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Abstract
Generally speaking, loans contracted in practice are non-random, that is to say, all
amounts involved in the transaction are certain as well as their respective maturities.
In this paper, a new alternative loan category is introduced, based on the contingencies
derived from the survival of both the borrower and a linked person. The main novelty
of this paper is that these contingencies affect the amortization in each period since
the first and last maturities of instalments are random. Additionally, the different
parameters of such random transactions are determined, as well as several measures
of profitability for the lender (or cost for the borrower). These transactions can be
attractive for both the lender and the borrower, and as such it is likely that they can be
implemented in practice.
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Amortización de préstamos 
con origen y final aleatorios

Valls Martínez, María del Carmen
Cruz Rambaud, Salvador
Abad Segura, Emilio

Resumen
En la práctica, las operaciones de préstamo se contratan en ambiente de certeza, es

decir, se pactan las cuantías que intervienen en la operación, así como sus respectivos

vencimientos. En este trabajo se propone una modalidad alternativa de préstamo ba-

sado en las contingencias que suponen la supervivencia del prestatario y de una persona

vinculada a él. La principal novedad que introduce este artículo es que estas contin-

gencias afectan a la amortización en cada período, ya que el primer y el último pago

son aleatorios. Además, se determinan los diferentes parámetros que intervienen en

tales operaciones aleatorias, así como diferentes medidas de rentabilidad/coste que

las mismas suponen para el prestamista/prestatario. Estas operaciones pueden resultar

atractivas para ambas partes, prestamista y prestatario, por lo que resulta probable

que puedan ser implementadas en la práctica financiera.

Palabras clave: 
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n 1. Introduction

In traditional loans, the payments made by the borrower to amortize the principal

are clearly established from the beginning of the operation (Bodie et al., 2004). 

Nevertheless, there are some loans in which the maturities of the first and the last 

periodic instalments are random in that they depend on two contingencies whose re-

spective probability distributions are known. For example, this would be the case of a

woman who is cared for by her son, with high costs involved. In order to cover these ex-

penses, they request a loan subject to a double condition: on the one hand, the periodic

instalments will commence once the woman dies (when the expenses, consequently,

come to an end) and, on the other hand, will finish with the death of the son.

This novel loan is independent of the principal repayment method which is traditional

within the loan amortization models (French method, constant principal repayment

method, American method, etc.) (De Pablo, 2000; Ferruz, 1994; Van Horne, 1997;

Brealey and Myers, 2002; Brealey et al., 2006; Ayres, 1963). Moreover, this method

can be combined with other financial characteristics, such as the existence of interest-

only periods and fixed or variable interest rates (Cruz and Valls, 2014).

In a previous study, Valls and Cruz (2015) analysed some loans where the maturity

of the first payment is random and the maturity of the last one is certain, as well as

loan transactions where the maturity of the first payment is certain and the maturity

of the last one is random. While both kinds of loans are a novelty from the financial

point of view, in practice we can find a number of similar transactions. Thus, we can

cite the so-called inverse mortgage1 as an example of the first kind of loan, and as an

example of the second kind of loan transaction, amortization insurance (Biehler,

2008), which covers the death or permanent disability of the borrower2. However,

there is no known current transaction which is comparable to the third kind of loan

transaction presented in this paper.

This paper is organized as follows. After this brief introduction, Section 2 presents

all the characteristics of this novel financial operation. Section 3 analyses the three

alternative expressions to determine the outstanding principal of this loan. Section 4

introduces the noteworthy concepts of saving and risk quotas which will be essential

for defining the main measures of cost, profitability and duration derived from these

amortizing loans. Finally, Section 5 summarizes and concludes.

1 In this case, the heirs would have to repay the principal when the borrower dies in a single payment, or else have to contract a new loan. Our
proposal consists in replacing this payment with a loan in which the lender assumes the risk of a lower payment by the heirs, depending on the
date of death of the borrower.

2 In this case, the risk is assumed by the insurance company and so there are two different financial transactions: loan and insurance. As before, the
proposed loan is a single operation whose risk is assumed by the lender.
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n 2. Amortizing a loan with random commencement 
and maturity

Consider a loan in which the borrower receives principal C0 at instant 0 to be 
repaid by means of n periodic instalments as , maturing respectively at instant 

s (s =1,2,…n). If making the first and last payments is subject to different
contingencies, the borrower would have to make a set of payments as whose

amount is greater than that corresponding to the equivalent operation not affected

by this source of uncertainty. Under these hypotheses, we propose the following

equation of financial random equivalence at instant 0, by using exponential
discounting with variable discount rate (ih) according to the corresponding periods

of interest:

                                           C0 = Sas · P (1+ih)–1 · (1+r”h )–1 ,                                          (1)

where r”h represents the variable risk rate affecting the payments. As indicated, the
presence of these risks implies a higher burden.

When the contingency affecting the commencement of payments is the death of a

person linked to the borrower (hereinafter, the person), the risk is that the person

lives and, therefore, the start of the financial transaction is delayed. In addition,

we assume that the contingency which determines the last payment is the death of

the borrower. In such a case, the risk is that the borrower dies as this means the

premature end of the operation and that the payments finish. Obviously, delaying

the commencement and shortening the maturity works in the borrower’s favour

and against the lender.

