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Abstract
The first aim of this work is to use a new probability distribution successfully employed

in hydrology as the underlying probability model to verify its advantages and disadvan-

tages with respect to the beta distribution in the PERT method. The distribution was

introduced by Kumaraswamy K(a, b, p, q) and, in principle, is tetra-parametric. There-

fore, the three typical expert estimates of the minimum, maximum, and modal values

of this method are insufficient to estimate the four parameters. Hence, we first start

from the standardized Kumaraswamy distribution K(p, q) (1980), where the minimum

and maximum values of the variable are zero and one, respectively, and from a relation

through the modal value between the two parameters that remain unspecified. In the

next step, we restrict the family by setting one of its parameters to a uni-parametric

distribution. Second, we use a simulation process to estimate the parameters to reach

a better distribution behavior and improve the average and variance values according

to Taha’s (1981) proposal related to the beta distribution, the second objective of the

work. We illustrate the analysis with an investment analysis example.
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Un nuevo modelos probabilístico 

para el método PERT: 

aplicación a los flujos de inversión
Herrerías Velasco, José Manuel 

Resumen
El primer objetivo del trabajo que se presenta es usar una nueva distribución de pro-

babilidad, utilizada con éxito en Hidrología, como modelo probabilístico subyacente

en el método PERT y comprobar sus ventajas y desventajas respecto a la distribución

beta utilizada en la metodología PERT. La distribución fue introducida por Kumaras-

wamy K(a, b, p, q) y es tetra paramétrica, en principio, por lo que son insuficientes las

tres típicas estimaciones periciales, sobre el valor mínimo, máximo y modal, de esta

metodología, para estimar los cuatro parámetros. Por ello, en primer lugar, se parte

de la distribución de Kumaraswamy estandarizada K(p, q) (1980), donde los valores

mínimo y máximo de la variable son cero y uno respectivamente, y de una relación a

través del valor modal entre los dos parámetros que quedan sin especificar, en el paso

siguiente se restringe la familia, mediante la fijación de uno de sus parámetros, a una

distribución uniparamétrica. En segundo lugar, se utiliza un proceso de simulación

para la estimación de los parámetros, para conseguir el segundo objetivo del trabajo

que es lograr que la distribución tenga un comportamiento, en media y varianza que

mejore, en el sentido propuesto por Taha (1981), al de la distribución beta. Todo ello

se ilustra con un ejemplo de Análisis de Inversiones.

Palabras clave: 
Método PERT, valor actual neto (VAN), distribución de Kumaraswamy.
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� 1. Introduction

The families of tetra-parametric beta distributions, B (a, b, p, q) and two-sided

power (TSP) distribution (a, b, m, n), from van Dorp and Kotz (2002) and Ku-

maraswamy K (a, b, p, q) (1980) within the interval (a, b) are closely related and in-

clude the same distributions in particular cases. In addition, their tremendous

flexibility and ability to adapt data to campanoid graphs in L, J, or U shapes makes

them especially useful as probabilistic models in problems related to risk or uncer-

tain environments, which require asymmetric distributions and different kurtosis.

The other distributions used for these types of problems are the bi-parabolic and

bi-cubic distributions introduced by García (2007) and López (2010), respectively,

in their doctoral theses.

The problem with these tetra-parametric distributions is that they rely on estimating

four parameters, usually with little information and the tendency to condense three

typical maximum, minimum, and modal values in the PERT method. Thus, we use

elicitation processes, request more information about the problem from an expert,

restrict distributions to families of a certain probability, such as those of constant

variance, null kurtosis, or mesokurtic, or introduce one or several relationships be-

tween the last two parameters. This was followed by Caballer (1998) or Herrerías

and Herrerías (2013) with the beta distribution used in the PERT method.

In this work, for Kumaraswamy’s distribution, we first define the value of the p param-

eter to obtain q. This is set according to p through the analytical expression of the pop-

ulation mode, which we replace by a subjective estimate provided by the expert. Second,

we perform a simulation of the p parameter to determine this distribution, fulfilling

Taha’s (1981) conservatism criterion with respect to the distribution variance. 

