
FI
R

ST
 P

R
O

O
F

RESEARCH ARTICLE OPEN ACCESS

Screening of transgenic maize using near infrared spectroscopy and 
chemometric techniques

Xuping Feng1,2, Haijun Yin3, Chu Zhang1, Cheng Peng4 and Yong He1 
1Zhejiang University, College of Biosystems Engineering and Food Science. Hangzhou 310058, China. 2China Jiliang University, College of Life 

Sciences. Hangzhou 310018, China. 3Jiangsu Mingtian Seeds Science and Technology Co., LTD., Nanjing 210014, China. 4Institute of Quality and 
Standard for Agro-products, Zhejiang Academy of Agricultural Sciences; Hangzhou 310021, China.

Spanish Journal of Agricultural Research
16 (2), e0203, 10 pages (2018)

eISSN: 2171-9292
https://doi.org/10.5424/sjar/2018162-11805

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A, M.P. (INIA)

Abstract
The applicability of near infrared (NIR) spectroscopy combined with chemometrics was examined to develop fast, low-cost and 

non-destructive spectroscopic methods for classification of transgenic maize plants. The transgenic maize plants containing both 
cry1Ab/cry2Aj-G10evo proteins and their non-transgenic parent were measured in the NIR diffuse reflectance mode with the spectral 
range of 700–1900 nm. Three variable selection algorithms, including weighted regression coefficients, principal component analysis 
-loadings and second derivatives were used to extract sensitive wavelengths that contributed the most discrimination information for 
these genotypes. Five classification methods, including K-nearest neighbor, Soft Independent Modeling of Class Analogy, Naive Bayes 
Classifier, Extreme Learning Machine (ELM) and Radial Basis Function Neural Network were used to build discrimination models 
based on the preprocessed full spectra and sensitive wavelengths. The results demonstrated that ELM had the best performance of all 
methods, even though the model’s recognition ability decreased as the variables in the training of neural networks were reduced by 
using only the sensitive wavelengths. The ELM model calculated on the calibration set showed classification rates of 100% based on 
the full spectrum and 90.83% based on sensitive wavelengths. The NIR spectroscopy combined with chemometrics offers a powerful 
tool for evaluating large number of samples from maize hybrid performance trials and breeding programs.
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Introduction

Plant breeding uses molecular biology to produce 
new crop varieties or lines with desirable properties 
by using techniques to select and introduce genetic 
modifications and desirable traits into plants (Liu et al., 
2015; Yadav et al., 2015; Yang et al., 2017). One major 
technique of plant breeding is selection, the process 
of selectively propagating plants with desirable traits 
and eliminating those with less desirable traits (Schart 
et al., 2016). This requires plant breeders to screen 

large populations of crops for individuals that possess 
the characteristics of interest. Currently, there are 
various molecular methodologies for plant breeding, 
such as polymerase chain reaction (PCR) (Taverniers 
et al., 2004), enzyme linked immunosorbent assays 
(Kamle et al., 2011) and microarrays (Xu et al., 2005). 
However, these DNA- and protein-based methods for 
identification of transgenic plants are time consuming 
and costly when studying large numbers of samples, 
and thus unsuitable for on-line application. Therefore 
a method for the selection of transgenic samples after 
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transformation that does not require any wet chemistry, 
particularly the procedure of leaf DNA extraction, 
would be advantageous where many sample analyses 
are required.

Near infrared (NIR) spectroscopy is an alternative 
to traditional chemistry procedures for qualitative and 
quantitative analysis of biological materials (Wu et 
al., 2014). The NIR region of 700–2500 nm can gather 
information related to different hydrogen bonds (C–H, 
N–H and O–H), which are the primary structures of 
organic molecules. In contrast to biochemical assays, 
NIR spectroscopy does not require technical expertise 
or complex techniques, and the spectrophotometer can 
be installed anywhere with no requirement of reagents 
or complicated protocols (García-Molina et al., 2016).

