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Internal volumetric heat generation and heat  
capacity prediction during a material electromagnetic 

treatment process using hybrid algorithms

Predicción de la generación interna volumétrica de calor  
y la capacidad calorífica durante un tratamiento electromagnético  

del material usando algoritmos híbridos

Edgar García1, Iván Amaya2, and Rodrigo Correa3

ABSTRACT 

This work considers the estimation of internal volumetric heat generation, as well as the heat capacity of a solid spherical sample, 
heated by a homogeneous, time-varying electromagnetic field. To that end, the numerical strategy solves the corresponding inverse 
problem. Three functional forms (linear, sinusoidal, and exponential) for the electromagnetic field were considered. White Gaussian 
noise was incorporated into the theoretical temperature profile (i.e. the solution of the direct problem) to simulate a more realistic 
situation. Temperature was pretended to be read through four sensors. The inverse problem was solved through three different 
kinds of approach: using a traditional optimizer, using modern techniques, and using a mixture of both. In the first case, we used a 
traditional, deterministic Levenberg-Marquardt (LM) algorithm. In the second one, we considered three stochastic algorithms: Spiral 
Optimization Algorithm (SOA), Vortex Search (VS), and Weighted Attraction Method (WAM). In the final case, we proposed a hybrid 
between LM and the metaheuristics algorithms. Results show that LM converges to the expected solutions only if the initial conditions 
(IC) are within a limited range. Oppositely, metaheuristics converge in a wide range of IC but exhibit low accuracy. The hybrid 
approaches converge and improve the accuracy obtained with the metaheuristics. The difference between expected and obtained 
values, as well as the RMS errors, are reported and compared for all three methods.

Keywords: Microwave heating, inverse problems, parameter estimation, electromagnetic field.

RESUMEN

Este trabajo considera la estimación de la generación interna volumétrica de calor y la capacidad calorífica de una muestra esférica 
sólida calentada por un campo electromagnético homogéneo variante en el tiempo. Para tal fin, la estrategia numérica soluciona el 
correspondiente problema inverso. Tres formas funcionales (lineal, senoidal y exponencial) para el campo electromagnético fueron 
considerados. Ruido blanco fue agregado al perfil de temperatura teórica (i.e. la solución del problema directo) para simular una 
situación más realística. La temperatura se pretendió que fuera leída por cuatro sensores. El problema inverso fue solucionado a 
través de tres diferentes enfoques: usando un optimizador tradicional, usando técnicas modernas y usando una mezcla de ambos. 
En el primer caso, usamos un algoritmo determinístico tradicional como lo es el de Levenberg-Marquardt (LM). En el segundo, 
consideramos tres metaheurísticos estocásticos: El Algoritmo de optimización de la espiral (SOA), la Búsqueda en vórtice (VS), y 
el método de atracción ponderada (WAM). Para el caso final, proponemos híbridos entre el LM y los algoritmos metahehurísticos. 
Los resultados muestran que LM converge a la solución esperada solo si las condiciones iniciales (IC) están dentro de un rango 
limitado. Por otra parte, los metaheurísticos convergen en un amplio rango de IC pero muestra baja precisión. Los enfoques híbridos 
convergen y mejoran la precisión obtenida con los metaheurísticos. La diferencia entre los valores esperados y obtenidos, así como, 
los errores RMS son reportados y comparados para los tres métodos.

