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Abstract
As a part of a Pilot Monitoring Program of honey bee health coordinated by the EURL (European Union Reference Laboratory) 

and according to the criteria established for Spain, 14 apiaries in Castilla-La Mancha were selected at random and sampled during 
the autumns of 2012-2014 to identify the most prevalent nosogenic agents, potentially those related to the honey bee colony collapse 
phenomenon. In all the apiaries studied, Nosema ceranae was the most prevalent pathogen detected over the three years, confirming 
the worldwide spread of this microsporidian, a pathogen that negatively affects honey bee health at an individual and colony level. 
Trypanosomatids were also very prevalent in honey bee colonies, although the majority of Trypanosomatids detected were not Crithidia 
mellificae but rather the genetically distinct Lotmaria passim lineage. We also detected Varroa destructor mites, and the particularly 
high prevalence in 2014 suggests a possible problem regarding mite control in field conditions that requires attention. In agreement 
with data from other regions, the BQCV and DWV were the most prevalent viruses in honey bee colonies and thus, the Varroa-DWV 
interaction may be an important cause of bee colony mortality. While there was little evidence of a relationship between the BQCV 
virus and N. ceranae under field conditions during 2012, this was not the case in 2013 and 2014. Finally, the AKI-complex or LSV-
complex was not detected. The information obtained in this study should help orientate future plans for honey bee disease control. 
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Introduction

The honey bee, Apis mellifera Linnaeus, 1758, 
plays an essential role in the developmental cycle of 
a large number of plant species (Breeze et al., 2011) 
and it has produced food (honey and pollen) for 
human consumption for thousands of years (Chauzat 
et al., 2013). In the last decade, honey bees have been 
affected by serious health threats that have contributed 
to a substantial loss of honey bee colonies around 
the world (VanEngelsdrop & Meixner, 2010; Van der 

Zee et al., 2014). Persistent honey bee colony losses 
may be most problematic in areas like Spain, where 
professional beekeepers are essentially dedicated to 
honey production. Indeed, Spain is the country with 
the greatest honey production in Europe (more than 29 
thousand tons: MAGRAMA 2012, 2013), the largest 
number of honey bee colonies (more than 2.5 million 
on 01/05/2014: MAGRAMA, 2013) and the highest 
percentage of professional beekeepers (Chauzat et al., 
2013). For this reason, honey bee colony losses are a 
major concern in this country. Castilla-La Mancha is 
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one of the autonomous Spanish regions with the highest 
number of honey bee colonies (>155,000 colonies), and 
it is the fifth largest producer of honey in Spain. Indeed, 
“La Alcarria Honey” is produced in this area, the first 
honey to be awarded a European Protected Designation 
of Origin, highlighting the beekeeping tradition in the 
region and its essential impact on the agrarian structure 
in Spain.

A multitude of factors (viruses, mites, microsporidia, 
pesticides, etc.), either acting alone or in combination, 
have been associated with the worldwide decline in 
pollinators that causes premature colony mortality (Potts 
et al., 2010; Ratnieks & Carreck, 2010; Runckel et al., 
2011; Cornman et al., 2012; Francis et al., 2013; Chen 
et al., 2014; Simon-Delso et al., 2014; Staveley et al., 
2014; Porrini et al., 2016). However, the main drivers 
of colony collapse might differ in distinct geographical 
locations (Cepero et al., 2014, 2016). While the most 
prevalent nosogenic agents related to the phenomenon 
of honey bee colony collapse have already been studied 
in Spain (see for example: Martín-Hernández et al., 
2007, 2012; Higes et al., 2009, 2010a; Bernal et al., 
2010; Antúnez et al., 2012; Garrido-Bailón, 2012; 
Botías et al., 2013), it is vital to maintain a surveillance 
system to detect changes in the prevalence of such 
agents. In the present work, we report the prevalence of 
the major honey bee pathogens in 14 apiaries situated in 
the region of Castilla-La Mancha, and we investigated 
their potential role in the decline of honey bee health 
experienced in this area with such an important 
beekeeping tradition.