The NIR spectroscopy has been widely used for 
decades for qualitative and quantitative analysis in 
agriculture and food research, and has been used for 
determining the moisture content of peanut kernels (Jin 
et al., 2015), rice wine composition (Yu et al., 2015), 
vine water potential (De Bei et al., 2011) and, more 
recently, to estimate carotenoids in tomato products 
(Saad et al., 2017) and berry shrivel (Beghi et al., 2015). 
The application of NIR spectroscopic technology in 
the genetic field and especially in transgenic foods is 
now feasible (Alishahi et al., 2010). García-Molina et 
al. (2016) applied NIR spectroscopy to discriminate 
transgenic wheat lines with low gliadin content from 
non-transgenic lines. Guo et al. (2014) identified clear 
differences between transgenic and non-transgenic 
tomatoes using VIS-NIR together with discriminant 
partial least squares regression with excellent 
classification accuracy of up to 100%. The basis of this 
technology for application in transgenic field is that it 
can identify phenotypic changes caused by genotypic 
changes that ultimately bring about changes on organic 
molecular bonds (Alishahi et al., 2010). However, 
due to the overlapping bands in the NIR region, the 
spectral analysis is not straightforward and requires 
chemometric methods to extract important information 
and classify the mass data set from transgenic and 
non-transgenic samples (Murayama et al., 2000). 
Chemometric approaches applied to spectra, using 
principal component analysis (PCA) and partial least 
squares discrimination analysis (PLS-DA) as well as 
support vector machines (SVM), have proved effective 
in distinguishing transgenic plants and food from non-
transgenic samples (Liu et al., 2014; García-Molina et 
al., 2016; Feng et al., 2017).

Thus, the objectives of this study were to (1) evaluate 
the possibility and accuracy of using NIR spectra to 
discriminate transgenic maize plants for breeding 
screening purposes, (2) identify sensitive wavelengths 
that attribute differences between transgenic and 

non-transgenic maize plants and (3) evaluate the 
performance of five discriminate models and establish 
an optimal model for classification.

Material and methods

Leaf samples

Seeds of transgenic maize (Zea mays L.) (con-
taining both cry1Ab/cry2Aj-G10evo genes) and 
its parental line were provided by the Institute of 
Insect Sciences, Zhejiang University, China. The 
transgenic maize line contained both herbicide and 
insect tolerance traits created by Agrobacterium tu-
mefaciens mediated transformation. The seeds were 
sown in plastic buckets in a 1:1:1 mix of soil:calcined 
clay:torpedo sand. The plants were grown in a green-
house for 2 months. The youngest fully expanded 
leaf on a shoot and the second or third leaf formed 
were selected for NIR scanning. PCR was used to 
check the integrity of copies of the genes introduced 
during the breeding phase and the expression of the 
inserted exogenous gene.

NIR scanning and pretreatment

Maize leaf samples were scanned using a field 
portable NIR spectroradiometer NIRez (Isuzuoptics, 
Taiwan, China) with spectra range of 900–1700 nm. 
Reflectance spectra were collected every 10 nm within 
900–1700 nm. Each sample was analyzed in three 
duplicates to reduce measurement errors. Maize leaf 
samples were placed directly in the diffuse reflection 
accessory. A total of 326 maize leaves were sampled, 
comprising 163 transgenic and 163 non-transgenic 
samples, with at least one leaf collected from each 
plant. Using the Kennard-Stone (KS) algorithm 
(Saptoro et al., 2012), the whole dataset was divided 
into two groups: calibration and prediction sets. The 
KS algorithm calculates the Euclidean distance of 
every two NIR spectra and chooses two spectra with 
farthest distance as the first pairs, then calculates 
the Euclidean distances of the rest samples with the 
first pairs, which made the samples in both sets were 
representatively of the population and could avoid 
overfitting to some extent. Therefore, based on the 
KS method, 120 transgenic and 120 non-transgenic 
samples were chosen for calibration set. The remaining 
43 transgenic and 43 non-transgenic samples were 
selected to form the prediction set. Samples were 
classified according to the genetic background using 
a classification model, which were preferably close to 
the values used to codify the class.
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Unscrambler x10.1 (CAMO PROCESS AS, Oslo, 
Norway) and MATLAB version R2010b (The Math-
Works, Natick, MA, USA) were used to process the data. 
In addition, origin Pro 7.0SR0 (Origin Lab Corporation, 
Northampton, MA, USA) software was used to design 
graphs. Model performances were evaluated by the 
classification accuracy of the calibration and prediction 
sets.