Palabras clave: Calentamiento por microondas, problemas inversos, estimación de parámetros, campo electromagnético.
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Introduction

Currently, real-time measurement of parameters within an 
electromagnetic field, such as internal heat generation or 
heat capacity, is technically unfeasible. To overcome this 
situation, those parameters can be estimated by solving 
the corresponding inverse problem. Besides, it is now 
possible to work out these type of problems using diverse 
global optimization algorithms (Hào et al., 2017; Wang et 
al., 2017; Cebo-Rudnicka et al., 2016; Nedin et al., 2016; 
Chen et al., 2016; Strongin & Sergeyev, 2000; Zhigljavsky 
& Žilinskas, 2008; Kvasov & Sergeyev, 2014). Previous 
works related to heat generation proposed estimating 
heat generation in the case of a rotatory friction welding 
system (Yang et al., 2011). To estimate the time-dependent 
heat generation at the interface of cylindrical bars during 
the rotary friction welding process, they used an inverse 
algorithm based on the conjugate gradient method and the 
discrepancy principle. Bermeo et al. (2015) focused on a 
different application, i.e. heat cancer treatment, and they 
demonstrated that by using radiofrequency electromagnetic 
waves, it is possible to solve the corresponding inverse 
problem and estimate state variables, such as temperature 
distribution in the tissues. The authors arrived at the 
solution using the Sampling Importance Resampling (SIR) 
algorithm. Recently, and dealing with a heat conduction 
process, Wang et al. (Wang & Liu, 2016) estimated 
thermal conductivity using a nonlinear parabolic equation 
with a temperature-dependent source. They solved the 
inverse problem using an iterative optimization algorithm. 
Similarly, Tutcuoglu et al. ( et al.2016) estimated the 
thermal parameters of internal Joule heaters. Their 
results were experimentally verified by using a block of 
polydimethylsiloxane embedded with a strip of conductive 
propylene-based elastomer. The inverse scheme suggested 
is based on the governing nonlinear, inhomogeneous 
heat conduction and generation equation. Mohebbi et 
al. ( 2016), using the conventional conjugate gradient 
method and the two-dimensional inverse heat conduction 
problem, estimated thermal conductivity, heat transfer 
coefficient, and heat flux in irregular bodies. Equally, 
they described a sensitivity analysis for the solution of 
the inverse problem. An inverse problem, oriented to the 
identification of the heat capacity and thermal conductivity, 
was solved by Nedin et al. ( 2016). They solved it using 
an iterative algorithm for the Fredholm´s equations of the 
first kind. Hussein et al. ( 2014) in their paper explain 
the inverse problem of determining the time-dependent 
thermal conductivity from Cauchy data, considering 
one-dimensional heat equation with space-dependent 
heat capacity. The model, a parabolic partial differential 
equation, was solved using the standard finite-difference 
method. On the other hand, Bermeo et al. (2015) solved 
an inverse problem using several PSO strategies. Their goal 
was to estimate the particle size distribution of colloids 
from multiangle dynamic light scattering measurements. 
Additionally, Giraldo et al. (2012) used the inverse 
problem in order to estimate neural activity from electro-
encephalographic signals.

More recently, Mohebbi et al. (2016) proposed how to 
estimate parameters such as thermal conductivity, heat 
transfer coefficient, and heat flux in three-dimensional 
irregular bodies in steady state for a heat transfer conduction 
process. They used a sensitivity analysis scheme for 
computing the corresponding sensitivity coefficients in 
a gradient-based optimization method. Similarly, they 
asserted some advantages when using this sensitivity 
analysis, such as simplicity and accuracy, which makes the 
solution of the inverse problem very accurate and efficient. 
Their solution strategy started by generating an elliptic 
grid, then solving Fourier steady state heat equation using 
the traditional finite-difference method to determine the 
temperature value at each node. This article also included 
a diversity of references published in the last decades and 
dealing with the assessment of such thermal parameters. 
Likewise, Cui et al. ( 2016) modified the traditional 
Levenberg-Marquardt method using a complex-variable-
differentiation approach to do the sensitivity analysis. This 
new version seems to have the same advantages of the 
original algorithm, but it also yields better convergence 
stability and efficiency due to its accurate evaluation of 
the sensitivity coefficients. As observed from the literature 
review, it is possible to establish that inverse heat transfer 
problems, dealing with the estimation of thermodynamic 
materials properties, is still a common and useful strategy. 