Material and methods

Sampling protocol

As part of the Pilot Monitoring Program of honey 
bee health coordinated by the EURL (European 
Union Reference Laboratory), 14 apiaries located 
in Castilla-La Mancha were selected at random and 
sampled during the autumn of 2012, 2013 and 2014 
(September to November). The number of apiaries 
to be studied in this region was determined by the 
MAGRAMA criteria. In each apiary, a minimum of 
8 and a maximum of 13 bee colonies were selected 
at random, and a total of 164 (2012), 151 (2013) and 
123 (2014) worker honey bee samples were sent to 
the Centro de Investigación Apícola y Agroambiental 
(CIAPA) Honey Bee Pathology Laboratory (see 
Table 1 & Fig. 1). Each sample consisted of more 
than 300 adult worker bees for analysis and they 
arrived at our laboratory in perfect conditions (alive 
or frozen). Samples were taken during the mandatory 

application period of acaricides to varroosis control 
in Spain.

Varroa destructor analysis

To assess the presence of Varroa destructor Anderson 
& Trueman, 2000, in all worker honey bee samples 
from each colony in each apiary, we followed the EURL 
recommendations for the Epilobee program, adapted 
from the OIE (2008) methods. Each mite detected was 
collected individually and analyzed macroscopically 
to confirm the species, differentiating it from Braula 
coeca Nitzsch, 1818 or Tropilaelaps clareae Delfinado 
& Baker, 1962. A honey bee colony was considered 
infested with V. destructor when at least one Varroa 
mite was found in the sample. The rate of infestation of 
the bee colony was estimated by assessing the number 
of Varroa mites in relation with the number of adult 
bees in each sample (more than 300 in all cases) and it 
was expressed as the number of Varroa mites/100 bees/
sample. 

Nucleic acid extraction for pathogen detection

Each of the honey bee colonies that were sampled 
during the study were analysed to detect the main 
pathogens. To obtain nucleic acids, a sub-sample of 120 
worker honey bees from each honey bee colonies was 
used. The remaining bees (more than 180) were kept 
frozen at -80ºC. Each sub-sample was macerated in AL 
buffer 50% (Qiagen) as described previously (Antúnez 
et al., 2012; Cepero et al., 2014), using sterile bags with 
a filter (BA6040 STRAINER BAGS) in a Stomacher 80 
blender (Biomaster). The macerated bees were centrifuged 
at 3,000 rpm for 10 min, and the resulting pellets were 
used for DNA extraction and the supernatants for RNA 
extraction. Both the pellets and supernatants were stored 
at -20ºC prior to nucleic acid (DNA or RNA) extraction.

For DNA extraction, the pellets were resuspended in 3 
mL milliQ H2O and a 400 µL aliquot was transferred to a 
96-well plate (Qiagen) with glass beads (2 mm diameter, 
Sigma) using disposable Pasteur pipettes. After overnight 
pre-incubation with Proteinase K (20 µL, Qiagen), the 
samples were then processed as described previously 
(Martín-Hernández et al., 2012) and followed the BS96 
DNA Tissue extraction protocol in a BioSprint station 
(Qiagen). The plates were then stored at -20°C. 

For RNA extraction, 400 µL of the supernatant was 
incubated for 15 min with protease (20 µL, Qiagen) 
at 70 ºC and the nucleic acids were then extracted as 
described above (Biosprint 96 DNA; Qiagen and Bio-
Sprint workstation). The nucleic acids recovered were 
then subjected to DNA digestion with DNase I (Qiagen) 
to completely remove any genomic DNA and the total 
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RNA recovered was used immediately to generate first 
strand cDNAs using the Quantitec Reverse Transcription 
Kit (Qi-agen) according to the manufacturer’s instructions. 
The resultant cDNA was used for subsequent virus analysis 
(with no further dilution).

Negative and positive controls were run in parallel for 
each step: bee maceration, DNA and RNA extraction, and 
reverse transcription.

PCR and RT-PCR reactions

Broad pathogen screening (Table 2) was performed 
using published PCR assays to detect: Acarapis woodi 
(Rennie, 1921; Cepero et al., 2015); Nosema apis (Zan-
der, 1909) and Nosema ceranae (Fries et al., 1996) in 
triplex PCR with an internal control (Martín-Hernán-
dez et al., 2012); Trypanosomatids and Neogregarines 
(Meeus et al., 2010). Virus analysis was performed 
using RT-PCR published to detect Lake Sinai Virus 
complex (LSV1-LSV2-complex; Ravoet et al., 2013); 
Acute Bee Paralysis Virus-Kashmir Bee Virus-Israeli 
Acute Paralysis (AKI-complex: Francis & Kryger, 
2012); Black Queen Cell Virus (BQCV: Bailey & 
Woods, 1974) and Deformed Wing Virus (DWV: Bai-
ley et al., 1979) using qRT-PCR described by Chanta-
wannakul et al., 2006). Negative PCR controls were 
included in all analyses. 

