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1 Introduction

It is well known that, for 0 < p < 1, f ∈ Lp(X), g ∈ Lq(X),∫
X

|f g| dµ ≥ ‖f‖p ‖g‖q . (1)

Since q is negative in this case, we assume that g > 0, µ− a.e. on X.
Also, if f ∈ Lp(X), g ∈ Lp(X), and 0 < p < 1, then it follows, see [1], by
applying the result of (1), that

‖f + g‖p ≥ ‖f‖p + ‖g‖p . (2)

The following version of inequality (1) was proved in [3]; see also [2]
and [4], pages 125–126.

Theorem 1.1. Suppose p, q > 0 and 1
p + 1

q = 1. If f and g are two

positive function satisfying

0 < m ≤ fp

gq
≤ M < ∞ ,

on a set X. Then(∫
X

fp dµ

)1/p (∫
X

gq dµ

)1/q

≤
(m

M

)− 1
pq

∫
X

f g dµ , (3)

if the right hand side integral converges.
Under appropriate conditions, we prove a generalized version of in-

equalities (2) and (3). Our estimates are based on Theorem 1.1.

2 Main results

Theorem 2.1. Suppose p, q, r > 0 and 1
p + 1

q +
1
r = 1. If f, g and h are

positive functions such that

i) 0 < m ≤ fp/s

gq/s
≤ M < ∞ for some s > 0 such that 1

p + 1
q = 1

s , and

ii) 0 < m ≤ (fg)s

hr ≤ M < ∞ for some s > 0, on a set X.

Then

(∫
X

fp dµ

)1/p (∫
X

gq dµ

)1/q (∫
X

hr dµ

)1/r

≤
(m

M

)−
[

1
rs

+ s2

pq

] ∫
X

f g h dµ , (4)

if the right hand side integral converges.
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Proof. Let 1
p + 1

q = 1
s for some s > 0, thus s

p + s
q = 1 and 1

s + 1
r = 1.

Using ii) and applying Theorem 1.1 to H = fg and h we have

(∫
X

Hs dµ

)1/s (∫
X

hr dµ

)1/r

≤
(m

M

)− 1
sr

∫
X

H hdµ ,

which is equivalent to

(∫
X

fs gs dµ

)1/s (∫
X

hr dµ

)1/r

≤
(m

M

)− 1
sr

∫
X

f g h dµ . (5)

Now, using once more i) and the fact that s
p + s

q = 1, we can apply

Theorem 1.1 to f s and gs to obtain

(∫
X

fp dµ

)1/p (∫
X

gq dµ

)1/q

≤
(m

M

)− s2

pq

∫
X

fs gs dµ . (6)

Combining (5) and (6) we obtain (4). Thus we have obtained the result.
�
Theorem 2.2. Suppose p, q > 0 and 1

p + 1
q = 1. If f and g are two

positive functions such that

i) 0 < m ≤ (f+g)p−1

f ≤ M < ∞.

ii) 0 < m ≤ (f+g)p−1

g ≤ M < ∞ on a set X .

Then

(∫
X

fp dµ

)1/p

+

(∫
X

gp dµ

)1/p

≤
(m

M

)− 1
pq

(∫
X
(f + g)p dµ

)
. (7)

if the right hand side integral converges.

Proof. Observe that, invoking Theorem 1.1, we have

(m

M

)− 1
pq

∫
X
(f + g)p dµ

=
(m

M

)− 1
pq

[∫
X

(
f (f + g)p−1 + g (f + g)p−1

)
dµ

]
≥

[(∫
X

fp dµ

)1/p

+

(∫
X

gp dµ

)1/p
] (∫

X
(f + g)p dµ

)1/q

.
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Thus

(∫
X

fp dµ

)1/p

+

(∫
X

gp dµ

)1/p

≤
(m

M

)− 1
pq

(∫
X
(f + g)p dµ

)1/p

,

which is precisely (7). �

Next, without using Theorem 1.1 and with aslight variation of the
hypotheses of Theorem 2.2 we have the following.

