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ABSTRACT. The usefulness of small (<10 km2) catchments has been repeatedly 
recognized during the recent history of hydrological research. This foreword to the 
special issue of Cuadernos de Investigación Geográfica – Geographical Research 
Letters devoted to long term hydrological research in small catchment in Europe 
highlights the main reasons for promoting the small catchment approach and revises 
its growing use, starting with the first catchment studies in Switzerland for forest 
management purposes, and followed by the development of more interdisciplinary 
research programs that used small catchments as field laboratories, long-term 
observatories, sites for method and model validation, and places for training 
young researchers. The volume includes nine contributions concerning studies 
carried out in long term monitoring sites in several European countries and 
aims at showing the relevance of the small catchment approach in hydrological 
research in Europe.

La importancia de la investigación hidrológica en pequeñas cuencas – Una 
perspectiva a partir de sitios instrumentados a largo plazo en Europa

RESUMEN. La utilidad de los estudios en pequeñas (<10 km2) cuencas ha sido 
reiteradamente reconocida a lo largo de la historia de la investigación hidroló-
gica. Este prólogo al número especial de Cuadernos de Investigación Geográfica 
– Geographical Research Letters sobre investigaciones hidrológicas a largo plazo 
en pequeñas cuencas en Europa destaca las principales razones para fomentar 
los estudios en pequeñas cuencas y revisa su creciente uso, empezando por los 
estudios de cuenca llevados a cabo en Suiza con fines de gestión forestal, segui-
dos por el desarrollo de programas de investigación más interdisciplinares que 
utilizaron las cuencas como laboratorios de campo, observatorios a largo plazo, 
lugares para validar métodos y modelos, y para formar a jóvenes investigadores. 
Este volumen incluye nueve contribuciones sobre estudios llevados a cabo en 
sitios instrumentados a largo plazo en varios países europeos y pretende mostrar 
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la relevancia del uso de pequeñas cuencas en la investigación hidrológica en 
Europa.

Key words: small catchment, hydrological research, Europe.

Palabras clave: pequeña cuenca, investigación hidrológica, Europa.

Received: 13 December 2017 
Accepted: 2 January 2018

*Corresponding author: Jérôme Latron, Institute of Environmental Assessment and 
Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain. E-mail 
address: jerome.latron@idaea.csis.es

Almost 50 years ago, Hewlett et al. (1969) noted that observations of hydrological 
processes in small research catchments contribute knowledge essential to both land 
management and the science of hydrology. Despite its limitations, which are partly 
related to inability to control the natural environment (Ambroise, 1994), the usefulness 
of small (<10 km2) catchment research has been repeatedly recognized during recent 
decades (e.g., Hewlett et al., 1969; Ward, 1971; Dubreuil, 1989; Bonell, 1993; Tetzlaff et 
al., 2017). Recent reports (Burt and McDonnell, 2015; Beven, 2016; Tetzlaff et al., 2017) 
have highlighted the invaluable role of field studies in experimental catchments and the 
resulting long-term data, and emphasized that this approach is increasingly needed, 
particularly in the context of increasing water demand, rapid changes in land uses, and 
uncertainties in climate change projections.

There are many reasons to promote the small catchment research approach. 
Small catchments enable high density and quality measurements for understanding 
the complexities of hydrological processes. Most of the development of fundamental 
hydrological concepts has come from field observations in small research catchments. 
For instance, the “variable source area” hypothesis for storm runoff generation (described 
by Hewlett, 1961), and the “partial area” concept proposed by Betson (1964) were 
based on field investigations in a small research catchment in North Carolina, USA. 
Critical findings on macropore flow mechanisms in runoff generation, carried out by 
Mosley (1979), Pearce et al. (1986), and Sklash et al. (1986) were also based on field 
data collected in several small catchments in the Maimai study area in New Zealand. 
Additional examples of fundamental hydrological research on runoff generation 
processes have been described by Burt and McDonnell (2015), and most of these were 
based on field studies undertaken in small catchments. Furthermore, monitoring of 
small catchments favors the development of novel measurement technologies that open 
new and previously unconceivable opportunities for investigating natural processes. 
For instance, geophysical techniques are used to define the subsoil structure and better 
understand subsurface flows (e.g. Preti et al., 2017), and new tracers including diatoms 
(Pfister et al., 2017) and rare earth elements (Masselink et al., 2017) are being used to 
track and study flow sources and pathways.
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Hydrological science is dependent on a range of measurement techniques (Beven, 2016), 
and the sometimes-accepted notion that simulations could replace field experimentation has 
been consistently criticized (Hewlett et al., 1969; Philip, 1991; Burt and McDonnell, 2015; 
Beven, 2016). The datasets derived from small catchments are rich resources for model 
development and testing. For instance, as noted by Tetzlaff et al. (2017), the development of 
influential models including TOPMODEL and SHE was possible because of the high quality 
data derived from seminal studies in the Plynlimon catchment (Wales, UK). Several decades 
ago, Hewlett et al. (1969) noted that modeling studies are really useful only if they are based 
on high quality input data. The acquisition and analysis of field data remains essential, despite 
occasionally being reported to be of little value (Grayson et al., 1992; Ambroise, 1994). 
Burt and McDonnell (2015) noted that despite the perception that field hydrology is on the 
decline (i.e., the number of model-based vs. field data-based publications in hydrological 
journals), field-derived insights into the age, origin, and pathway of water in headwaters are 
increasingly needed, and Beven (2016) noted that hydrological science is still in need of 
research into fundamental processes. While some prioritize this research in the “critical zone” 
(the “Earth’s dynamic skin”, Grant and Dietrich, 2017) and others insist on the relevance of 
ecohydrological interfaces (Krause et al., 2017), new “outrageous hydrological hypotheses” 
are clearly needed (Burt and McDonnell, 2015), particularly those putting flow and transport 
into a consistent coherent framework (McDonnell and Beven, 2014). If observations and 
field measurements and modeling efforts are indispensable and complementary, they should 
be jointly conducted from the outset, but this is rarely the case (Ambroise, 1999). Indeed, 
many authors have identified a need for greater synergy between field studies and modeling 
(e.g., Dunne, 1983; Christophersen and Neal, 1990; DeCoursey, 1991; Grayson et al., 1992; 
Becker et al., 1999; Seibert and McDonnell, 2002). In today’s changing world, this synergy 
must necessarily rely on small research catchments, using them as a field-model interface.