The germ of Kumaraswamy’s distribution (1980) is the “sinepower” probability dis-

tributions and their improvement (Kumaraswamy, 1976, 1978). These appeared

first as probabilistic models of typical random variables in hydrology: the daily flow

of a river current, daily rainfall, daily storage volume of a swamp, and so on, which

cannot be adjusted faithfully by other distributions such as the Gaussian, normal

logarithmic, betas, and Johnson's empirical distribution, among others.

All of these hydrological variables share the fact that they are doubly bounded by

an upper finite bound b and an inferior bound of less than ≥ 0, as it can be seen

with the beta and TSP distributions.

The work proceeds as follows. Section 2 presents Kumaraswamy’s K(x/p, q, a, b) and

K(x/p, q, 0, 1) distributions. The study is restricted to the latter by means of their
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density, distribution, and quantile functions, as well as to obtaining the general for-

mula of its ordinary moments and the determination of its media, mode, and me-

dian. Section 3 highlights the relationships between Kumaraswamy’s distribution

and the beta, potential, reflected potential, uniform, exponential, and TSP distri-

butions.

In Section 4, we first choose the family of Kumaraswamy’s distribution K (2, m
2+1

2 m2 ) to

facilitate the operation with the distribution and manifested difficulty to obtain ex-

plicit estimates of the p and q parameters in a general case. Second, we propose a

simulation procedure to estimate such parameters while fulfilling Taha’s (1981)

conservatism criterion.

Section 4 presents an application of the selected distribution, while Section 5 provides

a typical example from the investment analysis literature, in which we verify the ap-

propriateness of Kumaraswamy’s distribution with respect to the beta distribution

as a model in the PERT method. Finally, the bibliographical references are listed.

� 2. Stochastic characteristics of Kumaraswamy’s distribution

If X is a random variable defined in (a, b), the data will follow a Kumaraswamy’s

K (x/p, q, a, b) distribution with the following density function:

          f (x) =  
pq (x–a) p–1

[(b–a)p – (x – a)p]q–1, for 0 ≤ a < x < b and p > 0, q > 0        (1)
(b-a)p+q–1

We can simplify expression (1), standardizing the path of the variable X to the in-

terval (0, 1), by changing the variable:

                                                           Z = X–a
b–a                                                         (2)

in the following expression:

                        f (z) = p q z p –1 (1–zp  )q  –1, for 0 < z < 1 and p > 0, q > 0,                       (3)

which is the density function presented by Kumaraswamy (1980).

We can easily prove that the moments in relation to the origin of (3) are obtained

through the expression

k = q B(1+ kp , q )= 
q (q) (1+ k

p )
,                                      (4)

(q+1+ k
p )



where B (1+ k
p , q) is the Eulerian integral of the first kind 

1

0
t k

p (1– t)q–1dt.

In fact, by changing the variable zp = t in the integral that determines k =
1

0
pq z k+p–1

(1–)qz p–1dz, we obtain (4) directly.

Then the mean of (3) is:

1 = q B (1+ 1p , q) = 
q (q) (1 + 1

p )
=     

(q+1)
(5)

(q+1+ 1p ) (q+ 1
p )(q –1+ 1p )(q –2+ 1p )…..(1+ 1p )

and its variance is:

                             2 = 2 – 2
1 = q B(1+ 2

p , q) – {q B (1+ 1p , q) }2.                               (6)

The distribution function of (3) is:

                                             F(z; p, q) = 1– (1– zp)q ,                                                (7)

which is easily invertible to obtain the quantiles function (Jones, 2009), through

the expression:

                                         Q(y) = F–1(y) = [1– (1–y)1⁄q ]1⁄p                                           (8)

and we can obtain the quantile of probability through:

                                                z = [1– (1– )1⁄q ]1⁄p .                                                  (9)

Given the desirability of this invertibility property, we adopt the evaluation method

of the two distribution functions introduced by Ballestero (1973) and shown in

Herrerías and Herrerías (2017). From (8), we obtain the median, taking = 0.5:

                                                     me = [1–2–1⁄q ]1⁄p                                                      (10)

We obtain the mode by deriving (3) and setting the derivative equal to zero.

