

Conciencia Tecnológica No. 34, Julio - Diciembre 2007

Correlación Para el Cálculo de Viscosidades de 1-Alcoholes

Investigación

S. E. Benítez-García¹, M. Ramos-Estrada¹, G. A. Iglesias-Silva²

¹Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Ingeniería Química, Santiago Tapia 403, CP 58000, Morelia, Michoacán, México. marianar 1999@yahoo.com

²Instituto Tecnológico de Celaya, Departamento de Ingeniería Química, Av. Tecnológico y A. García Cubas, CP 38010, Celaya, Guanajuato, México.

Introducción

Muchas correlaciones para la predicción de la viscosidad de líquidos han aparecido en la literatura. Algunas son correlaciones empíricas, otras usan el principio de estados correspondientes y otras usan modelos más complejos conjuntamente con ecuaciones de estado. Quiñones-Cisneros *et al.* (2001) estableció lo que ellos llamaron la teoría f en la cual usa una ecuación cúbica de estado y el limite de Eskog-Chapman para cubrir en rango total de presiones. No obstante que es una teoría aceptable requiere de muchos términos característicos en la región en donde se va a utilizar y como se va a utilizar.

En este trabajo se presenta una correlación para predecir viscosidades de 1-alcoholes como función del número de carbonos y de la temperatura. Se compararon los resultados con datos experimentales reportados en la literatura.

Metodología Experimental

El principio de congruencia propuesto por Bronsted y Koefoed (1946) propone que las propiedades termodinámicas de la sustancia pura y de sus mezclas son función de la longitud de cadena promedio en una serie homóloga. En este trabajo utilizamos datos experimentales obtenidos en nuestro laboratorio y encontramos una expresión para la viscosidad dinámica en términos de la longitud de cadena, la cual tiene la siguiente forma,

$$\eta = A + Bn^{k} (1)$$

donde η es la viscosidad dinámica y A, B y k son parámetros empíricos de ajuste.

Si graficamos viscosidad contra el número de carbonos elevado a una potencia a diferentes temperaturas se obtenían líneas rectas, este comportamiento se ve en la Fig. 1.

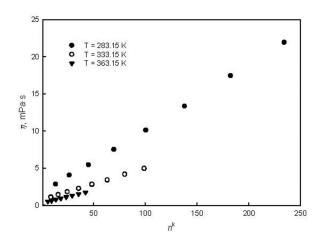


Figura 1. Viscosidad dinámica como función de n .

Por lo tanto, las constantes A, B y k son funciones de la temperatura. Una vez encontrada la forma funcional se seleccionó una base de datos experimentales a diferentes temperaturas y para diferentes 1-alcoholes para ajustar la Ecuación 1 pero ahora en una forma funcional de temperatura.

Resultados y discusión

Se obtuvo una ecuación para representar viscosidades dinámicas de 1-alcoholes como función del número de carbonos y de la temperatura. La Figuras 2 muestra una desviación porcentual de \pm 2 % respecto a datos experimentales, la ecuación es válida en el intervalo de temperaturas de 283.15 K hasta 378.15 K y para alcoholes desde 1-propanol hasta 1-decanol. Actualmente se esta probando la capacidad extrapolativa de la ecuación a un número mayor de 1-alcoholes y su aplicación a mezclas, encontrando la regla de mezclado que mejor se ajuste al sistema.

S.E. Benítez-García, M. Ramos-Estrada, G.A. Iglesias-Silva

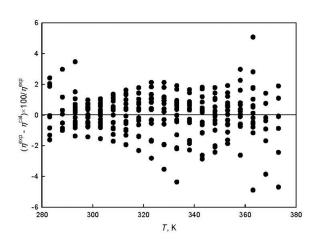


Figura 2. Desviación porcentual contra Temperatura

Referencias

- [1] Orwoll, R.A. y Flory, P.J., (1964), *J. Am. Chem. Soc.*, 89, 6814-6822.
- [2] Quiñónez-Cisneros S. E., Zeber-Mikkelsen E. H. y Stenby E., (2001), Fluid Phase Equilibria, 178, 1-16
- [3] Bronsted J.N., Koefoed J., Det. Kgl. Danske Videnske Selsk., (1946), *Mat. Fys. Medd.*, 22,1-32.
- [4] Ramos-Estrada, M., Iglesias-Silva G. A., Hall K. R., (2006), *J. Chem. Thermodynamics*, 38,337-347.

Artículo recibido: 13 de octubre del 2007

Aceptado para publicación: 8 de diciembre del 2007