The essential role and importance of small research catchments was clearly 
highlighted by Hewlett et al. (1969), who noted that “if we wish to manage watersheds, 
we shall have to study watersheds”. The knowledge gained in catchment research has 
been used to answer practical questions and help in decision making. Early research in 
paired watersheds (Bates and Henry, 1928; Hoover, 1944) provided sound evidence that 
forest cutting increases water yield and forest regrowth reduces it, which was essential 
information for management of watersheds by the US Forest Services. More recently, 
research in the Krycklan catchment (Sweden) has revealed the important regulatory role 
of the riparian zone on water and solute fluxes in boreal environments (Tiwari et al., 
2016 cited in Tetzlaff et al., 2017), and has led to new policies for riparian protection in 
commercial forests (Tetzlaff et al., 2017). Small catchments have often been considered to 
be “outdoor laboratories” for monitoring changes in environmental variables (Schumman 
et al., 2010). Even if much knowledge has accumulated on runoff mechanisms, there 
remains an urgent need to understand these processes in a changing environment (Burt 
and McDonnell, 2015). Thus, long-term data series from research catchments are needed 
to detect trends and changes in the system response, associated with changes in land use 
and climate. In addition, long-term data series enable the detection and understanding 
of extreme events including floods and droughts, which are the main concern of policy 
makers because they are the hydrological events having the greatest impacts (Tetzlaff et 
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al., 2017). However, collecting long-term data series requires long-term investment and 
a high level of commitment, both of which are challenging.

The use of small catchments in hydrological research dates to the 1900s and the 
comparative monitoring of the Sperbelgraben (forest) and Rappengraben (grassland) 
catchments, in studies of the effect of vegetation cover on the hydrological regime and flood 
dynamics in Swiss mountain areas (Engler, 1919 cited in Keller, 1988; Stähli et al., 2011). 
Several years later the first experimental paired watersheds were established for the Wagon 
Wheel Gap Experiment in Colorado, USA (Bates and Henry, 1928, cited in Hewlett, 1982). In 
the early 1930s the creation of the Coweeta Hydrology Laboratory in North Carolina (Swank 
and Crossley, 1988) confirmed the growing importance of small research catchments; two 
main catchments involved comprise a total area of 22 km2 and 26 sub-catchments, and have 
been the basis of a detailed long-term study of the hydrological consequences of modification 
of vegetation cover (Swank et al., 1988). In Europe, since 1948 the catchments of the Harz 
mountains (Germany) have facilitated study of the influence of reforestation on the water 
balance (Liebscher and Wilke, 1981 cited in Keller, 1988).

Despite their increasing number, catchment studies followed an empirical 
approach until the 1960s, favored by the need to obtain results that were applicable 
from a management perspective. Although this approach sometimes contributed to 
progress in understanding of catchment hydrological behavior (e.g., Hursh and Brater, 
1941; Cappus, 1960; Hewlett, 1961; Tsukamoto, 1963), it has not favored the detailed 
study of hydrological processes at the catchment scale. At the beginning of the 1960s 
the problems encountered in the generalization of results, skepticism about catchment 
representativeness, and the cost of monitoring led some authors (e.g., Ackermann 1966; 
Reynolds and Leyton, 1967 cited in Hewlett et al., 1969) to question use of the small 
catchment approach. At that time, the perception that there remained “complete ignorance 
of the causes and precise effects of the different components of the hydrological cycle” 
after more than 30 years of research (Slivitzsky and Hendler, 1964 cited in Hewlett et 
al., 1969) contributed to questions about the value of continued use of small catchments 
for hydrological research. 