                          mo = ( p–1
pq–1)

1⁄p
for p ≥ 1, q ≥ 1 and (p, q) ≠ (1, 1)                          (11)

� 3. Relations with other probability distributions

Kumaraswamy’s distribution is strongly related to other distributions used as prob-

abilistic models in risk and uncertain environment problems. These are, respectively
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denoted as K(p, q), U(a, b), B(p, q), P(p), PR(q), E(p), and TSP(p, m) for Ku-

maraswamy’s, uniform, beta, potential, reflected potential, exponential and, “Two

Sided Power” distributions of van Dorp and Kotz (2002). First, we obtain the fol-

lowing results directly.

1. If Z is a random variable that follows a Kumaraswamy distribution K(1, 1), we can

prove easily that Z follows a uniform distribution U(0, 1) that coincides with the Beta

distribution B(1, 1). In other words, if Z K(1, 1) => Z U(0, 1) B(1, 1).

Indeed, if (3) is characterized by p = q = 1, the density function of the uniform dis-

tribution is obtained in (0, 1), which coincides with the Beta distribution B(1, 1),

the potential distribution P(1), and the TSP distribution (1, 1).

As a corollary to this point, K(1, 1) U(0, 1) B(1, 1) P(1) TSP(1, 1).

2. If Z is a random variable that follows a Kumaraswamy distribution K(p, 1), we

can prove easily that Z follows a potential distribution P (p), with a density function

of f (z)= p z p–1, to 0 < z < 1. In other words, if Z K(p, 1) => Z P(p) B(p, 1).

Indeed, if we take q = 1 in (3), then (z) = p z p –1, which is the density function of a

potential distribution P(p), that in turn matches the beta B(p, 1) and TSP(p, 1) dis-

tributions.

As a corollary to this point, K(p, 1) B(p, 1) P(p) TSP(p, 1). If we set p = 1, we

obtain the corollary to point 1 above. 

3. If Z is a random variable that follows a Kumaraswamy distribution K(1, q), 

we can prove easily that Z follows a beta B(1, q) distribution. In other words, if 

Z K(1, q) => Z Beta B(1, q).

Indeed, if we take p = 1 in (3), then f (z) = q (1– z)q –1, which is the density function

of a beta B(1, q) distribution or reflected potential (RP) function (q).

As a corollary to this point, K(1, q) B(1, q) PR (q).

4. If Z is a random variable that follows a Kumaraswamy distribution K (p, 1), we

can easily prove that (1–Z ) follows a Kumaraswamy distribution K (1, p). In other

words, if Z K (p, 1) => (1– Z ) K (1, p) PR (p) B (1, p).

Indeed, if we take q = 1 in (3), this results in f (z) = pz p–1, and replacing z with (1– z),
we obtain f (1– z) = p(1–z)p –1, which is the density function of a Kumaraswamy 
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distribution K (1, p) that matches the RP distribution (p) or Beta B (1, p) distribu-

tion.

5. If Z is a random variable that follows a Kumaraswamy distribution K (1, q), we

can easily prove that (1 – Z ) follows a Kumaraswamy distribution K (q, 1). In other

words, if Z K (1, q) =>(1–Z ) K (q, 1).

Indeed, if we take p = 1 in (3), this results in f (z) = q (1 – z)q–1, and replacing z by 

(1 – z), we obtain f (1 – z) = q z q–1, which is the density function of a Kumaraswamy

distribution K (q, 1). This matches the Potential P (q) distribution or Beta B (1, q)
distribution.

Second, we obtain the following results through simple changes in a variable:

6. If Z is a random variable that follows a Kumaraswamy distribution K (p, 1), we

can prove easily that –lnZ follows an exponential E(p) distribution. In other words,

if Z K (p, 1) => – lnZ E (p).

Indeed, if we change the variable Y = – lnZ en (7), we obtain the distribution function

FY (y) = P (Y ≤ y) = FY (–lnZ ≤ y) = FY (Z ≥ e –y) =1– FY (Z ≤ e –y) = 1– e –py, which corresponds

to the exponential E(p) distribution function.

7. If Z is a random variable that follows a Kumaraswamy distribution K (1, q), we

can prove easily that – ln (1–Z ) follows an exponential E (q) distribution. In other

words, if Z K (1, q) => – ln(1–Z ) E (q).

Indeed, if we change the variable Y = – ln(1–Z ) in (7), we obtain the distribution

function FY (y) = P (Y ≤y) = FY {–ln(1–Z )≤ y} = P {ln(1–Z )≥ –y} = P (Z ≤1–e –y) = FZ (1–e –y)
= 1–e–qy , which corresponds to the distribution of an exponential function E (q).

