
Relative errors (%) t-test

Maximum Average Minimum P

1
Training 2.41 -0.11 9.69 0.23 -4.52 0.7574

Validation 3.97 1.00 4.32 -0.93 -11.09 0.3835

2
Training 3.23 0.15 9.31 0.04 -8.64 0.7438

Validation 3.98 1.34 2.40 -1.24 -10.40 0.2395

3
Training 3.57 0.13 10.31 0.05 -11.11 0.7942

Validation 4.66 0.86 8.84 -0.63 -9.40 0.5299

4
Training 4.16 0.00 12.74 0.20 -8.41 1.0000

Validation 7.12 0.35 9.42 -0.40 -13.88 0.8680

5
Training 4.30 0.00 10.61 0.21 -11.16 0.9976

Validation 4.72 2.60 1.59 -2.50 -11.79 0.0401

6
Training 3.38 0.18 9.89 0.02 -8.92 0.7197

Validation 3.97 1.66 2.89 -1.61 -9.99 0.1338

7
Training 3.21 -0.03 10.19 0.17 -9.35 0.9430

Validation 3.31 0.66 3.83 -0.70 -7.85 0.4920

8
Training 5.65 -0.10 13.50 0.45 -8.64 0.8988

Validation 7.93 3.54 6.98 -3.14 -12.99 0.1082

9
Training 5.31 0.01 13.64 0.26 -8.98 0.9922

Validation 8.28 3.61 7.44 -3.28 -16.63 0.1178

10
Training 5.55 0.05 12.84 0.26 -9.56 0.9532

Validation 10.60 2.65 16.26 -2.16 -16.42 0.3884

11
Training 3.65 0.24 11.04 -0.02 -8.90 0.6467

Validation 4.07 1.97 2.41 -1.89 -9.93 0.0773

12
Training 3.04 0.20 10.73 -0.06 -9.22 0.6554

Validation 3.67 0.93 4.21 -0.91 -9.04 0.3823

13
Training 3.25 0.00 9.21 0.12 -7.78 1.0000

Validation 4.40 1.40 3.84 -1.29 -10.68 0.2655

14
Training 3.06 0.00 10.83 0.11 -9.02 1.0000

Validation 3.67 0.89 5.43 -0.86 -8.41 0.4028

15
Training 2.93 -0.04 10.77 0.16 -9.48 0.9292

Validation 3.49 1.25 3.66 -1.30 -9.39 0.2084

16
Training 3.80 0.00 13.58 0.16 -7.62 0.9982

Validation 6.74 2.78 10.60 -2.44 -15.50 0.1408

17
Training 5.89 -0.07 12.68 0.44 -9.73 0.9359

Validation 7.77 3.09 7.28 -2.70 -11.93 0.1576

18
Training 6.33 0.01 13.04 0.39 -12.33 0.9946

Validation 8.86 3.67 7.89 -3.20 -14.77 0.1393

19
Training 6.76 -0.02 12.22 0.48 -12.25 0.9857

Validation 7.18 3.19 8.71 -2.79 -11.83 0.1097

All networks for wood biomass projection 
presented no statistical significance by t-test 
(p> 0.05) and no bias in the training phase, with 
low Bias, RMSE and error amplitude (Table 5). 
Obtained estimates with network 5 were not 
statistically significant. This may be related to 
an underfitting generated by a small number 

of cycles (Table 4), preventing network from 
achieving its best performance (Cabacinha 
& Lafetá, 2017). Underfitting phenomenon is 
common and related to network subtraining, 
which does not converge adequately during 
adjustment of its synaptic weights (Braga et al., 
2007).

Although the ANNs presented a good 
training and a worse validation, RMSE and Bias 
varied little between processing phases and 
relative amplitudes errors were, on average, 
20.65% training and 17.89% validation (Table 5). 
Due to smaller neurons number in the intermediate 
layer, higher correlation coefficient in validation 

phase and precision statistics values, ANNs 7, 13, 
14 and 15 were chosen for subsequent graphical 
analyzes (Figure 4).

Noise absence observed in Figure 4 
demonstrated ANN ability to deal with outliers 
during the process of adjusting its weights through 
the learning algorithm. After network selection, 
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Figure 4. Percentage errors dispersion as a function of DBH and errors classes for Artificial Neural 
Networks (ANN) built to eucalypt wood biomass projection up to 101 months old.

future projection of wood biomass production 
was carried out considering current age of 48 
months and graphical analysis of dispersion 
between observed and estimated values (Figure 
5). Wood biomass prognosis with ANNs 7, 13, 14 
and 15 did not generate similar projections. ANNs 
7 and 15 did not generate biologically realistic 
estimates, disagreeing with observed values. 
This was probably consequence of excessive 
memorization of training data (10,000 cycles) or 
overfitting.

ANNs 13 and 14 showed less estimates 
dispersion and better projections along age. 

These networks were the only ones that exhibited 
logistic and identity activation functions in the 
intermediate and output layers, respectively. 
The combination of both activation functions 
may have favored network predictive capability 
with MLP architecture. However, a disadvantage 
observed in network 14 was loss in accuracy and 
underestimation of wood biomass estimated 
from 73 months, not capturing actual reduction 
of growth rate. ANN 13, which used DBH and leaf 
perimeter in its functional relationship, was able 
to learn and generalize assimilated knowledge 
to biomass projection, demonstrating that it 
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Figure 5. Future projection of eucalypt wood biomass production considering current age of 48 months 
and dispersion between observed and estimated values.

can capture biological realism of a cumulative 
production curve, characterized by a sigmoidal 
behavior.

Conclusions
Artificial neural network modeling, with 

Multilayer Perceptron architecture and trained 
by backpropagation algorithm, can be used 
with good precision to estimate eucalypt wood 
biomass at different planting spacings.

Artificial neural networks technique can 
be recommended for prediction of eucalypt 
wood biomass, using diameter-at-breast-height 
and leaf perimeter in set of predictor variables.

Dendrometric and eco-physiological 
predictors variables combination can be a viable 
alternative to improve quality of eucalypt wood 
biomass estimates.
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