In addition to this situation, increasing awareness of the need to know and understand 
hydrological and/or associated physical, chemical, and biological processes led to the 
development of interdisciplinary research programs adopting a dynamic and modeling 
approach, using small catchments as field laboratories. The Hubbard Brook catchments in 
the USA, instrumented in 1955, were one of the first interdisciplinary experimental sites, 
and enabled detailed study of hydrogeochemical balances in the 1960s (Likens et al., 
1977). At approximately the same time the UNESCO International Hydrological Decade 
(1965-1974) was promoting international collaboration in hydrology. This contributed 
to the development of many small catchments for hydrological research worldwide, and 
encouraged more multidisciplinary research studies; for example, those initiated in 1971 
in the catchments of the Krofdorf Forest research area in Germany (Brechtel and Führer, 
1991). As noted by Ambroise (1994), this considerable expansion of the small catchment 
approach facilitated the emergence of the hillslope hydrology concept (Kirkby, 1978), 
and identification of the main hydrological processes and factors.
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Today the concept of the small research catchment seems more and more relevant 
to a diversity of environmental issues beyond hydrology, and as noted by Tetzlaff et al. 
(2017), some well-monitored catchments have been included in national or international 
networks including: the Long-Term Ecological Research (LTER) network, with sites 
distributed in the USA (Knapp et al., 2012; Collins and Childers, 2014) and Europe (Mirtl, 
2010); the Critical Zone observatories in the USA (White et al., 2015); and the German 
Terrestrial Environmental Observatories (TERENO) network (Forschungszentrum 
Jülich et al., 2016). Through their multiple roles including as field laboratories, long-
term observatories, sites for method and model validation, and places for training young 
researchers (Leclerc, 1992; Ambroise, 1994), small research catchments constitute an 
essential tool in the study and management of the natural environment.

This volume of Cuadernos de Investigación Geográfica-Geographical Research Letters 
presents contributions concerning studies carried out at eight long-term monitoring sites in 
Europe. The objective is to stress the relevance of long-term research in small catchments 
for obtaining meaningful and key hydrological results. These contributions represent only 
a small subset from among the numerous small catchment research projects that are being, 
or have been undertaken throughout the continent. A ninth contribution discusses the role of 
international activities in promoting and disseminating research based on small catchments, 
in particular the ERB (Euro-Mediterranean Network of Experimental and Representative 
Basins) network, which was created in 1986 to organize and facilitate the exchange of data and 
knowledge, and to promote cooperation in international research programs (Holzmann, 2018).

The catchments included in this volume are located in a wide variety of environments, 
including high elevation (Holko et al., 2018; Zuecco et al., 2018), pre-alpine (van 
Meerveld et al., 2018) and sub-Mediterranean (Lana-Renault et al., 2018; Llorens et al., 
2018) mountain areas; in rural landscapes under both humid (Gascuel-Odoux et al., 2018) 
and Mediterranean (Schnabel et al., 2018) conditions; and in environments in transition 
between arid and semiarid climate conditions (Rodríguez-Caballero et al., 2018). Most 
of the contributions focus on understanding of runoff generation mechanisms in the 
studied environments, using various types of data (hydrometric data, isotopes, stream 
chemistry) and approaches (analysis of thresholds, hysteresis, hydrological connectivity, 
controlling factors, and hydrological modeling). They also show the value of having a 
dense measurement network and applying complementary techniques to better define a 
conceptual model of runoff generation processes (van Meerveld et al., 2018; Zuecco et 
al., 2018). Some contributions also consider associated hydrological processes including 
rainfall partitioning and forest transpiration (Llorens et al., 2018), biochemical cycles 
(Gascuel-Odoux et al., 2018) and sediment transport (Llorens et al., 2018; Rodríguez-
Caballero et al., 2018). Others consider more technical aspects, including evaluation of 
methods for determining event and pre-event water in flood events (Holko et al., 2018). 
These studies provide data enabling assessment of the implications of global change for 
catchment water resources and soil conservation (e.g., Lana-Renault et al., 2018). In 
addition, they show the relevance of long-term monitoring sites for (interdisciplinary) 
environmental research and management (Gascuel-Odoux et al., 2018; Holzmann, 2018), 
especially in areas having high and very high rainfall variability (Rodríguez-Caballero et 
al., 2018; Schnabel et al., 2018). 
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Finally, we conclude this foreword by acknowledging the efforts of the authors and 
reviewers of the articles included in this special volume, which highlights the essential 
role of long-term small catchment monitoring in hydrological research in Europe.
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