Trypanosomatid sequencing

To identify the infecting species, PCR products of all 
trypanosomatid positive isolated were sequenced. For 
this, the PCR products were purified (Gómez-Mora-
cho et al., 2015) and sequenced on an ABI3730XL 
Automatic Sequencer using Big Dye (Applied Bio-
systems, Foster City, CA, USA). The resulting 
sequences were assembled, aligned and checked for 
accura-te base calling using CodonCode Aligner 
(CodonCode Corporation, Dedham, MA, USA). The 
species were identified based on a single nucleotide 
variant that allows the 18S rDNA sequences of L. 
passim (Schwarz et al., 2015) and Crithidia mellificae 
(Langridge & McGhee, 1967) to be discriminated (“G” 
for L. passim and “A” for C. mellificae, respectively: 
Cepero et al., 2014, 2016), and also compared with 
sequences deposited in GenBank database.

Statistical analysis

Statistical analyses were performed using the SPSS 23 
software, carrying out Fisher Exact Tests to determine if 
there was any association between the pathogens. Chi-
square significance tests were also performed to check 
if the prevalence of each pathogen changed over the 
years and if there were any pathogen associations. 

Figure 1. Sampling zones in Castilla-La Mancha, Spain.

Province
2012 2013 2014

Apiaries Colonies Apiaries Colonies Apiaries Colonies 

Albacete 5 62 4 52 4 52

Ciudad Real 4 45 0 0 2 22

Toledo 1 10 2 24 4 49
Cuenca 2 23 5 50 0 0

Guadalajara 2 24 2 25 0 0

Total CLM 14 164 13 151 10 123

Table 1. Apiaries and colonies sampled in each region of Castilla-La Mancha (CLM) on 2012, 2013 and 2014.
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Results

The prevalence of the major bee pathogens is 
shown in Table 3. The most prevalent pathogen over 
the three years of sampling was N. ceranae, with a 
mean prevalence of 52.6% in all the apiaries sampled 
(53.7%, 40% and 64.2% in each sampling period) 
and present in all apiaries studied). Trypanosomatids 
were also detected in all the apiaries analysed, with 
a mean prevalence of 32.6% (29.9%, 27.1% and 
40.7%, in each year). The sequencing of all positive 
trypanosomatid isolates indicated that L. passim 
was the most abundant in this area since 80% of the 
analysed sequences corresponded with this species, 
whereas C. mellificae was far less frequent (20% of 
sequences studied).

V. destructor was the third parasite in terms of pre-
valence, with a mean of 18%. V. destructor was iden-
tified in three of the five provinces in 2012 (Albacete, 
Guadalajara and Toledo) but in only 4 of the 14 apiaries 
analysed (28.6%), with a mean prevalence of 9.1% 
and a mean percentage parasitization of 0.4% in this 
year. However, its prevalence increased significantly 
in the next two years, with an average prevalence of 
11.9% in 2013 and 33% in 2014. V. destructor was 
detected in all the apiaries studied in 2013 and 2014. 

The mean percentage of parasitization increased in 
2013 to 1%, and rose to 3% on average in 2014. N. 
apis was the fourth parasite in prevalence, with a mean 
of 5.6%. It was not detected in 2012, but in 2013 and 
2014 its prevalence was 15.2% and 1.6% respectively. 
Neogregarines were the fifth parasite in prevalence, 
with a mean prevalence of 1.6% (0.6%, 4.6% and 0% 
in each year). A. woodi was not detected in any sample.

Of the seven viruses analyzed, only DWV and 
BQCV were found in all the apiaries analysed. The 
mean prevalence for BQCV was 25.1% (30.5% in 
2012, 23.8% in 2013 and 21.1% in 2014). For DWV 
the mean prevalence was 18.6% (14.6% in 2012, 
11.9% in 2013 and 29.3% in 2014). No LSV or AKI 
viruses were found.