Chemometrics and data analysis

The first step involving classification was carried 
out using an exploratory analysis with PCA (Bryant 
& Yarnold, 1995). The PCA developed on the whole 
NIR spectral data was used to visualize the possible 
clusters and trends in the PCA score plot. In the 
second step, five classification methods including 
K-nearest neighbor (KNN) (Gil-Pita & Yao, 2009), 
Soft Independent Modeling of Class Analogy (SIMCA) 
(Waddell et al., 2014), Naive Bayes Classifier (NBC) 
(Islam et al., 2007), Extreme Learning Machine (ELM) 
(Huang et al., 2012) and Radial Basis Function Neural 
Network (RBFNN) (Kosic, 2015) were applied on the 
original raw spectral data (90 bands) to identify the 
transgenic samples. Variable (wavelength) selection in 

multivariate analysis is an important step because the 
removal of highly correlated variables produces better 
predictions and a simpler process. Here, three varia ble 
selec  tion algorithms [weighted regression coefficient 
(Bw), PCA-loadings and second deri vative (2nd deri-
vative)] were used to extract sensi tive wave  lengths 
that contri  buted the most discri mination information 
to these genotypes. In the final stage of this study, the 
actual roles of the extracted sensitive wavelengths were 
evaluated by establishing discrimination models based 
on the sensitive wavelengths. Classification methods 
were carried out using only a few wavelengths selected 
in the previous step as input, and the results were 
compared with the classification obtained by using the 
whole spectra. Figure 1 illustrates the main steps for the 
whole procedure.

PCA

PCA was used to reduce the dimensions of the 
original spectra into a low dimen sional subspace, 
and an alternative set of coordinates called principal 
components (PCs) was projected (Rinnan et al., 2009). 
The number of PCs is less than or equal to the number 
of original variables, and the first few PCs contain most 

Figure 1. Flowchart of NIR spectral data analysis for discrimination of transgenic 
maize plants.
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calculate how close each member of the training set is 
to the target row that is being examined.

SIMCA is performed to describe each group separately 
based on their similarities in a principal component space 
(Waddell et al., 2014). Objects are considered to belong to 
the class if their Euclidean distance from the constructed 
PC space is not significantly larger than the Euclidean 
distance of the class objects from their PC space.

NBCs are a family of simple probabilistic classifiers 
based on applying Bayes’ theorem with strong (naive) 
independence assumptions between the features (Islam 
et al., 2007). NBC is calculated based on the simplifying 
assumption that the attribute values are conditionally 
independent of a given target value.

ELMs are feedforward neural networks for classifi-
cation or regression with a single layer of hidden nodes, 
where the weights connecting inputs to hidden nodes 
are randomly assigned and never updated (Huang et al., 
2012). ELM has one input layer and one linear hidden 
layer, and the optimal weights between the input and 
hidden layers are randomly chosen by minimal norm 
least square method.

RBFNN can separate a set of objects having different 
class memberships, which presents certain advantages 
including better approximation capabilities and shorter 
computational time (Kosic, 2015). In RBFNN, a radial 
basis function is used as the activation function for each 
node in the hidden layer, and nonlinear transformation 
from the input space to the hidden unit space applying a 
linear combination of the radial basis function is used in 
the network.

Results and discussion

Spectroscopic analysis

The spectral data were collected over the range of 
900–1700 nm. Only spectra of 947.07–1666.49 nm were 
used for analysis as the head and the end of the spectra 
showed obvious noise caused by the instrument and the 
environment (Fig. S1 [suppl]). To eliminate the noise of 
the spectral data and improve the predictive ability for 
samples, raw spectra went through noise suppression by 
Savitzky–Golay smoothing algorithm with a window 
size of 7 and polynomial of order 2 (Pan et al., 2010). 
The trend of spectra between transgenic and non-
transgenic plants was very similar, with similar peak and 
valley positions (Fig. 2A & B). Slight differences were 
found between the mean spectral reflectance value of 
transgenic and non-transgenic maize (Fig. 2C). As most 
of the spectral information overlapped, it was difficult to 
discriminate the transgenic maize plants directly by their 
characteristic spectral feature. Therefore, chemometric 

of the spectral information. For visual discrimination, 
we projected each of the spectra in the newly formed 
coordinate space of selected PCs (score plot), and the 
scores of the most significant PCs corresponding to 
each NIR spectra were used. PCA is described in detail 
by Rinnan et al. (2009).