Thus, by considering the survival (or death) of the borrower (or the person), and

under the premise that they are independent random variables, we have (see Valls

and Cruz, 2013):

                                                  1+r”h = ––––––––– ,                                                   (2)

with 1 ph–1being the probability that the borrower, aged h–1, reaches age h , and 1 q’h–1

the probability that the person, aged h–1, dies before reaching age h:

                                                           = 1– .                                                          (3)

Thus,

                                  (1+r”h )–1=1 ph–1 · (1–1 p’h–1)= 1 ph–1 –1 ph–1·1 p’h–1 .                                 (4)

n

s=1

s

h=1

1
1 ph–1·1q’h–1

1q’h–1 1 p’h–1



Note that the borrower and the corresponding person do not have to be of the same

biological age and that the subscript h enumerates the different periods of loan
payments. Thus, for instance, if the borrower was 50 and the linked person was 70 at

the beginning of the loan transaction (instant 0), then 1 p9 is the probability that the

borrower, aged 59, reaches the age of 60 and 1q’9 is the probability that the person

linked to the borrower, aged 79, dies before turning 80. For the sake of simplicity, we

have removed the current ages of both the borrower and the person.

By considering (1) and (4), simple algebra and the relationships:

                                      P 1 ph–1= ps   and P (1 ph–1·1 p’h–1)= ps · p’s  
show that:

                             C0 = S as · ps · P (1+ih)–1 –S as · ps · p’s ·P(1+ih)–1 ,                            (5)

with ps  being the probability of survival at instant s. That is to say, in this novel loan the
periodic instalments to repay C0 can be obtained as the difference between two ordinary

annuities: the first whose commencement is uncertain and the second whose end is un-

certain. We can see that if ps is the probability of delaying the payment at time s then

                                                           ps · p’s = p”s                                                         (6)

is the probability of making the periodic payment at the end of period s. This state-
ment can be also found in Gil Peláez and Gil Luezas (1987) and Gil Peláez (1993).

n 3. Outstanding principal of a loan with random
commencement and maturity

The outstanding principal at an intermediate instant k of the loan where the maturi-
ties of the first and the last instalment are random will depend on whether the peri-

odic payments have commenced at instant k and whether they have finished at that
instant. Thus, we can consider the following four cases (see Table 1):

I. Instant k occurs before the death of the person linked to the borrower and before
the death of the borrower; its probability of occurrence is pk · p’k .

II. Instant k occurs before the death of the person and after the death of the
borrower, in which case its probability of occurrence is (1–pk) · p’k . 

III. Instant k occurs after the death of the person, but before the death of the
borrower, in which case its probability of occurrence is  pk · (1–p’k) .

IV. Instant k occurs after the death of the person and after the death of the borrower,
in which case its probability of occurrence is (1–pk) · (1–p’k) . 
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n

s=1

n

s=1

s

h=1

s

h=1

s

h=1

s

h=1



l Table 1. Probabilities according to instant k

Case                                                                       Graphic representation                                                        Probability

I                                                                                                                                                                       pk · p’k

II                                                                                                                                                                (1– pk ) · p’k

III                                                                                                                                                              pk · (1–p’k )

IV                                                                                                                                                          (1–pk ) · (1–p’k )

n  Instant of borrower’s death.
l Instant of death of the person linked to the borrower.
x Calculation instant of the outstanding principal.

Thus, the amount the borrower has to pay to cancel the operation at an intermediate

instant can be calculated using three different methods (Dhaene et al., 2012):

• Prospective method (based on the future periodic payments pending, that is, from
instant k to the last maturity n):

In cases II and IV, the death of the borrow means that periodic payments have fin-

ished, and so the outstanding principal will be zero in both cases.

In case I, the outstanding principal,C’k , as determined by the prospective method is:

                                          C’k = S as · P(1+ih)–1 · (1+r’’h  )–1 ,                                         (7)

from where simple algebra shows that:

                                   C’k =      · S as · ps · (1– )· P (1+ih)–1 .                                 (8)

In case III, the death of the person means that periodic payments have started and

so the risk is the death of the borrower, that is to say:

                                                                   

                                                       (1+r”h )–1 =1 ph–1 ,

so that the outstanding principal, C’’k , as determined by the prospective method is:

                                          C’’k =      · S as · ps · P (1+ih)–1 .                                         (9)
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n

s=k+1

s

h=k+1

n

s=k+1

n

s=k+1

s

h=k+1

s

h=k+1

1
pk

p’s
p’k

1
pk



Nevertheless, the situation at instant k will evidently and a priori be uncertain, so it

is only the average value of the outstanding principal that can be determined. Bear-

ing in mind that, as indicated, for cases II and IV the outstanding principal is zero,

the average expected value of the outstanding principal is then:

                                          Ck = C’k · pk · p’k + C’’k · pk · (1–p’k ) .                                      (10)

Definitively, by considering (8), (9) and (10), the average value of the outstanding

principal by the prospective method is:

               Ck = p’k · S as · ps · (1– ) P (1+ih)–1+(1–p’k )S as · ps P(1+ih)–1 .           (11)

• Retrospective method (based on the periodic payments made by the borrower from
the loan commencement to instant k):

In cases II and IV, the death of the borrower means that periodic payments have

finished and the outstanding principal is zero in both cases.