Sometimes, as in the present case, it results unfeasible to 
measure properties such as heat capacity, due to factors 
that affect these experimental determinations. Measuring 
temperature and magnetic or electric field intensities, for 
example, in an electromagnetic environment, is quite 
tricky today. In the present article, we propose a strategy 
for the estimation of parameters such as heat capacity 
and volumetric heat generation during heat treatment of 
a material. The manuscript includes a brief description 
of the algorithms required for the solution of the inverse 
problem, along with the description and solution of the 
direct problem. After that, some of the more relevant results 
are presented and analyzed. At the end, we include the 
most relevant conclusions.

Materials and methods

This section includes a brief description of the traditional 
Levenberg-Marquart (LM) optimization algorithm, 
and modern optimization algorithms such as Spiral 
Optimization Algorithm (SOA), Vortex Search (VS) and 
Weighted Attraction (WAM). We also propose hybrid 
algorithms (SOA-LM, VS-LM, and WAM-LM) that 
synthesize the best advantages of the traditional and 
modern approaches. Moreover, the direct and inverse 
problems are stated.

Algorithm fundamentals

The LM method is a well-known iterative deterministic 
technique traditionally used for non-linear parameter 
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estimation. Details are omitted for the sake of brevity, 
but they can be found elsewhere, e.g. in Necati Ozisik & 
Orlande (2000). In contrast, SOA (Tamura & Yasuda, 2011), 
VS (Dogan & Olmez, 2015), and WAM (Friedl & Kuczmann, 
2015) are considered global optimization metaheuristic 
algorithms that try to mimic natural phenomena such as 
pressure fronts, vortex pattern created by the vertical flow 
of the stirred fluids, and gravitational attraction between 
particles in order to solve optimization problems. It is 
important to emphasize that one can distinguish between 
the global optimization from the local one, because the 
first one focuses on finding the extreme of a function in 
the whole search space (function´s domain) (Kvasov & 
Mukhametzhanov, 2017; Sergeyev & Kvasov, 2017). Below, 
we briefly describe these algorithms.

Spiral Optimization Algorithm (SOA)

SOA consists of five steps:

Step 0: Algorithm initialization. Establish the number of 
spirals in the solution space, the number of maximum 
iterations, the rotation angle and the convergence radius.

Step 1: Spirals center selection. Evaluate the initial point of 
each spiral in the objective function (OF). Then, choose the 
one with minimum value as the rotation center. 

Step 2: Spirals rotation. Rotate the remaining spirals around 
the spiral center selected in the previous step.

Step 3: New spirals center selection. Evaluate the new set 
of points in the OF, and choose the one with the minimum 
value as the new center.

Step 4: Stop criteria check. If the convergence criteria are 
satisfied, the algorithm stops. Otherwise, it goes back to 
Step 2.

Vortex Search (VS) 

VS consists of four steps:

Step 0: Algorithm initialization. Establish the number of 
particles in the solution space, the number of maximum 
iterations, the initial center and the initial radius. The last 
two parameters are based on the limits of your search space.

Step 1: Distribution of the particles. Generate possible 
solutions by using Gaussian distribution around the center 
with a standard deviation (radius).

Step 2: New center and radius selection. Evaluate possible 
solutions in the OF. Then select the best solution to replace 
the current center. And then, decrease the radius for the 
next iteration according to the gamma distribution.

Step 3: Stop criteria check. If the convergence criteria are 
satisfied, the algorithm stops. Otherwise, it goes back to 
Step 1.

Weighted Attraction Method (WAM)

WAM consists of five steps:

Step 0: Algorithm initialization. Establish the number of 
particles in the search space and the number of maximum 
iterations and explosions. Then, randomly place every 
particle in the search space. Besides, set as zero initial 
movement distance.

Step 1: Evaluate OF. Evaluate candidate solutions in the OF 
and assign an attraction factor to each one of them.

Step 2: Movement of the particles. Calculate the center of 
the mass of the particles and then move the particles to that 
center based on their previous and current movement.