Regarding associations, a higher presence of DWV 
was observed in the colonies where V. destructor was 
detected (Chi-squared; p<0.0001), whereas BQCV 
was less common in these colonies (Chi-squared; 
p<0.05). The detection of BQCV was associated with 
the presence of L. passim in honey bee colonies (Chi-
squared; p<0.05) in 2012, and with N. ceranae in 2013 
and 2014 (Chi-squared; p<0.05). The detection of N. 
ceranae in honey bee colonies was not significantly 
associated with the appearance of L. passim (Chi-
squared; p>0.05).

Pathogen Primer Sequence Amplicon size 
(bp)

PCR N. ceranae 218 CER-F 5’-CGGCGACGATGTGATATGAAAATATTAA-3’ 218-219
218 CER-R 5’-CCCGGTCATTCTCAAACAAAAAACCG-3’

N.apis 218 CER-F 5’-GGGGGCATGTCTTTGACGTACTATGTA-3’ 321
218 CER-R 5’-GGGGGGCGTTTAAAATGTGAAACAACTATG-3’

Trypanosomatids CRI-SEF 5’- CTTTTGGTCGGTGGAGTGAT- 3’ 417 
CRI-SER 5’- GGACGTAATCGGCACAGTTT- 3’

Neogregarines API-NEOF 5’- CCAGCATGGAATAACATGTAAGG- 3’ 260
API-NEOR 5’- GACAGCTTCCAATCTCTAGTCG- 3’

A. woodi AW180-FOR 5’-GGAATATGATCTGGTTTAGTTGGTC-3’ 180
AW180-REV 5’- GAATCAATTTCCAAACCCACCAATC-3’

RT-PCR LSV-complex LSVdeg-F 5’-GCCWCGRYTGTTGGTYCCCCC-3’ 600
LSVdeg-R 5’-GAGGTGGCGGCGCSAGATAAAGT-3’

AKI AKI-F 5’-CTTTCATGATGTGGAAACTCC-3’ 100
AKI-R 5’-AAACTGAATAATACTGTGCGTA-3’

RT-qPCR BQCV BQCV 9195F 5’-GGTGCGGGAGATGATATGGA-3’ 305
BQCV 265r 5’-GCCGTCTGAGATGCATGAATAC-3’
BQCV 8217T* 5’-FAM-TTTCCATCTTTATCGGTACGCCGCC-TAMRA-3’

DWV DWV 9587F 5’-CCTGGACAAGGTCTCGGTAGAA-3’ 250
DWV 9711R 5’-ATTCAGGACCCCACCCAAAT-3’
DWV 9627T* 5’-FAM-CATGCTCGAGGATTGGGTCGTCGT-TAMRA-3’

 *5’ (FAM, 6-carboxyfluorescein); 3’ (TAMRA, tetramethylrhodamine)

Table 2. Primers used for each pathogen in PCR reactions.
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Discussion

As the EURL reports, the Epilobee project requires 
a strong effort to coordinate and collaborate with 
beekeepers in order to correctly sample and analyse 
honey bees. This study formed part of this project, 
delivering scientifically solid data on honey bee health 
in a particular geographical area within the EU. Indeed, 
we report here the prevalence of the major honey bee 
pathogens in Castilla-La Mancha that are potentially 
related to the weakness and mortality of honey bee 
colonies evident in Europe since the early years of the 
21st century.

As reported previously for Spain (Higes et al., 2009, 
2010a; Botías et al., 2012; Martín-Hernández et al., 
2012; Cepero et al., 2014, 2016), N. ceranae was the 
most prevalent pathogen over the three years in all the 
apiaries studied. This high prevalence was also found in 
other parts of Europe (Stevanovic et al., 2011; Ravoet 
et al., 2013), in South (Martínez et al., 2012) and North 
America (Runckel et al., 2011; Martin et al., 2013; Emsen 
et al., 2016), and in Asia (Li et al., 2012; Morimoto et 
al., 2013; Yang et al., 2013), confirming the worldwide 
spread of this microsporidian (Martín-Hernández et 
al., 2007; Higes et al., 2010a,b, 2013). The role of N. 
ceranae in honey bee colony loss remains controversial 
(Higes et al., 2013). Yet despite this dispute, it is well 
accepted that N. ceranae negatively affects honey bee 
health at the individual and colony levels (Higes et al., 
2008, 2009; Martín-Hernández et al., 2009; Dussaubat 
et al., 2012, 2013; Ravoet et al., 2013; Goblirsch et al., 
2013; Botías et al., 2013; Alaux et al., 2014; Cepero et 
al., 2014, 2016; Vidau et al., 2014; Wolf et al., 2014; 
Maes et al., 2016; Bordier et al., 2017), causing colony 