In case I, the periodic payments have not started yet. As the survival of the person

means that loan commencement can be delayed then the outstanding principal,

C’k , as determined by the retrospective method is:

                                                 C’k =     · C0 · P(1+ih) ,                                              (12)

and its probability of occurrence is pk · p’k (see Table 1).

In case III, the death of the person means that periodic payments have started and

the outstanding principal is conditional on the survival of the borrower at that in-

stant. It is possible that:

1. The periodic payments started in the first period, meaning that the outstand-
ing principal, denoted by C’’k,1, is equal to:

                 
C’’k,1=     · C0 · P(1+ih)– Sas · ps · P(1+ih)–ak · pk  ,                      (13)

and its probability of occurrence is 1 f ’
0 = p’0– p’1=1– p’1 .

2. The periodic payments started in the second period, meaning that the out-
standing principal, denoted by C’’k,2 , is equal to:

                 
C’’k,2=     · C0 · P(1+ih)– Sas · ps · P(1+ih)–ak · pk ,                       (14)
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n

s=k+1

s

h=k+1

n

s=k+1

s

h=k+1

p’s
p’k

k

h=1

1
pk

1
pk

1
pk

k

h=1

k–1

s=1

k

h=s+1

k

h=1

k–1

s=2

k

h=s+1



and its probability of occurrence is 1 f ’
1= p’1– p’2 .

                                                          

k. The periodic payments started in the k-th period, meaning that the outstand-
ing principal, denoted by C’’k,k , is:

                                 C’’k,k =     · C0 · P(1+ih)–ak · pk ,                                       (15)

and its probability of occurrence is 1 f ’k –1= p’k –1– p’k .

By considering expressions (13) to (15), we have, succesively:

                                                C’’k · (1–p’k )=

        = S [ · C0 · P(1+ih)–S as · ps · P (1+ih)–ak · pk] ·( p’j –1– p’j ) +                     

                          + [ · C0 · P(1+ih)–ak · pk] ·( p’k –1– p’k  ).                                (16)

Therefore, the average value of the outstanding principal as determined by the

prospective method will be:

                                  Ck = C’k · pk · p’k + C’’k · pk · (1–p’k ),                                        (17)

where C’k   and C’’k · (1–p’k) can be displayed by using (12) and (16). Finally, taking
into account that:

                                         
S ( p’j –1– p’j )=1–p’k–1 ,

and simplifying, we have:

          Ck = C0 · P(1+ih)–S as · ps · P(1+ih)· (1–p’s )–ak · pk · (1–p’k ).                (18)

An easy calculation shows that expressions (11) and (18) lead to the same result

of the outstanding principal.

• Recursive method (based on the outstanding principal calculated at a former maturity):

On the one hand, if at instant k the payments have not started yet, then as = 0 for
s = 1,2,…,k. This is because the person is alive, and the probability of this occurring
is  p’k . In that case, possible scenarios include:
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k

h=1

1
pk

k

h=1

1
pk

1
pk

k

h=1

k–1

s=j

k–1

j=1

k

h=s+1

k–1

j=1

k

h=1

k–1

s=1

k

h=s+1

…



• The payments cannot start because the borrower has died and the outstanding
principal is zero.

• The payments can start in the future because the borrower is still alive, and the
outstanding principal is:

                                                   
C’k = C’k–1·(1+ik)· .                                               (19)

On the other hand, if the payments have already started in the k-th period or a pre-
vious period, this means the person has died, and the probability of this occurring

is 1–p’k . Here, we can consider the following subcases:

• The death of the borrower means the payments have finished  and the outstand-
ing principal is zero.

• The payments continue because the borrower is still alive, and the outstanding
principal is:

                                                
C’’k = Ck–1·(1+ik)· – ak.                                            (20)

Accordingly, and supposing that the borrower is alive with a probability pk , by con-

sidering (19) and (20), the average expected outstanding principal as determined

by the recursive method is:

                     
Ck = [Ck–1·(1+ik)· · p’k +(Ck–1·(1+ik)· –ak)· (1–p’k )]· pk ,                 (21)

from where, using suitable algebraic operations and simplifying, we have:

                                          Ck = Ck–1·(1+ik) –ak · pk · (1–p’k ) .                                       (22)

n 4. Main parameters of a loan with random 
commencement and maturity

As indicated in Section 2, if the amortization is subject to the aforementioned double

contingency, the borrower will have to make the payments as involved in the equation

of financial equivalence (1). However, if the repayment is not affected by such

eventualities, the new instalments, denoted by  a”s  , would verify the following equation
of financial equivalence at the beginning of the operation:

                                                  C0 = Sa”s  · P(1+ih)–1.                                               (23)
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1
pk

1
pk

1
pk

1
pk

n

s=1

s

h=1



By comparing equations (1) and (23), it can obviously be deduced that a”s < as .