Step 3: Explosion. If particles are too close to each other 
make an explosion (disperse the particles randomly again).

Step 4: Stop criteria check. If the convergence criteria are 
satisfied, the algorithm stops. Otherwise, it goes back to 
Step 1.

On the other hand, we propose new hybrid methods 
between the aforementioned classical algorithm and the 
metaheuristics. The main idea of these hybrid methods is 
to first run a metaheuristic, and then use its solution as the 
initial conditions of the LM method. The basic flowchart of 
this method is shown in Error! Reference source not found. 
With these hybrids, we expect to preserve the stochastic 
behavior of solutions from metaheuristics while maintaining 
the proved convergence of the classical method. 

Figure 1 Flow chart of the hybrid methods used in this work.
Source: Authors

Mathematical model of the system

For demonstrative purposes, an isotropic and homogeneous 
solid sphere of radius (a), with constant density (p) and 
specific heat (c) is considered. The heat conduction 
equation expressed in spherical polar coordinates 
assumes no variation for the (θ, ϕ ) coordinates. The rate 

of internal heat generation per unit volume at r = 0 is q
!
r( )

. The mathematical model is, thus, given by 1, where k is 
the thermal diffusivity of the substance; K is the thermal 
conductivity of the substance, and T (r,t)is the temperature. 
The relationship between k and K is given by k = K/p. 
Temperature at its boundary and in the initial condition is 
assumed  to be 25°C.
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Statement of the direct problem

It is possible to calculate the temperature distribution within 
a sphere homogeneously irradiated by microwaves. Here, 
we assume that all parameters of the above mathematical 
model are known, including the initial and boundary 
conditions. In the same way, we select three functional 
forms for the heat generation parameter, i.e. linear, 
sinusoidal and exponential.

Statement of the inverse problem

Based on the solution of the direct problem, it is possible to 
estimate properties such as heat capacity as well as internal 
volumetric heat generation parameter ′q

0
′′  within the 

solid sphere. Solving this problem requires experimental 
temperature readings at various radial positions within the 
sphere, and knowledge of the nature of the internal heat 

generation q
!
′r( ) . Nonetheless, they can be gathered using 

one or several temperature sensors. 

Direct problem solution

This problem already has a well-known general analytical 
solution given in (Carslaw & Jaeger 1959) that yields 
the temperature profile within the sphere as shown in 

Equation (2), where q
!
′r( )  is ′q0

′′
a− r( )
a

 for the linear form, 
′q
0
′′

r
sin
πr
a
⎛

⎝
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⎞

⎠
⎟⎟⎟⎟  for the sinusoidal form, and ′q0

′′ea r−a( ) for the 

exponential form. The term ′q0
′′  is the magnitude of the 

internal volumetric heat generation term. In order to plot 
this solution, Equation (2) was normalized for the variables 
(T, r and, t) and the new ones are denoted by (Tu , ru and, 
tu) as shown in Equation (3), where each term is detailed in 
Equation (4).
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Figure 2 shows the normalized theoretical temperature 
within the sphere as a function of the normalized radius and 
normalized time, as well as the profile temperature after 
a long time of irradiation. As expected, the temperature 
field is axisymmetric, having the maximum value at the 
center. For the figure, numbers on the curves represent the 
parameter tu. For the sake of brevity, the other two graphs 
for the sinusoidal and exponential case were omitted.

Figure 2. Normalized temperature in function of the normalized radius 
and normalized time for a sphere with linear internal heat generation

′q
0
′′
a− r( )
a

. Numbers on the curves represent the normalized time (tu).