Theorem 2.3. Let f and g be positive functions satisfying

0 < m ≤ f

g
< M ,

on a set X. Then

(∫
X

fp dµ

) 1
p

+

(∫
X

gp dµ

) 1
p

≤ C

(∫
X
(f + g)p dµ

) 1
p

,

if the right hand side integral converges, where

C =
M(m+ 1) +M + 1

(m+ 1)(M + 1)
.

Proof. Since f
g ≤ M , then f ≤ M(f + g)−Mf , thus

(M + 1)p fp ≤ Mp (f + g)p ,

and (∫
X

fp dµ

) 1
p

≤ M

M + 1

(∫
X
(f + g)p dµ

) 1
p

. (8)

On the other hand, since mg ≤ f , we have g ≤ 1
m(f + g) − 1

mg. From
this, we obtain (

1

m
+ 1

)p

gp ≤
(

1

m

)p

(f + g)p .

Hence, (∫
X

gp dµ

) 1
p

≤ 1

m+ 1

(∫
X
(f + g)p dµ

) 1
p

. (9)

Finally, adding (8) and (9) we get
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(∫
X

fp dµ

) 1
p

+

(∫
X

gp dµ

) 1
p

≤ M(m+ 1) +M + 1

(m+ 1)(M + 1)

(∫
X
(f + g)p dµ

) 1
p

.

�
Theorem 2.4. Let F and G be positive functions satisfying

0 < m
1
p ≤ F (ζ)G(x− ζ) ≤ M

1
p , (10)

with p > 1, x ∈ [c, d] and ζ ∈ R. Then, for any positive function ρ, we
have ∫ d

c

(∫ ∞

−∞
F (ζ) ρ(ζ)G(x− ζ) dζ

)p

dx

≥
(m

M

) 1
pq

(∫ ∞

−∞
ρ(ζ) dζ

)p−1 ∫ ∞

−∞
F p(ζ) ρ(ζ) dζ

∫ d−ζ

c−ζ
Gp(x) dx .

(11)

Inequality (11) is especially important when G(x− ζ) is a Green’s func-
tion.

The proof of Theorem 2.4 is just a straightforward application of
Theorem 2.1. Inequality (4) reverses the sign if 0 < p < 1. Hence,
inequality (11) reverses the sign if 0 < p < 1. On the other hand, also
note that this kind of estimates are important in inverse problems.

3 Application to the heat equation

We consider the Weierstrass transform

u(x, t) =
1√
4πt

∫ ∞

−∞
F (ζ) ρ(ζ) e−

(x−ζ)2

4t dζ ,

which gives the formal solution u(x, t) of the heat equation ut = ∆u on
R+ × R, subject to the initial condition u(x, 0) = F (x)ρ(x), on R. Take
G(x) = e−

x2

4t , and let x ∈ [−a, a], ζ ∈ [−b, b], and a + b ≤
√

4t
p log M

m .

From this

1 ≤ e−
(x−ζ)2

4t ≤ e−
(a+b)2

4t ,

and we obtain

0 < m
1
p ≤ F (ζ) e−

(x−ζ)2

4t ≤ M
1
p ,
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if m
1
p e−

(a+b)2

4t ≤ F (ζ) ≤ M
1
p , ζ ∈ [−b, b]. It is not difficult to see that∫ d−ζ

c−ζ
e−

px2

4t dx =

√
πt

p

[
erf

(√
p(d− ζ)

2
√
t

)
− erf

(√
p(c− ζ)

2
√
t

)]
,

where

erf(x) =
2√
π

∫ x

0
e−t2 dt ,

is the error function. Therefore, for −a ≤ c < d ≤ a, the inequality (11)
holds ∫ d

c
[u(x, t)]p dx

≥ 1

2p (πt)(p−1)/2√p

(m

M

) 1
pq

(∫ b

b
ρ(ζ) dζ

)p−1

×
∫ b

b
F p(ζ) ρ(ζ)

[
erf

(√
p(d− ζ)

2
√
t

)
− erf

(√
p(c− ζ)

2
√
t

)]
dζ ,

where ρ is a positive continuous function on [−b, b] and F satisfy (10).
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Theor. 1, 84 (1990).