Evidently, the surplus between the two payments is exclusively due to the risk, and so

this difference, denoted by a’s , will be called the risk quota. Therefore,

                                                          a’s := as – a”s .                                                       (24)

Thus, starting from (22) and taking into account that every periodic instalment is the

sum of the risk quota and the saving quota, given by:

                                                    a”s = Cs–1·(1+is)– Cs ,                                                 (25)

we have:

                               Cs = Cs–1·(1+is)–[a’s +Cs–1·(1+is)–Cs] ·ps ·(1–p’s ),                            (26)

from where, simple algebraic operations show that the additional amount that the

borrower has to pay to the lender in each period for the assumed risk is:

                                       a’s  = [Cs–1·(1+is)–Cs] · .                                    (27)

Observe that a”s is the payment corresponding to a riskless loan and, consequently, it
is put aside to pay the interest of period s (Is) and the repayment (As) of a part of the

principal:

                                                    a”s  = Is +As = as –a’s  .                                                 (28)

These random operations can be agreed with constant or variable interest rates.

Moreover, the amount of the periodic payment (as ) can be set and then the problem

is to determine the principal (C0) and, reciprocally, given C0 , we can determine the

periodic payments as . Alternatively, given C0 and having determined the saving quota

(a”s) in the context of a certain traditional loan, the amount of the risk quota (a’s )
corresponding to each period can be determined. So, even in the case in which a”s is
constant, this procedure leads to a variable payment as .

EXAMPLE 1. Assume that, in 2013, a 55-year-old man contracts a loan to care for his
80-year-old father. He agrees with a financial entity that the periodic payments will start

once his father (the person) dies and will finish with the death of the borrower. It is

also assumed that the principal of the loan is €60,000, the periodic instalments will be
constant and that the operation has been agreed at an annual constant rate of 7%. In

order to determine the risk, the financial entity considers the probability of survival

corresponding to individuals of the same age and gender (Tables PERM/F-2000P). The

different characteristic parameters of the loan can be observed in Table 2.
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1– ps ·(1–p’s )
ps ·(1–p’s )



l Table 2. Amortization schedule (Example 1)
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Year i as s s as a s Is As Cs Ms

0 − − 1.000 1.000 − − − − 60,000.00 −

1 0.07 6,852.83 0.955 0.553 3,927.71 2,925.12 4,200.00 −1,274.88 61,274.88 −1,274.88

2 0.07 6,852.83 0.952 0.512 3.671.11 3,181.72 4,289.24 −1,107.52 62,382.40 −2,382.40

3 0.07 6,852.83 0.949 0.471 3,412.11 3,440.72 4,366.77 −926.05 63,308.45 −3,308.45

4 0.07 6,852.83 0.945 0.434 3,189.38 3,663.45 4,431.59 −768.14 64,076.59 −4,076.59

5 0.07 6,852.83 0.943 0.403 2,995.98 3,856.86 4,485.36 −628.50 64,705.09 −4,705.09

6 0.07 6,852.83 0.936 0.354 2,710.81 4,142.02 4,529.36 −387.34 65,092.43 −5,092.43

7 0.07 6,852.83 0.931 0.298 2,373.34 4,479.49 4,556.47 −76.98 65,169.41 −5,169.41

8 0.07 6,852.83 0.927 0.253 2,110.30 4,742.53 4,561.86 180.67 64,988.74 −4,988.74

9 0.07 6,852.83 0.922 0.197 1,781.31 5,071.52 4,549.21 522.31 64,466.43 −4,466.43

10 0.07 6,852.83 0.915 0.131 1,406.65 5,446.19 4,512.65 933.54 63,532.89 −3,532.89

11 0.07 6,852.83 0.906 0.061 1,021.47 5,831.36 4,447.30 1,384.06 62,148.84 −2,148.84

12 0.07 6,852.83 0.900 0.000 682.72 6,170.12 4,350.42 1,819.70 60,329.14 −329.14

13 0.07 6,852.83 0.892 0.000 738.20 6,114.64 4,223.04 1,891.60 58,437.54 1,562.46

14 0.07 6,852.83 0.883 0.000 800.91 6,051.92 4,090.63 1,961.29 56,476.25 3,523.75

15 0.07 6,852.83 0.875 0.000 858.77 5,994.06 3,953.34 2,040.72 54,435.53 5,564.47

16 0.07 6,852.83 0.867 0.000 913.13 5,939.70 3,810.49 2,129.22 52,306.31 7,693.69

17 0.07 6,852.83 0.856 0.000 986.75 5,866.08 3,661.44 2,204.64 50,101.67 9,898.33

18 0.07 6,852.83 0.842 0.000 1,084.68 5,768.15 3,507.12 2,261.04 47,840.64 12,159.36

19 0.07 6,852.83 0.827 0.000 1,187.60 5,665.23 3,348.84 2,316.39 45,524.25 14,475,75

20 0.07 6,852.83 0.810 0.000 1,300.99 5,551.84 3,186.70 2,365.14 43,159.11 16,840.89

21 0.07 6,852.83 0.793 0.000 1,418.42 5,434.41 3,021.14 2,413.28 40,745.83 19,254.17

22 0.07 6,852.83 0.776 0.000 1,533.98 5,318.85 2,852.21 2,466.64 38,279.19 21,720.81

23 0.07 6,852.83 0.758 0.000 1,656.00 5,196.84 2,679.54 2,517.29 35,761.90 24,238.10

24 0.07 6,852.83 0.739 0.000 1,791.31 5,061.53 2,503.33 2,558.19 33,203.70 26,796.30