Source: Authors

Simulating temperature measurements

We used synthetic temperature values for simulating 
real measured values, with the objective of checking the 
validity of this approach for a microwave heating process 
analysis. As expected, real temperature measurements may 
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contain random errors. Here, such errors are assumed to be 
additive, uncorrelated, and normally distributed with zero 
mean and a constant standard deviation. Hence, we accept 
as valid the basic standard statistical assumptions proposed 
by Beck (Vere Beck & Kenneth 1977). Consequently, a 
white Gaussian noise (AWGN) was added to the theoretical 
normalized temperature to construct synthetic ones. In this 
case, SNR was kept constant at 30 dB. Figure 3 shows an 
example of the theoretical and measured temperatures 
for a given position and time. In the figure, temperature 
measurements at normalized time tu = 0,1, are shown as 
an example. For conciseness, the other two graphs for the 
sinusoidal and exponential case were omitted.

solution x
2
∗( )  distant to the theoretical one x

1
∗( ) , but for 

which the evaluation of the objective function (OF) is 
similar. Moreover, by using both metrics we can explain 
why in some cases the theoretical and estimated parameters 
exhibit a high percentage of error in the parameters, 
while having a low RMS error in the evaluation of the OF. 
Therefore, the first one was the error of the parameters 
themselves, as shown in equation 6, where theoretical 
parameters x

1
∗  are contrasted against the estimated x

2
∗  

ones (i.e. ′q0
′′  and cp). The second one was the RMS error 

of the temperature profile, as shown in equation 7, where 
the theoretical temperature (T) is contrasted against the 
estimated temperature (Test). The latter was calculated 
with the parameters obtained through the optimization 
algorithms. In other words, the RMS error relates, in a way, 
the evaluation of the OF1 to OF2.

 Error = Theoretical−estimated
Theoretical

 (6)

 
ErrorRMS  =

1
n i=1

n

∑ T ti( )−Test Kest ,cpest ,ti( )( )2  (7)

Results and analysis

This section is divided into two main subsections. The first 
one describes the application discussed above. Within 
this, the results obtained with the algorithms executed on 
the data (i.e. LM method, metaheuristic algorithms, and 
the hybrid algorithms) are presented. The second one is a 
performance analysis that was carried out with the results 
derived from all the algorithms.

A demonstrative example

Consider the microwave treatment of an isotropic 
and homogeneous silicon carbide (SiC) sphere with 
constant density, thermal conductivity, and specific heat 

p= 3200 kg / m3⎡
⎣⎢

⎤
⎦⎥ , K = 90

W
m∗K

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  and c= 9,2∗10–4 J

kg ∗K

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

respectively (Grup d’Innovació per la Millora de la Docència 
en Estructura Propietats i Processat de Materials n.d.). Its 
diameter is 2 [cm] and internal heat generation rate at r = 0 
is 8000 [W/m3]. The temperature at its boundary is fixed 
at 25 °C. Furthermore, it is assumed that four sensors are 
located at unitary radius ru = 0,3, ru = 0,5, ru = 0,7 and ru = 1. 
The goal is to estimate c and ′q

0
′′ , by solving the inverse 

problem. It is important to keep in mind that most of the 
reported data are normalized. Therefore, parameters c and
′q
0
′′  obtained through the algorithm are also normalized. 

However, data shown within this section relate to their 
unnormalized equivalents.

LM method

Table 1 summarizes the results obtained with this algorithm. 
However, it is important to note that this algorithm 

Figure 3. An example of simulated temperature measurements at 
tu = 0,1 with a SNR = 30 dB when the internal heat generation is linear. 
Numbers on the curves represent the normalized time (tu). 
Source: Authors

Objective function (OF)

The OF that provides the minimum variance in an inverse 
problem is the ordinary least squares (OLS) norm. In this 
work, we are going to take into consideration the case 
when the transient readings (Y) were taken from multiple 
sensors, as shown in Equation (5), where Y and T are 
vectors containing the synthetic (measured) and theoretical 
temperatures, respectively. It is worth remarking that due to 
the simulated nature of this work, whenever temperatures 
are labeled as “measured” they actually indicate simulated 
measurements generated by our model.

