Reverse generalized Hölder and Minkowski type inequalities and their applications

René Erlín Castillo ${ }^{1}$
Departamento de Matemáticas Universidad Nacional de Colombia

Eduard Trousselot ${ }^{2}$
Departamento de Matemáticas Universidad de Oriente 6101 Cumaná, Estado de Sucre, Venezuela

In this paper we give a reverse generalization of the generalized Hölder and Minkowski type inequalities and their applications to inverse source problems.

Keywords: Hölder and Minkowski type inequalities, heat equation, Weierstrass transform.

En este artículo damos una generalización de la desigualdad inversa generalizada de Hölder y Minkowski y sus aplicaciones a problemas inversos.

Palabras claves: Desigualdades de tipo Hölder y Minkowski, ecuación del calor, transformada de Weierstrass.

MSC: 44A35, 26D20.

[^0]
1 Introduction

It is well known that, for $0<p<1, f \in L p(X), g \in L q(X)$,

$$
\begin{equation*}
\int_{X}|f g| d \mu \geq\|f\|_{p}\|g\|_{q} . \tag{1}
\end{equation*}
$$

Since q is negative in this case, we assume that $g>0, \mu-$ a.e. on X. Also, if $f \in \operatorname{Lp}(X), g \in \operatorname{Lp}(X)$, and $0<p<1$, then it follows, see [1], by applying the result of (1), that

$$
\begin{equation*}
\|f+g\|_{p} \geq\|f\|_{p}+\|g\|_{p} . \tag{2}
\end{equation*}
$$

The following version of inequality (1) was proved in [3]; see also [2] and [4], pages 125-126.

Theorem 1.1. Suppose $p, q>0$ and $\frac{1}{p}+\frac{1}{q}=1$. If f and g are two positive function satisfying

$$
0<m \leq \frac{f^{p}}{g^{q}} \leq M<\infty
$$

on a set X. Then

$$
\begin{equation*}
\left(\int_{X} f^{p} d \mu\right)^{1 / p}\left(\int_{X} g^{q} d \mu\right)^{1 / q} \leq\left(\frac{m}{M}\right)^{-\frac{1}{p q}} \int_{X} f g d \mu \tag{3}
\end{equation*}
$$

if the right hand side integral converges.
Under appropriate conditions, we prove a generalized version of inequalities (2) and (3). Our estimates are based on Theorem 1.1.

2 Main results

Theorem 2.1. Suppose $p, q, r>0$ and $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$. If f, g and h are positive functions such that
i) $0<m \leq \frac{f^{p / s}}{g^{q / s}} \leq M<\infty$ for some $s>0$ such that $\frac{1}{p}+\frac{1}{q}=\frac{1}{s}$, and
ii) $0<m \leq \frac{(f g)^{s}}{h^{r}} \leq M<\infty$ for some $s>0$, on a set X.

Then

$$
\begin{align*}
& \left(\int_{X} f^{p} d \mu\right)^{1 / p}\left(\int_{X} g^{q} d \mu\right)^{1 / q}\left(\int_{X} h^{r} d \mu\right)^{1 / r} \\
\leq & \left(\frac{m}{M}\right)^{-\left[\frac{1}{r s}+\frac{s^{2}}{p q}\right]} \int_{X} f g h d \mu, \tag{4}
\end{align*}
$$

if the right hand side integral converges.

Proof. Let $\frac{1}{p}+\frac{1}{q}=\frac{1}{s}$ for some $s>0$, thus $\frac{s}{p}+\frac{s}{q}=1$ and $\frac{1}{s}+\frac{1}{r}=1$. Using ii) and applying Theorem 1.1 to $H=f g$ and h we have

$$
\left(\int_{X} H^{s} d \mu\right)^{1 / s}\left(\int_{X} h^{r} d \mu\right)^{1 / r} \leq\left(\frac{m}{M}\right)^{-\frac{1}{s r}} \int_{X} H h d \mu
$$

which is equivalent to

$$
\begin{equation*}
\left(\int_{X} f^{s} g^{s} d \mu\right)^{1 / s}\left(\int_{X} h^{r} d \mu\right)^{1 / r} \leq\left(\frac{m}{M}\right)^{-\frac{1}{s r}} \int_{X} f g h d \mu \tag{5}
\end{equation*}
$$

Now, using once more i) and the fact that $\frac{s}{p}+\frac{s}{q}=1$, we can apply Theorem 1.1 to f^{s} and g^{s} to obtain

$$
\begin{equation*}
\left(\int_{X} f^{p} d \mu\right)^{1 / p}\left(\int_{X} g^{q} d \mu\right)^{1 / q} \leq\left(\frac{m}{M}\right)^{-\frac{s^{2}}{p q}} \int_{X} f^{s} g^{s} d \mu \tag{6}
\end{equation*}
$$

Combining (5) and (6) we obtain (4). Thus we have obtained the result.