8. If Z is a random variable that follows a uniform distribution U(0, 1), we can prove

easily that  [1–(1–Z )1 ⁄q]1 ⁄p follows a Kumaraswamy distribution K (p, q). In other

words, if Z U (0, 1) => [1–(1–Z )1 ⁄q]1 ⁄p K (p, q).

Note that this result matches the quantile function (8).

Indeed, if in (7) we change the variable Y = [1–(1–Z )1 ⁄q]1 ⁄p, we obtain the resulting

distribution function FY (y) = P (Y ≤ y) = P {1– (1–Z )1 ⁄q ≤ y p} = P {(1–Z )1 ⁄q ≥ 1–y p} = 
P {Z≤1–(1–y p)q} = 1–(1–y p)q , which corresponds to a Kumaraswamy distribution

function K (p, q).
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9. If Z is a random variable that follows a Beta B (1, q) distribution, we can prove

easily that Z1⁄p follows a Kumaraswamy distribution K (p, q). In other words, if 

Z B (1, q) => Z1⁄p K (p, q).

Indeed, FK (z) = P [K (p, q)≤ z)] = z
0 pq t p –1(1–t p)q–1 dt = {taking t p = y} = 0

z p
q (1– y)q–1 dy

= P (Z ≤ z p) = P (Z1⁄p≤ z ) = FZ1 ⁄p (z). The result follows.

We can introduce a generalized Kumaraswamy distribution using a procedure that

generalizes the result of the previous point. If Z is a variable that follows a Beta

B ( , q) distribution, then the variable Z 1⁄ , where > 0, follows a generalized Ku-

maraswamy distribution, with a few moments about the origin, given by the expres-

sion:

( + q) ( + K )
k =                                                                                 (12)

( ) ( + q + K )
.

Note that if in (12) = 1 and = p, we obtain (4).

� 4. Estimates of the distribution parameters

First, if we know p > 1, we can obtain q easily by matching a subjective estimate of

the modal value, m, to expression (11) for the mode, mo. Indeed, from (11), we

can obtain the following relation between parameters p and q

                                             q = 1
p + p–1

pmp =  m
p +p–1
pmp     .                                                 (13)

Since we consider the solution to the two equations, using the subjective estimation

of two specific quantiles, as Berny (1989) describes, does not have an easy solution

for the p and q parameters, the two unknowns. We first use these to restrict the

family of distributions to that satisfying Roy’s (1971) system, which we obtain for

p = 2 since the families that satisfy the Pearson system, that is, those with p = 1 or

q = 1 (Elderton and Johnson, 1969), are not Campannoid unimodal. Moreover, if

p = 2, the expressions of the first moments and probability functions of the Ku-

maraswamy distribution are significantly simplified and become more operational.

For p = 2, we obtain from (13) that q = m2+1
2m2 . Then, the recommended Kumaras-

wamy distribution for the application is K (2, m2+1
2m2 ), which only requires a subjective

estimation of the modal value.

For this family, the expressions for the average (5) and variance (6) reduce to
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1 = m2+1
2m2 B (3

2 , m2+1
2m2 ) and 2 = m2+1

2m2 B (2, m
2+1

2m2 ) – { m2+1
2m2 B (3 

2 , m2+1
2m2 )}2

.      (14)

Second, to obtain a more general estimate of p and q, we use a simulation of the p
parameter, making it vary from 1.01 to 2.00. We calculate the q parameter from

(13) and choose the pair of p and q values according to Taha’s (1981) conservatism

criterion with respect to the variance.

The procedure described above requires the following steps. First, we start by esti-

mating the standardized modal value, then determine the values of the q parameter

from expression (13), which is calculated for possible values of p located in the in-

terval (1.005; 2.00). Third, we determine the mean (5) and variance (6) with the

pairs of resulting p and q values. 

Finally, we choose the pair of parameters that achieves the greatest variance, with

which the Kumaraswamy distribution is determined and whose behavior corre-

sponds to the most conservative probabilistic model.

As an example, we present some means and variances of Kumaraswamy distribu-

tions for different values of m (0.08; 0.4; 0.51; 0.52; 0.99) according to different 

values of p (1, 2).