collapse under certain conditions (Higes et al., 2013; 
Betti et al., 2014). Thus, this pathogen clearly represents 
a serious risk for professional beekeeping in temperate 
areas of the world (Higes et al., 2009; Hatjina et al., 
2011; Nabian et al., 2011; Martín-Hernández et al., 
2012; Lodesani et al., 2014; Adjlane & Haddad, 2016). 
An additional problem with N. ceranae infection is that 
this pathogen can spill over from honey bees into bumble 
bee populations, causing fatal infection and contributing 
to bumble bee decline (Plischuk et al., 2009; Graystock 
et al., 2013; Fürst et al., 2014). Therefore, N. ceranae 
poses a threat to managed and wild pollinators, and 
developing control strategies against N. ceranae is now 
a priority in contemporary bee research in order to save 
both honey bees and wild bees. 

Trypanosomatids were also very prevalent in honey 
bee colonies, mainly L. passim. These pathogens are 
currently receiving much attention given that the pre-
sence of C. mellificae has been correlated with colony 
loses in the USA and Belgium, especially when detected 
in conjunction with N. ceranae (Runckel et al., 2011; 
Cornman et al., 2012; Ravoet et al., 2013). Such co-
infection was also reported in depopulated honey bee 
colonies (Cepero et al., 2014), although the presence 
of N. ceranae was not significantly associated with 
the detection of L. passim in the honey bee colonies 
studied here, suggesting that this relationship may only 
occur in conjunction with colony collapse. When these 
Trypanosomatids were sequenced for species identi-
fication, we confirmed the previous data (Cepero et al., 
2014) indicating that the majority of Trypanosomatids 
detected in honey bees were not C. mellificae but rather, 
the genetically distinct lineage, L. passim (Schwarz et 
al., 2015).

Pathogen
2012 2013 2014

Positive
samples % Positive

samples % Positive
samples %

V. destructor 15 9.1 18 11.9 41 33.3

N. ceranae 88 53.7 60 39.7 79 64.2

N. apis 0 0 23 15.2 2 1.6

Neogregarines 1 0.6 7 4.6 0 0

Tripanosomatids 47 29.9 41 27.2 50 40.7

A. woodi 0 0 0 0 0 0

BQCV 50 30.5 36 23.8 26 21.1

DWV 24 14.6 18 11.9 36 29.3

LSV1 and 2 0 0 0 0 0 0

AKI-complex 0 0 0 0 0 0

Table 3. Prevalence of the main bee pathogens per year.
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V. destructor mite is a serious and devastating 
ectoparasite of honey bees worldwide (OIE, 2008; 
Rosenkranz et al., 2010) that is strongly suspected to 
participate in the collapse of bee colonies (Dainat et 
al., 2012; Francis et al., 2013). In the present study 
we detected Varroa mites in three of the five provinces 
in the first year (2012), yet its prevalence increased, 
especially in 2014. In Spain there is legislation on the 
management of varroosis (BOE, 2006) that requires 
the application of a veterinary product to control this 
mite during autumn. Based on the results obtained here, 
it appears that this control was effective in the area 
studied during 2012 and 2013, although the increase in 
prevalence detected in 2014 indicated a problem in mite 
control in field conditions, situation that has worsened 
from 2015 to the present, as our team has been able to 
confirm based on the data that our passive surveillance 
system shows in this regard.