Theorem 2.2. Suppose $p, q>0$ and $\frac{1}{p}+\frac{1}{q}=1$. If f and g are two positive functions such that
i) $0<m \leq \frac{(f+g)^{p-1}}{f} \leq M<\infty$.
ii) $0<m \leq \frac{(f+g)^{p-1}}{g} \leq M<\infty$ on a set X.

Then

$$
\begin{equation*}
\left(\int_{X} f^{p} d \mu\right)^{1 / p}+\left(\int_{X} g^{p} d \mu\right)^{1 / p} \leq\left(\frac{m}{M}\right)^{-\frac{1}{p q}}\left(\int_{X}(f+g)^{p} d \mu\right) \tag{7}
\end{equation*}
$$

if the right hand side integral converges.
Proof. Observe that, invoking Theorem 1.1, we have

$$
\begin{aligned}
& \left(\frac{m}{M}\right)^{-\frac{1}{p q}} \int_{X}(f+g)^{p} d \mu \\
= & \left(\frac{m}{M}\right)^{-\frac{1}{p q}}\left[\int_{X}\left(f(f+g)^{p-1}+g(f+g)^{p-1}\right) d \mu\right] \\
\geq & {\left[\left(\int_{X} f^{p} d \mu\right)^{1 / p}+\left(\int_{X} g^{p} d \mu\right)^{1 / p}\right]\left(\int_{X}(f+g)^{p} d \mu\right)^{1 / q} . }
\end{aligned}
$$

140 Castillo and Trousselot, Reverse generalized Hölder and Minkowski

Thus

$$
\left(\int_{X} f^{p} d \mu\right)^{1 / p}+\left(\int_{X} g^{p} d \mu\right)^{1 / p} \leq\left(\frac{m}{M}\right)^{-\frac{1}{p q}}\left(\int_{X}(f+g)^{p} d \mu\right)^{1 / p}
$$

which is precisely (7).

Next, without using Theorem 1.1 and with aslight variation of the hypotheses of Theorem 2.2 we have the following.

Theorem 2.3. Let f and g be positive functions satisfying

$$
0<m \leq \frac{f}{g}<M
$$

on a set X. Then

$$
\left(\int_{X} f^{p} d \mu\right)^{\frac{1}{p}}+\left(\int_{X} g^{p} d \mu\right)^{\frac{1}{p}} \leq C\left(\int_{X}(f+g)^{p} d \mu\right)^{\frac{1}{p}}
$$

if the right hand side integral converges, where

$$
C=\frac{M(m+1)+M+1}{(m+1)(M+1)}
$$

Proof. Since $\frac{f}{g} \leq M$, then $f \leq M(f+g)-M f$, thus

$$
(M+1)^{p} f^{p} \leq M^{p}(f+g)^{p}
$$

and

$$
\begin{equation*}
\left(\int_{X} f^{p} d \mu\right)^{\frac{1}{p}} \leq \frac{M}{M+1}\left(\int_{X}(f+g)^{p} d \mu\right)^{\frac{1}{p}} \tag{8}
\end{equation*}
$$

On the other hand, since $m g \leq f$, we have $g \leq \frac{1}{m}(f+g)-\frac{1}{m} g$. From this, we obtain

$$
\left(\frac{1}{m}+1\right)^{p} g^{p} \leq\left(\frac{1}{m}\right)^{p}(f+g)^{p}
$$

Hence,

$$
\begin{equation*}
\left(\int_{X} g^{p} d \mu\right)^{\frac{1}{p}} \leq \frac{1}{m+1}\left(\int_{X}(f+g)^{p} d \mu\right)^{\frac{1}{p}} \tag{9}
\end{equation*}
$$

Finally, adding (8) and (9) we get

$$
\begin{array}{r}
\left(\int_{X} f^{p} d \mu\right)^{\frac{1}{p}}+\left(\int_{X} g^{p} d \mu\right)^{\frac{1}{p}} \\
\leq \quad \frac{M(m+1)+M+1}{(m+1)(M+1)}\left(\int_{X}(f+g)^{p} d \mu\right)^{\frac{1}{p}} .
\end{array}
$$