 

OFm = Y−T q0 ''', c( )( )tr Y−T q0 ''', c( ) ( )=

m=1

M

∑
i=1

N

∑ Yim−Tim( )2
 (5)

Error and RMS error

We considered throughout this work two metrics for 
the error. The reasoning behind this decision was that 
sometimes algorithms may converge to an estimated 
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converges under certain initial conditions (IC). If these IC 
are very far from the true values (i.e. 0.9 times the true 
value for the lower limit and 35 times for the higher limit in 
the linear case), LM does not converge. Table 2 shows the 
ranges tested for this particular problem.

Table 1. Estimated parameter for the three sources, their error and 
the RMS error obtained with the LM method

Source Param.
Estimated 

value
Error % RMS Error %

Linear
cp 9,49*10-4 3,1 0,8

q0’’’ 8121,0 1,5

Sine
cp 9,02*10-4 2,0 0,6

q0’’’ 8166,7 2,1

Exponential
cp 9,30*10-4 1,1 0,3

q0’’’ 7937,0 0,8

Source: Authors 

Table 2. Range of initial conditions in which the LM algorithm 
converges, where x* is the real value of the parameter 

Source Lower Limit Higher Limit

Linear 0,9 ∙ x* 35 ∙ x*

Sine 0,9 ∙ x* 70 ∙ x*

Exponential 0,5 ∙ x* 20 ∙ x*

Source: Authors 

Metaheuristic algorithms

This time, SOA, VS and WAM were used to find parameters 
cp and ′q0

′′ . To do so, several tests were carried out. The range 
of the IC where the metaheuristic algorithms were tested is 
shown in Table 3. The parameters used in each algorithm are 
shown in Table 4. Each algorithm was repeated 50 times and 
resulting data are summarized in Table 5.

Table 3. Range of initial conditions in which the metaheuristics were 
tested, where x* is the real value of the parameter

Source Lower Limit Higher Limit

Linear 0,9 ∙ x* 100 ∙ x*

Sine 0,9 ∙ x* 100 ∙ x*

Exponential 0,9 ∙ x* 50 ∙ x*

Source: Authors

Table 4. Parameters used in the metaheuristic algorithms

Parameter SOA VS WAM

Convergence radius 0,99 - -

Rotation angle 80° - -

Maximum iterations 2000 2000 2000

Number of particles 20 100 100

Maximum explosions - - 20 

Source: Authors

Table 5. Estimated parameters for the three sources, with some basic statistics of the result.  
Also, includes the error of each parameter and the RMS error of the best solution

Sour Alg. Par. Mean Stand. dev. Best Worst Error % RMS Error %

Lin.

