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Abstract 
In reliability analysis, both the Weibull and the lognormal distributions are analyzed by using the observed data logarithms. While the 
Weibull data logarithm presents skewness, the lognormal data logarithm is symmetrical. This paper presents a method to discriminate 
between both distributions based on: 1) the coefficients of variation (CV), 2) the standard deviation of the data logarithms, 3) the percentile 
position of the mean of the data logarithm and 4) the cumulated logarithm dispersion before and after the mean. The efficiency of the 
proposed method is based on the fact that the ratio of the lognormal (b1ln) and Weibull (b1w) regression coefficients (slopes) b1ln/b1w 
efficiently represents the skew behavior. Thus, since the ratio of the lognormal (Rln) and Weibull (Rw) correlation coefficients Rln/Rw (for a 
fixed sample size) depends only on the b1ln/b1w ratio, then the multiple correlation coefficient R2 is used as the index to discriminate between 
both distributions. An application and the impact that a wrong selection has on R(t) are given also. 
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Discriminación entre la distribución lognormal y la distribución 
Weibull utilizando regresión lineal múltiple 

 
Resumen 
En el análisis de confiabilidad, las distribuciones Weibull y lognormal son ambas analizadas utilizando el logaritmo de los datos observados. 
Debido a que mientras el logaritmo de datos Weibull presenta sesgo, el logaritmo de datos lognormales es simétrico, entonces en este 
artículo basados en 1) los coeficientes de variación (CV), 2) en la desviación estándar del logaritmo de los datos, 3) en la posición del 
percentil de la media del logaritmo de los datos y 4) en dispersión acumulada del logaritmo antes y después de la media, un método para 
discriminar entre ambas distribuciones es presentado. La eficiencia del método propuesto está basado en el hecho de que el radio entre los 
coeficientes de regresión (pendientes) b1ln/b1w de la distribución lognormal (b1ln) y de la distribución Weibull (b1w), eficientemente 
representa el comportamiento del sesgo. De esta manera, dado que el radio de los coeficientes de correlación de la distribución lognormal 
(Rln) y de la distribución Weibull (Rw), (para un tamaño de muestra fijo), solo depende del radio b1ln/b1w, entonces el coeficiente de 
correlación múltiple R2 es utilizado como un índice para discriminar entre ambas distribuciones. Una aplicación y el impacto que una mala 
selección tiene sobre R(t) son también dadas.  
 
Palabras clave: distribución Weibull; distribución lognormal; proceso de discriminación, regresión lineal múltiple; distribución Gumbel. 

 
 
 

1.  Introduction 
 
Because of their flexibility to model several behaviors, the 

Weibull and the lognormal distributions are two of the most used 
types of distribution in reliability. However, because the Weibull 
distribution is based on a non-homogeneous Poisson process, it 
models additive effect behavior [1]. Similarly, because the 
                                                      
How to cite: Ortiz-Yañez, J.F. and Piña-Monarrez, M.R., Discrimination between the lognormal and Weibull distributions by using multiple linear regression. DYNA, 85(205), 
pp. 9-18, June, 2018. 

lognormal distribution is based on a geometric Brownian motion, 
then it models multiplicative effect behavior [2]. Therefore, they 
should not be used interchangeably. Hence, a discrimination 
process between both distributions is needed. In particular, the 
negative effect on reliability due to a wrong selection between 
these distributions is shown by using the stress- strength analysis, 
where the reliability represents all probabilities that the failure 
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Table 1 
Compression loads  

9.6 12.5 13.5 14.4 14.9 15.7 16.6 17.9 20 
9.6 12.6 13.8 14.4 15 15.9 16.8 18 20.1 

12.3 12.7 14 14.6 15.2 16 16.8 18.1 22.3 
12.4 12.7 14.2 14.6 15.3 16.1 16.9 19.1  
12.4 13.2 14.4 14.7 15.3 16.5 17.9 19.7   

Source: Adapted from [4] 
 
 

Table 2 
Strength of the product 

21 25 23 31 32 
22 26 30 31 33 
23 27 30 32 34 

Source: Adapted from [4] 
 
 

Table 3 
Stress-strength reliability 

Combination R 
Lognormal-Lognormal 0.9957 
Lognormal-Weibull 0.9860 
Weibull-Lognormal 0.9984 
Weibull-Weibull 0.9882 