Theorem 2.4. Let F and G be positive functions satisfying

$$
\begin{equation*}
0<m^{\frac{1}{p}} \leq F(\zeta) G(x-\zeta) \leq M^{\frac{1}{p}}, \tag{10}
\end{equation*}
$$

with $p>1, x \in[c, d]$ and $\zeta \in \mathbb{R}$. Then, for any positive function ρ, we have

$$
\begin{align*}
& \int_{c}^{d}\left(\int_{-\infty}^{\infty} F(\zeta) \rho(\zeta) G(x-\zeta) d \zeta\right)^{p} d x \\
\geq & \left(\frac{m}{M}\right)^{\frac{1}{p q}}\left(\int_{-\infty}^{\infty} \rho(\zeta) d \zeta\right)^{p-1} \int_{-\infty}^{\infty} F^{p}(\zeta) \rho(\zeta) d \zeta \int_{c-\zeta}^{d-\zeta} G^{p}(x) d x . \tag{11}
\end{align*}
$$

Inequality (11) is especially important when $G(x-\zeta)$ is a Green's function.

The proof of Theorem 2.4 is just a straightforward application of Theorem 2.1. Inequality (4) reverses the sign if $0<p<1$. Hence, inequality (11) reverses the sign if $0<p<1$. On the other hand, also note that this kind of estimates are important in inverse problems.

3 Application to the heat equation

We consider the Weierstrass transform

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} F(\zeta) \rho(\zeta) e^{-\frac{(x-\zeta)^{2}}{4 t}} d \zeta
$$

which gives the formal solution $u(x, t)$ of the heat equation $u_{t}=\Delta u$ on $\mathbb{R}_{+} \times \mathbb{R}$, subject to the initial condition $u(x, 0)=F(x) \rho(x)$, on \mathbb{R}. Take $G(x)=e^{-\frac{x^{2}}{4 t}}$, and let $x \in[-a, a], \zeta \in[-b, b]$, and $a+b \leq \sqrt{\frac{4 t}{p} \log \frac{M}{m}}$.
From this

$$
1 \leq e^{-\frac{(x-\zeta)^{2}}{4 t}} \leq e^{-\frac{(a+b)^{2}}{4 t}},
$$

and we obtain

$$
0<m^{\frac{1}{p}} \leq F(\zeta) e^{-\frac{(x-\zeta)^{2}}{4 t}} \leq M^{\frac{1}{p}}
$$

142 Castillo and Trousselot, Reverse generalized Hölder and Minkowski
if $m^{\frac{1}{p}} e^{-\frac{(a+b)^{2}}{4 t}} \leq F(\zeta) \leq M^{\frac{1}{p}}, \zeta \in[-b, b]$. It is not difficult to see that

$$
\int_{c-\zeta}^{d-\zeta} e^{-\frac{p x^{2}}{4 t}} d x=\sqrt{\frac{\pi t}{p}}\left[\operatorname{erf}\left(\frac{\sqrt{p}(d-\zeta)}{2 \sqrt{t}}\right)-\operatorname{erf}\left(\frac{\sqrt{p}(c-\zeta)}{2 \sqrt{t}}\right)\right],
$$

where

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

is the error function. Therefore, for $-a \leq c<d \leq a$, the inequality (11) holds

$$
\begin{aligned}
& \int_{c}^{d}[u(x, t)]^{p} d x \\
\geq & \frac{1}{2^{p}(\pi t)^{(p-1) / 2} \sqrt{p}}\left(\frac{m}{M}\right)^{\frac{1}{p q}}\left(\int_{b}^{b} \rho(\zeta) d \zeta\right)^{p-1} \\
& \times \int_{b}^{b} F^{p}(\zeta) \rho(\zeta)\left[\operatorname{erf}\left(\frac{\sqrt{p}(d-\zeta)}{2 \sqrt{t}}\right)-\operatorname{erf}\left(\frac{\sqrt{p}(c-\zeta)}{2 \sqrt{t}}\right)\right] d \zeta
\end{aligned}
$$

where ρ is a positive continuous function on $[-b, b]$ and F satisfy (10).

References

[1] E. Di Benedetto, Real Analysis (Birkhäuser, 2002).
[2] D. S. Mitronović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis (Kluwer, Dordrecht, 1993).
[3] S. Saitoh, Vk. Tuan and M. Yamamoto, Reverse convolution inequalities and applications to inverse heat source problems, J. Inequal. Pure Appl. Math. 3(5), 80 (2002). http://jipam.vu.edu.av/v3n5/029_-02htm1.
[4] L. Xiao-Hua, On the inverse of Hölder inequality, Math. Pract. Theor. 1, 84 (1990).

[^0]: ${ }^{1}$ recastillo@unal.edu.co
 2 eddycharles2007@hotmail.com