SOA
cp 5,07 * 10-2 1,43 * 10-2 1,85 * 10-2 2,59 * 10-4 1908,9

14,3
q0’’’ 9740,8 29030,2 5546,3 210,47 * 10-3 30,7

WAM
cp 8,91 * 10-3 1,72 * 10-2 9,49 * 10-4 4,77 * 10-2 3,1

0,8
q0’’’ 7634,4 1049,0 8121,0 5415,4 1,5

VS
cp 2,70 * 10-2 2,03 * 10-2 1,11 * 10-3 4,53 * 10-2 21,0

1,9
q0’’’ 6311,8 1254,3 7769,2 5532,7 2,9

Sine

SOA
cp 8,02 * 10-3 2,13 * 10-2 9,09 * 10-4 9,14 * 10-2 1,2

0,9
q0’’’ 6605,9 1470,3 8204,2 6076,1 2,6

WAM
cp 1,05 * 10-2 2,24 * 10-2 9,02 * 10-4 8,78 * 10-2 2,0

0,6
q0’’’ 7595,6 1231,5 8166,7 4976,7 2,1

VS
cp 9,06 * 10-4 1,08 * 10-4 9,33 * 10-4 1,29 * 10-2 1,4

0,5
q0’’’ 8155,7 312,0 8074,0 7916,5 0,9

Exponential

SOA
cp 1,87 * 10-2 1,13 * 10-2 1,08 * 10-3 4,51 * 10-2 17,0

3,7
q0’’’ 5577,7 1020,3 7367,0 5169,8 7,9

WAM
cp 6,23 * 10-3 9,82 * 10-3 9,30 * 10-4 4,58 * 10-2 1,1

0,3
q0’’’ 7137,9 1197,6 7937,0 5162,5 0,8

VS
cp 8,30 * 10-3 1,26 * 10-2 9,67 * 10-4 3,72 * 10-2 5,1

1,5
q0’’’ 7108,2 1318,9 7651,6 5069,3 4,4

Source: Authors
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Hybrid algorithms

In this scenario, the hybrid algorithms were used, 
considering the same parameters in Table 3 and Table 4. 
Tests were repeated 50 times and results were summarized 

in Table 6. As data show, using heuristics to identify proper 
initial points for LM leads to improved results (Table 2 and 
Table 5). Thus, these hybrids are more robust than the single 
use of heuristics. 

Table 6. Estimated parameters for the three sources, with some basic statistics of the result.  
Also, includes the error of each parameter and the RMS error of the best solution

Source Alg. Par. Mean Stand. dev. Best Worst Error % RMS Error %

Linear

SOA-LM
cp 9,49 * 10-4 1,75 * 10-9 9,49 * 10-4 9,49 * 10-4 3,1

0,8
q0’’’ 8121,0 0 8121,0 8121,0 1,5

WAM-LM
cp 5,33 * 10-3 1,33 * 10-2 9,49 * 10-4 4,73 * 10-2 3,1

0,8
q0’’’ 7850,7 819,0 8121,0 5415,7 1,5

VS- LM
cp 9,49 * 10-4 1,82 * 10-9 9,49 * 10-4 9,49 * 10-4 3,1

0,8
q0’’’ 8121,0 3,01 * 103 8121,0 8121,0 1,5

Sine

SOA-LM
cp 4,49 * 10-3 1,77 * 10-2 9,02 * 10-4 9,09 * 10-2 2,0

0,6
q0’’’ 8039,1 631,5 8166,7 4976,6 2,1

WAM-LM
cp 1,19 * 10-2 2,76 * 10-2 9,02 * 10-4 9,19 * 10-2 2,0

0,6
q0’’’ 7720,2 1118,1 8166,7 4976,6 2,1

VS-LM
cp 9,02 * 10-4 1,15 * 10-10 9,02 * 10-4 9,02 * 10-4 2,0

0,6
q0’’’ 8166,7 0 8166,7 8166,7 2,1

Exponential

SOA-LM
cp 9,30 * 10-4 6,38 * 10-10 9,30 * 10-4 9,30 * 10-4 1,1

0,3
q0’’’ 7937,0 0 7937,0 7937,0 0,8

WAM-LM
cp 9,30 * 10-4 4,55 * 10-10 9,30 * 10-4 9,30 * 10-4 1,1

0,3
q0’’’ 7937,0 0 7937,0 7937,0 0,8

VS-LM
cp 9,30 * 10-4 7,33 * 10-10 9,30 * 10-4 9,30 * 10-4 1,1

0,3
q0’’’ 7937,0 0 7937,0 7937,0 0,8

Source: Authors

Algorithms performance

A performance comparison of all algorithms is  carried 
out. Results are shown in Table 7, Table 8 and Table 9. 
In these tables, it can be seen that LM algorithm requires 
less time and iterations than the metaheuristic and hybrid 
algorithms. Besides, hybrid algorithms require, in average, 
10 seconds and 19 iterations more than metaheuristics. 
Additionally, Table 10 and Table 11 show an analysis of the 
accuracy based on the results of all experiments (i.e. 900). 
It is important to keep in mind that a guess is considered 
right when the parameter estimation resides within a 10% 
confidence interval. If it is outside, the guess is deemed 

wrong. Through these tables, we show that the results 
obtained with the hybrid algorithms improve the results 
obtained with the metaheuristics in over 60%.