25 0.07 6,852.83 0.716 0.000 1,949.34 4,903.50 2,324.26 2,579.24 30,624.47 29,375.53

26 0.07 6,852.83 0.693 0.000 2,106.20 4,746.64 2,143.71 2,602.92 28,021.54 31,978.46

27 0.07 6,852.83 0.665 0.000 2,296.59 4,556.24 1,961.51 2,594.73 25,426.81 34,573.19

28 0.07 6,852.83 0.636 0.000 2,492.31 4,360.53 1,779.88 2,580.65 22,846.16 37,153.84

29 0.07 6,852.83 0.611 0.000 2,663.97 4,188.86 1,599.23 2,589.63 20,256.53 39,743.47

30 0.07 6,852.83 0.590 0.000 2,812.22 4,040.61 1,417.96 2,622.66 17,633.87 42,366.13

31 0.07 6,852.83 0.556 0.000 3,040.43 3,812.40 1,234.37 2,578.03 15,055.84 44,944.16

32 0.07 6,852.83 0.518 0.000 3,306.21 3,546.62 1,053.91 2,492.72 12,563.13 47,436.87

33 0.07 6,852.83 0.487 0.000 3,516.96 3,335.87 879.42 2,456.45 10,106.67 49,893.33

34 0.07 6,852.83 0.448 0.000 3,780.09 3,072.74 707.47 2,365.28 7,741.40 52,258.60

35 0.07 6,852.83 0.403 0.000 4,091.77 2,761.07 541.90 2,219.17 5,522.23 54,477.77

36 0.07 6,852.83 0.355 0.000 4,422.07 2,430.76 386.56 2,044.21 3,478.02 56,521.98

37 0.07 6,852.83 0.306 0.000 4,756.94 2,095.89 243.46 1,852.43 1,625.60 58,374.40

38 0.07 6,852.83 0.193 0.000 5,530.44 1,322.39 113.79 1,208.60 417,00 59,583.00

39 0.07 6,852.83 0.065 0.000 6,406.64 446,19 29.19 417,00 0.00 60,000.00

TOTAL 267,260.49 − − 96,725.84 170,534.65 110,534.65 60,000.00 − −



Assume that instalments as are intended for the traditional repayment of C0 and that:

• n denotes the number of agreed years,
• n̈ is the number of years during which the periodic instalments are zero, and
• n’ is the actual number of periodic payments, with n’≤ n–n̈ .

Observe that n’ could be zero if payments do not commence because the borrower dies
before the person, or even after the person but before the payment of the first instalment.

In this case, the profitability would be higher for the lender since the operation is now

certain (non-random), as long as:

                                          C0 · P(1+ih) < Sas · P(1+ih)–1 .                                       (29)

In the particular case of a fixed instalment and a constant interest rate, then inequality

(29) results in:

                                                   C0 · (1+i )n̈ < a · an’ | i .                                               (30)

In Example 1, if  n̈=3 years, then:

                                       60,000 · 1.073 < 6,852.83 · an’ | 0.07 ,

where n’=20.537. Therefore, in the 24th year after loan commencement, the profit
obtained by the lender would be higher, which implies that the borrower should live

to at least 78 years old.

In this particular case, if the periodic payments commence later than the 5th year,

then neither the principal nor the 7% interest would be recovered. Therefore, no later

than the 5th year, the borrower should start making periodic payments if he is to fully

amortize the principal by the 35th year, with the agreed interest rate.

However, if the borrower lives to be 88 years old, all extra payments from then on

would be additional earnings.

Observe that, if the periodic payments commence in the 5th year, the outstanding

principal would increase to €84,153.10 and it would not fall below €60,000.00 until
the 20th year of the loan, when the borrower is 74; the principal will then be

amortized over the following 15 years.

Moreover, if from the loan commencement onwards the entire amounts were put

towards the traditional amortization of the principal (that is to say, without

considering the risk quotas), the principal would be repaid in 15 years. Thus, at 
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the end of the 14th year there would only be €177.32 left to amortize, so that 
C15= – €6,663.10.

In this case, the lender would achieve a greater profit which could offset the losses

generated by other transactions that end with the early death of the borrower. These

earnings alone make the implementation of these transactions in practice more

attractive (Brigham and Daves, 2007). Finally, these loans can be also considered

with a variable interest rate.

EXAMPLE 2. Consider the same data as Example 1, but assuming that the applicable
annual interest rate will be 7% for the first five years, with a 0.2% increase every five
years. The different parameters of the loan can be observed in Table 3.

In this kind of random loan, the following average interest rates can be defined:

1. Average interest rate: if the loan is agreed with a variable interest rate, it is
interesting to know the average interest rate, im, resulting from the contract. By
definition, this average is the rate that, applied to all periods, enables the financial

equivalence between the principal and the periodic payments which amortize it.

Thus, considering equation (5) and given the rest of parameters, the average

interest rate can be deduced from the following equation:

                            C0 = Sas · ps · (1+im)–s – Sas · ps · p’s ·(1+im)–s .                              (31)

In Example 2, if

         60,000.00 = S7,071.86 ·  ps · (1+im)–s – S7,071.86 · ps · p’s ·(1+im)–s ,

the average interest rate of the loan transaction is 7.2669%.