� Figure 1. Mean and variance graphs of the Kumaraswamy distribution
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m = 0.08

m = 0.40



Thus, we observe the following: 

a) for p =1, the mean is 0.5 and the variance 0.08333333, regardless of the value of m;

b) for m ≤ 0.5, the mean is inversely proportional to p;

c) if m = 0.51, the mean increases up to p = 1.23, and then decreases subsequently;

d) if m ≥ 0.52, the mean is directly proportional to p;

e) the variance is inversely proportional to p; and

f ) for m ≥ 0.6, the representations of the mean and variance are practically linear.

� 5. Investment cash flow application

We consider an example from page 157 in Suárez (1980), which uses beta distribu-

tions to model the initial payment and cash flows of an investment. We consider these

independent and updated at a rate of 7%. They follow the structure in Table 1.
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� Table 1. Initial payment and net cash flows of an investment

                    Initial payment (A)                                      Cash flow of year 1 (Q1)                                 Cash flow of year 2 (Q2)

Pessimist   More likely    Optimist               Pessimist    More likely    Optimist          Pessimist    More likely   Optimist  

25,000          30,000        35,000                  20,000         20,000        20,000              15,000          20,000        32,000

Since the Net Present Value, NPV, of the investment and its two main stochastic

characteristics when A and Qt are independent variables: 

         NPV =–A+ n
1

Qt
(1+k)t ; E(NPV ) = –E(A)+ n

1
E(Qt)
(1+k)t ; V(NPV )=V(A)+ n

1
V(Qt)
(1+k)2t   (15)

in the example, where Q1 is constant, expression (15) of the stochastic characteristics

of the NPV reduces to

                 E(NPV ) = –E(A) + 20,000
1.07 + E(Q2)

(1.07)2 and V(NPV ) = V(A) + V(Q2)
(1.07)4 .             (16)

First, we assume that the underlying probabilistic model for standardized A and Q2

variables, follows the Kumaraswamy distribution K (2, m2+1
2m2 ), where m is the corre-

sponding modal value standardized. Then, the standardized variable A is distributed

as K (2; 2,5); that is: 

                      A* = A–25000 K (2, 1.25
0.5 ) = K(2; 2.5), since mA

* = 0.5

Then, E(A*) = 2.5 (2.5) (1.5) = 0.4908623 using expression (5) and the result (0.5) =
 from page 255 in Abramowitz and Stegun (1972).

Reversing the change in E(A*), we finally obtain:

E(A) = 25,000 + 10,000 (0.4908623) = 29,908.62.

Similarly, Q2
* =   Q2–15000 K(2; 6.8), since mQ2

* = 5/17; then q = 6.28. 

Thus, E(Q2
*) = 6.28 (6.28) (1.5) = (6.28)(5.28)(4.28)(3.28)(2.28)(1.28) (1.28) (1.5) =  

1358.4884  0.9007184765   √π  = 0.3341412

We adopt the corresponding values of (1.28) and (1.78) from Abramowitz and

Stegun (1972).

Reversing the change in E(Q2
*), we finally obtain: 

E(Q2
*) = 15,000 + 17,000 (0.3341412) = 20,680.4.
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35000–25000

(4)

32000-15000

(7.78) (6.78)(5.78)(4.78)(3.78)(2.78)(1.78) (1.78)

3503.8217   0.9262273062   2



 To determine the variances, we use expression (4) for the corresponding 2, which in

these cases reduces to 2 = q B(2, q). Thus, V(A*) = 2.5 B(2; 2.5) – E 2(A*) = 2.5 (2.5) (2) –
(0.4908623)2 = 0.0447685. Reversing the change in V(A*), we obtain V(A) = 100002 V(A*)
= 4,476,850 and D(A) = 3,596.9564 ≈ 3,596.96.

Similarly, for Q2
*, we have V(Q2

*) = 6.28 B(2; 6.28) – E2(Q2
*) = 6.28 (6.28) (2) – 0.1116503

= 0.0257123, from which we find V(Q2) = 17,0002 V(Q2
*) = 7,430,854.7 and D(Q2) =

2,725.9594 ≈ 2,725.96.