Table 7. Number of iterations and computation time in LM method 
for all sources

Source Time [s] Iterations

Linear 1,0 31

Sine 0,5 12

Exponential 1,7 74

Source: Authors
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Table 8. Mean and standard deviation (Std) of the number of 
iterations and computation time for all metaheuristics and sources

Source Algorithm
Time [s] Iterations

Mean Std Mean Std

Linear

SOA 57,6 30,9 774 419

WAM 270,8 21,7 660 53

VS 128,8 63,5 262 130

Sine

SOA 46,5 18,6 550 220

WAM 243,2 98,9 455 160

VS 134,9 39,8 214 64

Exponential

SOA 207,7 125,8 751 458

WAM 277,2 72,1 700 88

VS 91,3 43,3 321 152

Source: Authors

Table 9. Mean and standard deviation (Std) of the number of 
iterations and computation time for all hybrids and sources

Source Algorithm
Time [s] Iterations

Mean Std Mean Std

Linear

SOA-LM 63,8 31,7 882 430

WAM-LM 285,1 38,7 650 89

VS-LM 133,5 65,8 282 125

Sine

SOA-LM 63,8 19,4 574 172

WAM-LM 260,9 83,3 480 142

VS-LM 154,5 62,8 238 97

Exponential

SOA-LM 208,6 105,4 736 368

WAM-LM 262,1 36,1 710 80

VS-LM 112,8 50,9 303 131

Source: Authors

Table 10. An analysis of the prediction accuracy for the heuristic 
algorithms. A guess is considered as right when it resides within a 10% 
confidence interval

Source Algorithm
Right  

guesses
Wrong  
guesses

Accuracy 
(%)

Linear

SOA 0 50 0,0

WAM 41 9 82,0

VS 1 49 2,0

Sine

SOA 5 45 10,0

WAM 41 9 82,0

VS 34 16 68,0

Exponential

SOA 0 50 0,0

WAM 34 16 68,0

VS 8 42 16,0

Total 164 286 36,4

Source: Authors

Table 11 An analysis of the prediction accuracy for the hybrid 
algorithms. A guess is considered as right when it resides within a 10% 
confidence interval

Source Algorithm
Right  

guesses
Wrong  
guesses

Accuracy  
(%)

Linear

SOA-LM 50 0 100,0

WAM-LM 45 5 90,0

VS-LM 50 0 100,0

Sine

SOA-LM 48 2 96,0

WAM-LM 43 7 86,0

VS-LM 50 0 100,0

Exponential

SOA-LM 46 4 92,0

WAM-LM 50 0 100,0

VS-LM 50 0 100,0

Total 432 18 96,0

Source: Authors

Conclusions

This article described the estimation of the internal 
volumetric heat generation and the heat calorific 
capacity parameters during microwave heating of a solid 
spherical sample. We used three functional forms (linear, 
sinusoidal, and exponential) for the electromagnetic field. 
We incorporated White Gaussian noise into the direct 
problem to simulate a more realistic situation. Then, we 
solved the inverse problem through three different kinds of 
approaches. The first one used a traditional deterministic 
Levenberg-Marquardt (LM) algorithm. The second one 
used modern stochastic metaheuristics (SOA-VS-WAM). 
The final one was the proposed hybrid of the first two. 
Results show that LM converges to the expected solutions 
only if the initial conditions (IC) comply with specific 
ranges. However, LM only required 0,6% of the time 
employed by metaheuristics and hybrids. Nonetheless, 
through metaheuristics we can expand the range of the 
IC by 42 times. However, these methods only yield an 
accuracy of about 36%. Thus, by using hybrid algorithms 
we can merge the best of both approaches, increasing 
the accuracy of metaheuristics by about 60%, while only 
requiring about 6% more time. Therefore, we highly 
recommend to use this kind of hybrids for these inverse 
problems. 
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