2. Net true interest rate: once the maturity of the first instalment, n0 , and the

last one, nf , are known, the exact amounts of the payments can be determined,

and the net true interest rate, in0 ,nf  
, can be calculated by solving the following

equation:

                                        Sas · P(1+ih)–1 = Sas ·(1+in0 ,nf  
)–s .                                   (32)

The result of the transaction (profit or loss), measured in monetary units corre-

sponding to the first instant, for maturities of instalments between n0 and nf , 

denoted by  R0,n0 ,nf
, is given by the following difference:

                                                 R0,n0 ,nf
= Sas · P(1+ih)–1 –C0 .                                             (33)
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l Table 3. Amortization schedule (Example 2)

By considering (32) and (33), we have

                                      C0 +R0,n0 ,nf
= Sas · (1+in0 ,nf 

)–1 ,                                         (34)

and for this reason in0 ,nf  
is labelled “net”.
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Year i as s s as a s Is As Cs Ms

0 − − 1.000 1.000 − − − − 60,000.00 −

1 0.070 7,071.86 0.955 0.553 4,053.25 3,018.62 4,200.00 −1,181.38 61,181.38 −1,181.38

2 0.070 7,071.86 0.952 0.512 3,788.45 3,283.41 4,282.70 −999.28 62,180.67 −2,180.67

3 0.070 7,071.86 0.949 0.471 3,521.17 3,550.69 4,352.65 −801.96 62,982.62 −2,982.62

4 0.070 7,071.86 0.945 0.434 3,291.32 3,780.54 4,408.78 −628.24 63,610.87 −3,610.87

5 0.070 7,071.86 0.943 0.403 3,091.73 3,980.13 4,452.76 −472.63 64,083.50 −4,083.50

6 0.072 7,071.86 0.936 0.354 2,797.46 4,274.40 4,614.01 −339.61 64,423.11 −4,423.11

7 0.072 7,071.86 0.931 0.298 2,449.20 4,622.66 4,638.46 −15.80 64,438.91 −4,438.91

8 0.072 7,071.86 0.927 0.253 2,177.75 4,894.11 4,639.60 254.51 64,184.40 −4,184.40

9 0.072 7,071.86 0.922 0.197 1,838.24 5,233.62 4,621.28 612.34 63,572.06 −3,572.06

10 0.072 7,071.86 0.915 0.131 1,451.60 5,620.26 4,577.19 1,043.07 62,528.99 −2,528.99

11 0.074 7,071.86 0.906 0.061 1,054.12 6,017.74 4,627.14 1,390.60 61,138.39 −1,138.39

12 0.074 7,071.86 0.900 0.000 704.54 6,367.33 4,524.24 1,843.08 59,295.31 704.69

13 0.074 7,071.86 0.892 0.000 761.79 6,310.07 4,387.85 1,922.22 57,373.09 2,626.91

14 0.074 7,071.86 0.883 0.000 826.51 6,245.35 4,245.61 1,999.74 55,373.34 4,626.66

15 0.074 7,071.86 0.875 0.000 886.22 6,185.64 4,097.63 2,088.01 53,285.33 6,714.67

16 0.076 7,071.86 0.867 0.000 942.32 6,129.55 4,049.69 2,079.86 51,205.47 8,794.53

17 0.076 7,071.86 0.856 0.000 1,018.29 6,053.57 3,891.62 2,161.96 49,043.51 10,956.49

18 0.076 7,071.86 0.842 0.000 1,119.35 5,952.51 3,727.31 2,225.21 46,818.31 13,181.69

19 0.076 7,071.86 0.827 0.000 1,225.56 5,846.30 3,558.19 2,288.11 44,530.20 15,469.80

20 0.076 7,071.86 0.810 0.000 1,342.58 5,729.29 3,384.29 2,344.99 42,185.20 17,814.80

21 0.078 7,071.86 0.793 0.000 1,463.76 5,608.11 3,290.45 2,317.66 39,867.54 20,132.46

22 0.078 7,071.86 0.776 0.000 1,583.01 5,488.85 3,109.67 2,379.18 37,488.36 22,511.64

23 0.078 7,071.86 0.758 0.000 1,708.93 5,362.94 2,924.09 2,438.84 35,049.52 24,950.48

24 0.078 7,071.86 0.739 0.000 1,848.56 5,223.30 2,733.86 2,489.44 32,560.08 27,439.92

25 0.078 7,071.86 0.716 0.000 2,011.64 5,060.22 2,539.69 2,520.54 30,039.54 29,960.46

26 0.080 7,071.86 0.693 0.000 2,173.51 4,898.35 2,403.16 2,495.18 27,544.36 32,455.64

27 0.080 7,071.86 0.665 0.000 2,370.00 4,701.87 2,203.55 2,498.32 25,046.04 34,953.96

28 0.080 7,071.86 0.636 0.000 2,571.96 4,499.90 2,003.68 2,496.21 22,549.82 37,450.18

29 0.080 7,071.86 0.611 0.000 2,749.11 4,322.75 1,803.99 2,518.76 20,031.06 39,968.94

30 0.080 7,071.86 0.590 0.000 2,902.10 4,169.76 1,602.48 2,567.27 17,463.79 42,536.21

31 0.082 7,071.86 0.556 0.000 3,137.61 3,934.25 1,432.03 2,502.22 14,961.57 45,038.43