Important wavelength selection

Variable selection is quite efficient in spectra analysis 
for handling collinearity problems and extracting the 
most important information. Many approaches are 
available for selecting sensitive wavelengths; and 
identifying prominent peaks and/or valleys with Bw, 
2nd derivative and PCA-loading are among the most 
commonly used (Barbin et al., 2012; Rodríguez-Pulido 
et al., 2013; Zhang et al., 2015). In the present study, 
important wavelengths were selected from the Bw plot 
in the PLS regression model (Zhang et al., 2015). The 
2nd derivative by Savitzky–Golay method was used 
to identify key wavelengths related to variations in 
classification (Barbin et al., 2012). Loadings resulting 
from PCA of the raw spectral data represent the 
regression coefficient, and indicate the most dominant 
wavelength (Rodríguez-Pulido et al., 2013). Simplified 
classification models were then developed using the 
selected wavelengths from the above three methods, 
and the results were compared with the classification 
accuracy obtained with the whole spectral data.

Discriminate models

To accurately identify transgenic plants from the 
parental line, pattern recognition approaches, including 
KNN, SIMCA, NBC, ELM and RBFNN, were used 
to establish discriminate models. These mentioned 
methods are the most commonly used in classification 
models. The details of related theory for these methods 
is found in the literature (Islam et al., 2007; Gil-Pita & 
Yao, 2009; Huang et al., 2012; Waddell et al., 2014; 
Kosic, 2015). Other applied discriminate models 
such as PLS-DA and SVM have been used by other 
researchers for discrimination of transgenic maize 
kernels and transgenic rice seeds (Liu et al., 2014; Feng 
et al., 2017).

The KNN method is used to classify objects based 
on the closest training examples in the feature space. 
By comparing the distance between unknown samples 
(testing set) and samples in the training set, samples are 
classified based on proximity to training set samples 
(Gil-Pita & Yao, 2009). For each row (spectra data) 
in the target dataset (the set to be classified), the K 
closest members (i.e. the KNNs) of the training dataset 
are located. A Euclidean distance measure is used to 
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their comparisons are listed in Table 1. The prediction 
accuracy for each model was analyzed by the accuracy 
(in percentage) for the calibration and prediction sets. 
The accuracy of the classification was expressed as 
the fraction of correctly predicted samples to the total 
samples. Sensitivity of accuracy showed significant 
differences among the discriminate models calculated 
on entire spectral bands.

The best performance was for ELM, with classi-
fication accuracy of calibration and prediction sets 
exceeding 95%. The RBFNN model was less accurate 
than the ELM model, but was still acceptable. RBFNN 
and ELM are typical artificial neural networks (ANNs) 
(Lian et al., 2014) and can learn nonlinear functions 
from the NIR spectral data. In the calibration set, the 
respective accuracies were both 100% for the two ANNs. 
The SIMCA, KNN and NBC models of the two sample 
sets were not satisfactory, with classification accuracies 
of the calibration set less than 80%. The discrimination 
performance by NBC was the lowest with accuracy of 
approx. 55% – many problems encountered by modern 
analytical chemists are nonlinear, and approaches such 
as NBC do not apply well. It is noteworthy that previous 
studies attempts to discriminate transgenic plants have 
also shown that linear classification methods were less 
satisfactory compared to those of SVM (Liu et al., 
2014).

methods were introduced to build a qualitative model for 
classification.

A PC model for exploratory purposes was first created 
to examine the qualitative difference of transgenic and 
non-transgenic maize leaves in PC space (Fig. 3). No 
distinct clustering was shown by scatter plots of PC1 vs. 
PC2 and PC3 vs. PC4 of transgenic and non-transgenic 
maize plants after PCA analysis (Fig. 3A & B). Transgenic 
and non-transgenic maize were clustered together in the 
projection of PC5 with PC6 and could not be effectively 
separated (Fig. 3C). The discrimination based on PCA was 
not effective in classing transgenic samples. It is worth 
mentioning that the overexpression of cry1Ab/cry2Aj-
G10evo gene by transgenic editing technology improves 
glyphosate and insect resistance and ultimately changes 
organic molecular bonds, but there is no other phenotypic 
difference between transgenic and non-transgenic maize 
(Feng et al., 2017). As the PCA program failed to class 
transgenic maize from its parental line, other discriminant 
models were utilized for improved separation.