Gregarines are a diverse group of apicomplexa 
protists that infect many invertebrate phyla (Stejskal, 
1965). The neogregarine A. bombi (Liu, Macfarlane 
& Pengelly, 1974) is considered to be an infrequent 
parasite of Bombus species and although the use of a 
molecular detection method has led to its detection in 
honey bees (Meeus et al., 2010; Plischuk et al., 2011; 
Maharramov et al., 2013; Morimoto et al., 2013; 
Cepero et al., 2014), the potential pathological effect of 
A. bombi in honey bees is not clear. Indeed, it has even 
been suggested that the PCR primers used to detect 
this protist (Meeus et al., 2010) may also amplify other 
pathogens, which should be taken into account to avoid 
misdiagnosis (Cepero et al., 2014). The results obtained 
here indicate that as reported previously (e.g., Plischuk 
et al., 2011; Marimoto et al, 2013), Neogregarines have 
a very low prevalence in Castilla-La Mancha and thus, 
they would not be a great threat for local bee colonies 
if pathogenic.

Honey bees can be infected by as many as twenty 
RNA viruses, of which twelve have been detected in 
Europe (Aubert et al., 2008). The most frequent are the 
AKI-complex (Francis & Kryger, 2012; Francis et al., 
2013), BQCV and DWV (Runckel et al., 2011; Mondet 
et al., 2014), and LSV-complex mainly LSV1 and 
LSV2 (Runckel et al., 2011; Ravoet et al., 2013) which 
could therefore be related to bee colony collapse. In 
agreement with data from other regions (Chen & Siede, 
2007; Teixeira et al., 2008; Li et al., 2012; Antúnez et 
al., 2012; Morimoto et al., 2013; Ravoet et al., 2013; 
Rodriguez et al., 2014), our results show that BQCV 
and DWV were the most prevalent viruses in Castilla-
La Mancha. The Varroa-DWV interaction is thought 
to be an important cause of mortality in bee colonies 
(Rosenkranz et al., 2010; Dainat et al., 2012; Francis et 

al., 2013) and our study confirmed this relationship as 
the presence of V. destructor was positively correlated 
with the occurrence of DWV.

In the field, BQCV disease outbreaks have been 
linked with infection with N. apis. The rapid mul-
tiplication of BQCV in adult bees infected with this 
microsporidian (Bailey, 1981, 1982) might be a secon-
dary effect of such infection, either by increasing the 
susceptibility of the alimentary tract to infection by 
this virus (Chen & Siede, 2007) or by activating its 
replication in the gut where N. apis resides (Chen et al., 
2006). Given that the gut is also the target organ for 
infection by N. ceranae, the same relationship might be 
expected between this microsporidian and the BQCV 
virus. Such an association was indeed reported recently 
(Dainat et al., 2012; Mendoza et al., 2014; Francis et 
al., 2014) and although our data did not support this 
relationship under field conditions in 2012, they did in 
2013 and 2014. While a positive association between 
Nosema infection and BQCV has been found in some 
studies, the mechanism by which Nosema activates and 
transmits BQCV infection remains to be determined 
(Chen & Siede, 2007).

The AKI-complex and LSV-complex were not 
detected here and while IAPV has been related to 
honey bee colony collapse (Cox-Foster et al., 2007; 
Chen et al., 2014), its prevalence in Spain was very low 
(Garrido-Bailón et al., 2010; Antúnez et al., 2012) as 
confirmed here. The abundance of a new virus complex 
in honey bees (Lake Sinai viruses complex, LSV-
complex: Runckel et al., 2011; Granberg et al., 2013; 
Ravoet et al., 2013; Cepero et al., 2014) suggests that 
this group may play significant role in colony health 
(Runckel et al., 2011, Cornman et al., 2012; Cepero 
et al., 2014). However, this hypothesis is not always 
supported (Ravoet, et al., 2013) and we did not detect 
this complex here.

In conclusion, in accordance with previous studies in 
Spain (Higes et al., 2009; Garrido-Bailón et al., 2012; 
Martín-Hernández et al., 2012), the most prevalent 
pathogens in Castilla-la Mancha are N. ceranae, L. 
passim, BQCV and DWV. Future disease control 
should focus on these pathogens and the effects that 
the interactions between them could have on bee 
colony health. Another priority should be to monitor 
changes in prevalence to detect potential problems with 
pathogen control programs, such as those that possibly 
occurred in 2014 with the Varroa control program 
that was apparently effective in field conditions until 
then. As such, studies like this will help advance our 
understanding of pathogen interactions and bee health, 
therefore helping in the application of control measures 
to limit colony losses.
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