32 0.082 7,071.86 0.518 0.000 3,411.88 3,659.98 1,226.85 2,433.13 12,528.44 47,471.56

33 0.082 7,071.86 0.487 0.000 3,629.37 3,442.49 1,027.33 2,415.16 10,113.27 49,886.73

34 0.082 7,071.86 0.448 0.000 3,900.91 3,170.95 829.29 2,341.66 7,771.61 52,228.39

35 0.082 7,071.86 0.403 0.000 4,222.55 2,849.32 637.27 2,212.04 5,559.57 54,440.43

36 0.084 7,071.86 0.355 0.000 4,563.41 2,508.45 467.00 2,041.45 3,518.12 56,481.88

37 0.084 7,071.86 0.306 0.000 4,908.99 2,162.88 295.52 1,867.36 1,650.76 58,349.24

38 0.084 7,071.86 0.193 0.000 5,707.21 1,364.65 138.66 1,225.99 424.77 59,575.23

39 0.084 7,071.86 0.065 0.000 6,611.41 460.45 35.68 424.77 0.00 60,000.00

TOTAL 275,802.63 − − 99,817.38 175,985.26 115,985.26 60,000.00 − −



This rate is variable according to the true commencement and end of the opera-

tion. In effect, at the beginning of the loan one can only determine its average ex-

pected value, taking into account all alternatives with their corresponding

probabilities (see Table 4).

l Table 4. Alternatives for determining the net true interest rate 

                                             Payments                                                                                     Net true interest rate

  Finish                                               Start                                               Notation                                  Probability

Before instant 0                               Never                                              i0,0                                p’0 . ( p0– p1)

Period 1
                                            Never                                              i0,1                               p’1. ( p1– p2).

                                                         Period 1                                            i1,1                         (p’0– p’1) ·( p1– p2)

                                                           Never                                              i0,2                               p’2 . ( p2– p3).

Period 2                                           Period 1                                            i1,2                         (p’0– p’1) ·( p2– p3)

                                                                 Period 2                                            i2,2                         (p’1– p’2) ·( p2– p3)

Thus, simple algebra shows that:

                                                                                                                                                                     
–i =E [ –in0 ,nf ]=S ( S –in0 ,nf 

· 1 f ’
n0–1

+ –i0,nf  
· p’nf ) · 1 fnf 

.                         (35)

3. Gross true average interest rate: once the financial transaction has finished 
and the last maturity is thus known, the gross true average interest rate, denoted

by în0 ,nf 
, is the parameter which allows us to write the financial equivalence

between the loan principal and the periodic instalments:

                                             C0 = Sas · (1+ în0 ,nf 
)–s ,                                               (36)

with nf –n0 being the real number of periodic payments. This rate is variable

according to n0 and nf and, a priori, that is to say, at the loan commencement,

only its mathematical expectation can be calculated:

                       î =E [ în0 ,nf ]=S ( S în0 ,nf  
· 1 f ’n0–1

+ î0,nf  
· p’nf ) · 1 fnf 

.                          (37)

Observe that în0 ,nf 
can take negative values if the loan finishes before the

amortization of the principal, that is to say:

                                                           C0 > Sas ,                                                        (38)
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where the most extreme case is if the loan expires before the start of payments; 

in such a case the lender does not get any money back, and so î0 ,nf 
= –1. The 

probability of this situation occurring is p’nf 
.(pnf 

– pnf +1). Reciprocally, maximum 

profitability is achieved when  n0 =1 and nf =n; the probability of this scenario
occurring is (p’0 – p’1). pn .

4. Average interest rate due to randomness: a relationship between the net and
gross average rates can be deduced through the so-called average rate due to

randomness, denoted by ĩn0 ,nf  
, which is defined by the following equation: 

                        ĩn0 ,nf 
=                     .                                                (39)

This rate is variable according to the duration of the financial transaction, so that

its a priori expected average value can be calculated as follows:

                             ĩ=E [ĩn0 ,nf  ]=S ( S ĩn0 ,nf  
· 1 f ’n0–1

+ ĩ0,nf  
· p’nf ) · 1 fnf 

.                          (40)

At the beginning, when the contract has been formalized, the number of payments is

uncertain, but its probability distribution is known, and so we can determine its

expected value,  
–
d , in the following way:

                            
–
d =E [nf –n0 ]= S ( S (nf –(n0 –1))· 1 f ’n0–1) · 1 fnf 

.                         (41)

Finally, we assign the terms financial commencement and end of the random loan to the

commencement or end of a certain (non-random) transaction, so that its net present

value is equal to that of the random transaction, that is to say, the values 

n0 and nf  satisfy the following equation:

                 C0 = Sas ·ps ·P(1+ih)–1 – Sas · ps · p’s ·P(1+ih)–1=Sas · P(1+ih)–1.          (42)

This equation does not have an (integer) solution for pairs of values (n0 ,nf ), but it is

obvious that we can find a value:

                                            nf  ∈ [a,a +1 ], where a ∈ N, 
such that:

                                     Sas ·P(1+ih)–1 < C0 < Sas ·P(1+ih)–1 .                                  (43)

71
 

  