Classification performance based on entire 
spectral bands

Five discriminate models (KNN, SIMCA, NBC, 
ELM and RBFNN) were established on the full NIR 
spectra to evaluate the classification performance and 

Figure 2. Profiles of original spectra (A: transgenic maize, B: non-transgenic maize) and mean spectra 
of transgenic and non-transgenic maize plants (C). The shaded areas represent the standard deviation 
in each wavelength.
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Figure 3. Score scatter plots of (A) PC1 vs. PC2, (B) PC3 vs. PC4, and (C) PC5 vs. PC6 for transgenic 
and non-transgenic maize plants.

Table 1. Discriminant analysis results of transgenic and 
non-transgenic maize leaves based on entire spectral 
bands.

Discriminate 
models1 Par2 Calibration 

set %
Prediction 

set %
SIMCA 15,15 64.17 75.00
KNN 3 76.25 83.33
NBC 54.17 55.95
ELM 126 100 95.20
RBFNN 10 100 92.86

1SIMCA: Soft Independent Modeling of Class Analogy; KNN: 
K-nearest neighbor; NBC: Naive Bayes Classifier; ELM: 
Extreme Learning Machine; RBFNN: Basis Function Neural 
Network. 2Par shows the parameters of the discrimination 
models, number of PCs for SIMCA, number of selected nearest 
neighbors for KNN, optimum number of hidden nodes for ELM 
and spread values for RBFNN. 

We used a chemometrics approach because the 
discriminate models were used to highlight the 
chemical differences between transgenic and non-
transgenic maize plants. NIR spectroscopy can be 
used to identify transgenic samples as this technology 
can capture the phenotypic changes in chemical 
bonding of organic molecules that are altered as a 
result of genetic changes (Alishahi et al., 2010). 
Feng et al. (2017) developed a successful model to 

discriminate transgenic maize kernels based on the 
NIR hyperspectral imaging with the spectral range of 
874.41–1733.91 nm. They demonstrated that SVM 
and PLS-DA models established on the full range of 
NIR spectra had good classification performance. The 
hyperspectral imaging they used had the advantage 
of acquiring spectral and spatial information, which 
allowed the identification of transgenic maize kernels 
on the prediction maps. Compared to hyperspectral 
imaging, our simple instrument acquires small point-
source information from the sample and does not 
contain spatial information which is also important 
for discrimination. However, the NIR system that we 
used was portable and could be used from a USB flash 
drive without need of any installation, which is very 
helpful for the transgenic crop selection purposes of 
crop breeding laboratories. García-Molina et al. (2016) 
used spectral sensing in the region of 400–2500 nm 
to discriminate transgenic wheat grain with excellent 
accuracy. Moreover, NIR combined with chemometrics 
has proved effective in identification of transgenic 
soybean oils (Luna et al., 2013), rice mutant seeds 
(Liu et al., 2014) and transgenic tomato (Xie et al., 
2007). That is to say, a discriminant analysis model 
based on NIR spectra obtained enough information 
to discriminate the transgenic from parental samples 
because of their differences in chemical components. 
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This suggests that application of NIR spectroscopy with 
chemometrics could successfully identify transgenic 
crops, and it has advantages of being fast, time-saving 
and low cost compared with molecular methods.

