Implementación de Red Modbus en Microcontroladores PIC Para Medición de Flujo
Reporte de Proyecto

M.C. Francisco Javier Villalobos Piña, M.C. José Valentín López Rivas, Dr. Rafael Molina Contreras, M.C.
Héctor Ulises Rodríguez Marmolejo
Departamento de Ingeniería Eléctrica Electrónica
Instituto Tecnológico de Aguascalientes Av. A. López Mateos 1801 Ote., Fracc. Bona Gens
Aguascalientes, Ags. Tel: 01(449)9105002 ext. 104, e-mail: fvillalobospia@yahoo.com

Resumen
El presente trabajo expone el diseño de un medidor de flujo para despachos de gas butano LP mediante la implementación de la red MODBUS usando para ello un microcontrolador PIC18F452. Este dispositivo se utiliza para efectuar medición de flujo de forma remota el cual tiene un bajo costo de diseño, además este dispositivo se utiliza en conjunto con un computador industrial llamado G303 GRAPHIC LCD OPERATOR INTERFACE TERMINAL el cual cuenta con el programa de despachos desarrollado en un medio integrado de desarrollo llamado CRIMSON en el cual se codifican los módulos en lenguaje C. El estándar de comunicación es RS485 en la modalidad de HALF DUPLEX, y el medidor opera como un esclavo que es manipulado por el computador principal.

Palabras clave: Modbus, PIC18F452, Network, RS485, Half Duplex

Abstract
This paper presents a gas LP meter design using a MODBUS network with a PIC18F452 microcontroller. The device can recover of flow quantity with a remote technique that represents a low cost design. The Meter send information to a G303 GRAPHIC LCD OPERATOR INTERFACE TERMINAL it has a program than can spend gas LP, the program was developed using a software called CRIMSON, this software consist in a “C” language. The networks use a HALF DUPLEX standard and the meter designed operates like a slave.

Key words: Modbus, PIC18F452, Network, RS485, Half Duplex

Introducción
En la industria distribuidora de gas butano LP existen múltiples opciones de equipos electrónicos como lo es la empresa RED LION que ofrece una amplia gama de dispositivos para la medición, control y administración de despachos y ventas. La ventaja de usar un computador industrial y un lenguaje de alto nivel tipo gráfico es que permite el ahorro en costo de diseño del despachador de gas butano, el inconveniente comienza en la etapa de medición y activación de bomba y válvulas. Existen en el mercado varios dispositivos que permiten conectarse al computador para efectuar esta acción, pero su principal desventaja es el costo y el mantenimiento. Para resolver esta problemática se optó por el diseño e implementación de la red MODBUS que utiliza el computador sobre el estándar RS485 para lograr largas distancias entre la zona de despacho y los actuadores, esto en un CPU de bajo costo.

Desarrollo
El diseño comienza con la creación del hardware para efectuar la activación de la bomba y las válvulas solenoïdes que permiten el flujo del gas (figura 1), el cual consiste en un CPU de la empresa MICROCHIP, el PIC18F452 [1] el cual corre a una velocidad de 40Mhz, logrando una velocidad suficiente para mantener comunicación en tiempo real con el computador industrial y efectuá la acción de medición de flujo principal, así como un grupo de 4 relevadores con contacto normalmente abierto, una pantalla de cristal líquido de 16x2 con luz de fondo y el convertidor de niveles TTL a RS485. Se efectuó la programación en lenguaje C de la empresa CCS llamado PICC.

Figura 1. Diagrama a bloques del sistema
La comunicación entre el computador industrial G303 [2] y el microcontrolador es básicamente una transferencia de datos seriales a una velocidad de 9600 Bauds, 8 Bits de Datos, 1 Bit de Paro, no paridad ni
Control de flujo y el puerto es un RS485 en modo de 2 hilos. El intercambio de información se logra gracias a la implementación de la red MODBUS. Cabe mencionar que este tipo de red es posible implementarla sobre otras plataformas (figura 2), y no necesariamente sobre un puerto serial de largo alcance. La garantía en la buena ejecución de comandos se debe a que cada trama de datos se termina con un CRC16 el cual es un algoritmo para el chequeo de redundancia cíclica de 16 bits que utiliza un polinomio base.

Figura 2. Arquitectura MODBUS

El fundamento eléctrico de comunicación de largo alcance sin problemas de atenuación por distancia hasta longitudes hasta de 1km se debe a un circuito basado en lazos de corriente conocido como MAX485 [3] este dispositivo de la empresa MAXIM – DALLAS permite hacer comunicaciones llamadas FULLDUPLEX en las cuales es posible enviar y recibir información simultáneamente o bien solo enviar o recibir llamada HALF Duplex. El computador industrial cuenta con un puerto con las características antes mencionadas y se implementó la red que se muestra en la figura 3.