A E S T I M AT I O
  

A
m
ortizing loans w

ith random
 com

m
encem

ent and m
aturity. Valls M

artínez, M
.C., Cruz Ram

baud, S. and Abad Segura, E.
A
ESTIM

ATIO
, TH

E
IEB

IN
TERN

ATIO
N
A
L
JO
U
RN

A
L
O
F
FIN

A
N
C
E, 2016. 14: 56-75

nf 

n0=1

n

nf =0

nf 

n0=1

n

nf =0
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n 5. Conclusions

In this paper we have introduced a new category of loan based on the uncertainty

of the periodic payments that the borrower has to make to amortize the loan prin-

cipal. This randomness is associated with the life expectancy of the borrower and

a person linked to him/her. Nevertheless, any other risk can also be considered be-

cause our approach is general enough to apply to another contingency. In this loan,

the maturity of both the first and the last periodic payment are random.

In addition, we have deduced the parameters which allow us to determine the evo-

lution of these transactions and also those which represent a difference from the

traditional loan agreed in practice. Thus, we start with the equation of financial

equivalence for determining the risk quota (which is the additional amount that

the borrower must pay with respect to a traditional loan transaction to compensate

the lender for the assumed risk) and the outstanding principal at each instant. Like-

wise, if these transactions are to be agreed as usual with variable interest rates, it

is necessary to calculate several average interest rates as measure of the profitability

for the lender (or cost to the borrower). Table 5 shows a summary of the expres-

sions obtained for each of the described parameters.

A possible extension of this paper could be to use the probability of Spanish com-

panies’ failure to make debt payments instead of the probability of death of indi-

viduals. Take, for example, an investment bank which is willing to fund a company’s

innovative activities. Both parties may agree that the company will start to repay

the principal once it has reached a certain level of profitability. On the other hand,

the investment bank may decide to abandon the project if it believes that the in-

vestment becomes unfeasible.

l Table 5. Summary of the financial expressions

Financial equivalence

Ck prospective method
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C0 = S as · ps · P (1+ih)–1–S as · ps · p’s ·P(1+ih)–1
n

s=1

n

s=1

s

h=1

s

h=1

Ck = C’k · pk · p’k + C’’k · pk · (1–p’k )

C’k =      · S as · ps · (1– )· P (1+ih)–1

C’’k =      · S as · ps · P (1+ih)–1
n

s=k+1

s

h=k+1

1
pk

n

s=k+1

s

h=k+1

1
pk

p’s
p’k

being:



Ck retrospective method

Ck recursive method

Risk quota

Number of years from which 
the lender will get profit

Average interest rate

Net true interest rate

Gross true interest rate

Average interest rate due 

to randomness

Expected duration

Financial last/first maturity
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Ck = C’k · pk · p’k + C’’k · pk · (1–p’k )
being:

C’k =     · C0 · P(1+ih)
k

h=1

1
pk

C’’k = C0 · P(1+ih)–S as · ps · P(1+ih)· (1–p’s )–ak · pk · (1–p’k )
k

h=1

k–1

s=1

k

h=s+1

Ck = Ck–1·(1+ik) –ak · pk · (1–p’k )

a’s  = [Cs–1·(1+is)–Cs] · 1– ps ·(1–p’s )
ps ·(1–p’s )

C0 · P(1+ih) < Sas · P(1+ih)–1 

C0 · (1+i )̈n < a · an’ | i  ,

n̈

h=1

s

h=n̈+1

n̈+n’

s=n̈+1

being n’ : payment years (n’≤ n–n̈ )

C0 = Sas · ps · (1+im)–s – Sas · ps · p’s ·(1+im)–s 
n

s=1

n

s=1

C0 = Sas ·ps ·P(1+ih)–1 – Sas · ps · p’s ·P(1+ih)–1=Sas · P(1+ih)–1

Sas ·P(1+ih)–1 < C0 < Sas ·P(1+ih)–1

nf  ∈ [a,a +1 ], where a ∈N

n

s=1

s

h=1

s

h=1

s

h=1

s

h=1

s

h=1

n

s=1

nf 

s=n0

a

s=n0

a+1

s=n0

Sas · P(1+ih)–1 =Sas ·(1+ –in0 ,nf  
)–s

nf 

s=n0

nf 

s=n0

s

h=1

–i =E [ –in0 ,nf ]=S ( S –in0 ,nf   
· 1 f ’n0–1

+ –i0,nf  
· p’nf ) · 1 fnf 

nf 

n0=1

n

nf =0

nf 

s=n0

n

nf =0

nf 

n0=1

C0 = Sas · (1+ în0 ,nf  
)–s

î =E [ în0 ,nf ]=S ( S în0 ,nf  
· 1 f ’n0–1

+ î0,nf  
· p’nf ) · 1 fnf 

în0 ,nf  
– –in0 ,nf  

1+–in0 ,nf 

ĩn0 ,nf 
=

ĩ=E [ĩn0 ,nf ]=S ( S ĩn0 ,nf  
· 1 f ’n0–1

+ ĩ0,nf  
· p’nf ) · 1 fnf 

–
d =E [nf –n0 ]= S ( S (nf –n0) · 1 f ’n0–1

+nf ·p’nf ) ·1 fnf 

nf 

n0=1

n

nf =0

nf 

n0=1

n

nf =0
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