Sensitive wavelength selection and classification 
analysis based on feature wavelengths

The neighboring NIR wavelengths are always 
collinear, therefore effective wavelength methods are 
applied to determine the contributions of individual 
wavelengths for identification (Feng et al., 2017). 
Certain wavelengths with obvious peaks and valleys 
were selected as sensitive wavelengths. Figure 4 
shows the effective wavelengths that were selected 
by 2nd derivative, PCA-loadings and Bw with the 
preprocessing method. The number of sensitive 
wavelengths was reduced to seven for PCA-loading, 
ten for 2nd derivative and eight for Bw. The loading 
line plot for these selection methods showed similar 
prominent positive peaks at 1125.6, 1167.55, 1413.97, 
1444.34 and 1520.78 nm. The band at around 1125 
nm belongs to the second overtone of the C–H stretch 
(Kumaravelu et al., 2017). The peak near 1167 nm 
is caused by the C–H stretching 2nd overtone of CH3 
and -CH2- groups, and that at 1413 nm by the C–H 
stretching and C–H deformation vibration of CH3 
and -CH2- groups, respectively (Schaefer et al., 
2013). The peak near 1444 nm is consistent with the 
N–H stretch (Boyd et al., 2006). Furthermore, a peak 
near 1520 nm is assigned to N–H stretch vibration 
(Minami & Iwahashi, 2011). These wavelengths are 
believed to correspond to NIR spectral bands relevant 
to maize property changes caused by the transgenic 
event.

Normally, the full spectra can contain hundreds of 
variables. According to Dai et al. (2015), sensitive 
wavelengths might be equally or more efficient than 
full spectra in multivariate analysis. The reduced 
number of wavelengths was sufficient to characterize 
most classification tasks. Judicious selection of 
wavelengths decreases sensitivity to non-linearity 
and discarding the uninformative wavelengths can 
expedite data processing and improve model accuracy 
and robustness. In the final stage of this study, the actual 
roles of the sensitive wavelengths selected by the 
above-mentioned three methods were evaluated. The 
newly proposed combined discriminate models were 
compared: PCA-loadings–SIMCA, 2nd derivative–
SIMCA, Bw–SIMCA, PCA-loadings–KNN, 2nd 
derivative–KNN, Bw–KNN, PCA-loadings–NBC, 
2nd derivative–NBC, Bw–NBC, PCA-loadings–ELM, 
2nd derivative–ELM, Bw–ELM, PCA-loadings–
RBFNN, 2nd derivative–RBFNN, and Bw–RBFNN 

(Table 2). The identification of sensitive wavelength 
algorithms can improve the model performance, but 
some algorithms can reduce recognition ability of 
the model. The strongest discriminant model was 
developed by Bw–ELM with a classification rate of 
90.83% for the calibration set and 86.90% for the 
prediction set. A correct classification rate of 95% 
was obtained in the calculation set based on the 
ELM discriminant model, which indicated that these 
selected emission peaks had reliable discrimination 

Figure 4. Distribution of sensitive wavelengths of 
transgenic and non-transgenic maize leaves selected by 
2nd derivative, PCA-loadings and Bw.
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power for distinguishing transgenic maize plants. The 
RBFNN model established on sensitive wavelengths 
had poorer classification accuracy compared to all 
wavelengths. The NBC and SIMCA models had 
poor classification performance, showing the correct 
classification rate in the range of 64.17%–83.00%, 
although they had better recognition capability when 
using the sensitive wavelengths for the calibration and 
prediction sets. The recognition ability of the KNN 
model established on sensitive wavelengths selected by 
2nd derivative was higher than that for all wavelengths 
with classification rates of 78.33% and 88.10% for 
the calibration and prediction sets, respectively. These 
results showed that the most appropriate classification 
technique for the classification task was the ELM 
model, which tended to produce more robust results, 
although a good performance of prediction set was 
also obtained with RBFNN.

In summary, using NIR spectroscopy allowed us 
to monitor phenotypic changes in maize plants as a 
consequence of genetic changes. Seven classification 
methods were tested to determine which provided 
the best results. First, they were used on the entire 
spectral bands acquired by the system and then 
using only the most important selected wavelengths. 
Thus, in addition to obtaining the best combination 
of methods to select features and classify genotypes, 
the performance of the selected wavelengths 
was evaluated. The results showed an excellent 
classification by the neural network models ELM 
and RBFNN. An ELM model using the spectral and 
features peaks after appropriate data pretreatment 
had valuable and robust calibration and prediction 
abilities with a classification accuracy exceeding 
90% on the calibration set. The use of NIR combined 
with chemometrics for screening transgenic maize in 
plant breeding programs is a very attractive platform 
and has potential for wide use in rapid and on-site 
screening because it is non-invasive, cost-effective 
and does not require pretreatment.
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