If we insert the determined values into expression (16), the stochastic characteristics

of the NPV are:

E(NPV ) = –29,908.62 + 20,000
1.07 + 20,680.4 = 6846.029;

V (NPV ) = 4,476,850 + 7,430,854.7 = 10,145,813;

D(NPV )  = 3,185.2492 ≈ 3,185.25; and

CV(NPV ) = 0.4652696.

We see that these values are slightly different from those obtained by Suárez (1980)

using beta distributions of E(NPV ) = 7,178; V(NPV ) = 8,902,129; D(NPV ) = 2,983,
and CV(NPV ) = 0.4155753

If we use Chebychev’s inequality with constant 1.75 for the random variable NPV,

it must be that P{|NPV – E(NPV)| ≤ 1.75 D(NPV)} ≥ 1 – 0.3265306 = 0.6734694. Then,

the NPV is in the range (1,957.75; 12,398.25) with a probability greater than

0.6734694 if we use the beta distribution model, while this interval increases its am-

plitude if we use the Kumaraswamy K distribution model (2, m
2+1

2 m2 ); in this case,

(1,271.8415; 12,420.216). Thus, using Taha’s (1981) conservatism principle in this

example, the investment analyst must use this distribution as a model for variables

A and Q2 .

Second, we proceed with the method to simulate the p parameter of Kumaraswamy’s

distribution K(p, q). For this, when we fix the corresponding modal standardized

value of the distribution using a Microsoft Excel spreadsheet, we find values for the

p parameter and obtain the corresponding values of the q parameter using expression

(13). From the resulting distribution K(p, q), we obtain their means and variances

using expressions (5) and (6), respectively, and end the process by selecting the pair

of parameters (p, q) with which we obtain the greater variance in the distribution.

According to the last paragraph of point 4, this will be K (1.01; m
1.01+0.01 ).
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(1.07)2

(1.07)4

1.01m1.01



In the example, we have: for m = 0.5, that E(A*) = 0.499997618 and V(A*) = 0.082780038.

Reversing the changes in E(A*) and V(A*), we finally find that E(A) = 25,000 + 
10,000 (0.499997618) = 29,999.97618; V(A) = 10,0002 V(A*) = 8,278,003.8, and D(A) =
2,877.2904.

Similarly, for m = 5/17 = 0.2941176, then E(Q2
*) = 0.496532633 and V(Q2

*) = 0.082389868.
Reversing the changes in E(Q2

*) and V(Q2
*), we finally find that E(Q2) = 15,000 +

17,000 (0.496532633) = 23,441.054; V(Q2)= 17,0002 V(Q2
*) = 23,810,671.8351, and

D(Q2) =4,879.6179.

If we take the values, E(A), D(A), E(Q2), and V(Q2) determined based on expression

(16), the stochastic characteristics of the NPV are:

E(NPV ) = –29,999.98 + 20,000 + 23,441.054  = 9,165.933

V(NPV ) = V(A) + V(Q2) = 8,278,003.8 + 23,810,671.8351 = 26,443,051.3735

D(NPV ) = 5,142.2807 ≈ 5,142.28

CV (NPV ) = 0.5610209.

The Chebychev’s interval for NPV, with the same probability as the previous ones

using this distribution, turns out to be (166.943; 18,164.923).

Table 2 summarizes the stochastic characteristics of the NPV.

� Table 2. Stochastic characteristics of NPV

                                                          Beta                                        K(2, m
2 +1

2 m2 )                             K(p, q), with maximum variance

E(NPV)                                         7,178                                      6,846.029                                              9,165.933

V(NPV)                                         8,902,129                                 10,145,813                                       26,443,051.3735

D(NPV)                                        2,983                                       3,185.25                                                 5,142.28

CV(NPV)                                  0.4155753                                0.4652696                                             0.5610209

Interv. Chebychev       (1,957.75; 12,398.25)           (1,271.8415; 12,420.216)                      (166.943 ; 18,164.923)

from which we can extrapolate the following conclusions: 

a) the most conservative distribution is K(p, q) of maximum variance, its greater

variance and higher Pearson’s variation coefficient highlight; and 

b) the intermediate behavior of the distribution K (2, m
2+1

2 m2 ), its proximity to the

beta distribution, and easier parameter estimation makes it an ideal candidate in
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more complicated real problems. In addition, since it has a variance and one CV
greater than the beta distribution, it determines a more prudent interval than that

of the beta distribution, even with one E(NPV) minor.      
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