Figura 3. Red RS485 HALF DупLEX

Existen varias arquitecturas de la red Modbus (fig. 4). La que usa el medidor de flujo es la llamada maestro esclavo, en la cual el computador principal solicita la ejecución de alguna acción como es abrir o cerrar cualquiera de los 4 relevadores, solicita el valor actual de la medición de flujo o bien la cantidad de flujo que está pasando por segundo. El medidor remoto mantiene en la memoria de datos no volátiles EEPROM la información del último despacho y hasta que el computador industrial le solicita dicha información es eliminada, de lo contrario se retiene. Independientemente de la plataforma usada, la red MODBUS cuenta con una serie de funciones muy bien definidas para la ejecución de la tarea y dependiendo del hardware existirán algunas implementadas o bien en muchos de los casos no aplicará. Cabe mencionar que esta red fue diseñada para efectuar control de manera remota y garantizar un buen nivel de seguridad en la activación o desactivación de dispositivos.

Figura 4. Ejemplo de arquitectura de la red MODBUS

La información de flujo y despacho total se está continuamente presentando en una ventana del programa del computador industrial y es en tiempo real (figura 5). Cabe mencionar que el concepto del tiempo real es relativo ya que siempre hay un retardo entre lo que realmente ocurre y lo que se presenta.

Figura 5. Flujo y cantidad de litros vendidos

La primera función implementada a nivel microcontrolador se llama READ HOLDING REGISTER Código 0x03 (figura 6), la cual le permite al CPU principal leer un registro de retención en cierta dirección. Cabe mencionar que la plataforma tiene prevista una cantidad grande de posibles direcciones y en el presente diseño se implementaron las que son iguales al equipo comercial PAXI. Es decir, si se
modifica el programa del computador principal y se solicita el valor de un registro que no existe en el microcontrolador, éste devolverá un valor en ceros. Esto se hizo para respetar el estándar.

Figura 6. Diagrama de estado código 0x03

La segunda función implementada a nivel microcontrolador se llama WRITE SINGLE COIL, escribir una sola bobina código 0x05 (figura 7). Esta función le permite al computador principal ver el registro de conteo como un simple bit, y al ponerlo en ceros limpia el registro, logrando una mayor velocidad en lugar de direccionar y borrar cada registro.

Figura 7. Diagrama de estado código 0x05

El tercer código implementado se llama WRITE SINGLE REGISTER y es el código 0x05 (figura 8), este permite escribir el registro de conteo de 32 bits en 2 palabras de 16 bits.

Figura 8. Diagrama de estado código 0x06

El cuarto código implementado se llama WRITE MULTIPLE REGISTERS: escribir múltiples registros y es el código 0x10 (figura 9), el cual permite solicitar la escritura de varios registros en un solo comando.

Figura 9. Diagrama de estado código 0x10

Este código permite asignar unos registros llamados setfactor A, setfactor B, que son factores de
calibración para diferentes turbinas que entregan valores diversos por revolución dependiendo de la precisión deseada en la medición, además de registros llamados setpoint1, setpoint2, setpoint3, setpoint4, los cuales establecen el valor de comparación a despachar. El computador principal le envía al microcontrolador un valor final de cuenta, por ejemplo 200 litros de gas; cuando comienza el despacho el procesador está continuamente comparando el valor actual con el de referencia y al llegar a éste detiene el despacho. El computador solicita simplemente la lectura para presentarla en su pantalla, de aquí que la precisión en el despacho no depende del computador principal sino del medidor de flujo implementado. En la figura 10 se muestra el diagrama esquemático del sistema electrónico implementado, así como la etapa de potencia para la activación de válvulas y el encendido de las bombas.

Figura 10. Diagrama esquemático del sistema

La medición de flujo se efectúa mediante una turbina que tiene dispuesto un encéfalo tipo óptico con detección de cuadratura para garantizar la correcta medición del flujo. Dicho sistema óptico consiste en un diodo emisor de luz en el espectro infrarrojo y un fotorreceptor (fototransistor), en el cual la señal es acondicionada mediante un detector de cruce por cero y un transistor en el modo de colector abierto para que no haya ningún problema con la longitud de la línea desde el medidor hasta el sistema electrónico y leída por el procesador en un puerto especial llamado módulo de captura, el cual obtiene una relación de un número de pulsos por litro; esto cambia de turbinas y turbinas y el sistema tiene la capacidad de ajustarse a dichos cambios.

Figura 11. Encéfalo óptico acoplado a la flecha de la turbina para medición del flujo de gas butano LP.

Conclusiones

Se diseñó un programa en un microcontrolador PIC18F452 que tiene implementadas las funciones 0x03, 0x05, 0x06 y 0x10 de la red Modbus y el sistema electrónico que toma la señal de la turbina y la etapa de potencia para las válvulas solenoïdes y las bombas de gas LP. Dicho programa efectúa la medición de flujo por segundo, despacha la cantidad de litros solicitados por el computador industrial, se ajusta dependiendo de la turbina instalada, y es capaz de responder a la computadora industrial en todo momento con el recurso de programa de sistema operativo de tiempo real que se desarrolló en el lenguaje de programación PICC. Este medidor logró el objetivo al sustituir satisfactoriamente al medidor original sin hacer ningún cambio en el programa del computador principal, sólo conectando y desconectando el módulo. Este sistema se encuentra funcionando en campo todavía a nivel de prueba.

Referencias


Recibido: 9 de octubre de 2006 Aceptado: 22 de febrero de 2007

Conciencia Tecnológica No. 33, Enero-Junio 2007