Source: The authors 
 

governing strength (S) exceeds the failure governing stress 
(s) [3]. The stress-strength formulation is given by 

 
𝑅𝑅 = 𝑃𝑃(𝑆𝑆 > 𝑠𝑠) = ∫ 𝑓𝑓(𝑠𝑠)∞

−∞ �∫ 𝑓𝑓(𝑆𝑆)∞
𝑠𝑠 𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑  (1) 

 
In the stress-strength analysis it is assumed that time is 

not the cause of failure; instead, failure mechanisms are what 
cause the part to fail [4]. In addition, as can be seen in eq. (1), 
the estimated reliability depends entirely on the selected 
stress and strength distributions. Thus, because a wrong 
selection will overestimate or underestimate reliability, a 
wrong selection will largely impact the analysis conclusions. 
To illustrate the impact of a wrong selection on reliability, 
following data published in Wessels has been used ([4], sec. 
7). Table 1 shows the stress data; and Table 2 the strength 
data.  

Finally, the stress-strength analysis for the four possible 
combinations between the Weibull and lognormal 
distributions, is presented in Table 3. The estimation of the 
stress-strength reliability was performed by using the eq. (40-
43) given in section 7. 

From Table 3, we conclude that because each 
combination shows a different reliability index, then the 
accurate discrimination between the Weibull and the 
lognormal distributions is an issue that must be solved. To 
this end, researchers have used several selection procedures. 
Among the oldest ones are the Chi-square, the Anderson-
Darling and the Cramer-Von Mises goodness-of-fit tests [5]. 
On the other hand, the most widely used methods are those 
based on the maximum likelihood (ML) function as they are 
those given in [6-10] and recently in [11-12]. In particular, 
the methods based on probability plot (PP) tests are in [13-
15]. Those based on Kolmogorov-Smirnov (KS) test are in 
[16] and [17], and those based on Bayes analysis are in [18]. 
The discrimination process between the Weibull and the 
lognormal distributions depends 1) on the relationship 

between the Coefficient of Variation (CV) of the observed 
data and their standard deviation (σx), 2) on the mean position 
of the logarithm of the data (µx) and 3) on the dispersion 
behavior before and after µx. Unfortunately, since none of the 
above approaches takes into account the skew behavior of the 
logarithm of the data, then none of them is effective in 
discriminating between both distributions.  

Based on the fact that the Weibull data logarithm 
(Gumbel behavior) always presents negatively skewed 
behavior, the logarithm of lognormal data always presents 
symmetrical dispersion behavior, the b1ln/b1w ratio of the 
estimated lognormal and Weibull coefficients effectively 
discriminates between the negative and symmetrical 
dispersion behaviors, a method based on R2 to effectively 
discriminate between both distributions is offered by this 
paper in sec. 4. The reason for the method’s efficiency is that 
the R2 index for a fixed sample size (n) depends only on the 
b1ln/b1w ratio (see sec. 4.3). That is, because the b1ln/b1w ratio 
effectively discriminates between negative and symmetrical 
dispersion behaviors, the R2 index effectively discriminates 
between both distributions also. 

This paper is structured as follows. Section 2 shows that 
the behavior of the logarithm of a Weibull variable is always 
negatively skewed and that the logarithm of a lognormal 
variable is always symmetrical. In section 3, based on the 
data behavior log, the characteristics that completely define 
whether data follow a Weibull or a lognormal distribution are 
given. Also, in section 3, the case where the dispersion (Sxx) 
contribution is not fulfilled is presented also. Section 4 shows 
the multiple linear regression (MLR) analysis for the Weibull 
and lognormal distributions.  Section 5 presents 1) how via 
MLR, the b1ln/b1w ratio efficiently captures the Sxx dispersion 
behavior, and 2) that because the R2 index for a fixed n value 
only depends on the b1ln/b1w ratio, it captures the Sxx 
dispersion behavior also. The application of a stress-strength 
analysis is given in section 6, while Section 7 shows the effect 
that a wrong selection has over the reliability index. Finally, 
the conclusions are presented in section 8. 

 
2.  Behavior of log-Weibull and log-lognormal variables 

 
Since the discrimination method is based on the logarithm 

of the Weibull or lognormal observed data and on its 
dispersion behavior, then in this section, we show that the 
Weibull data logarithm follows a Gumbel distribution and 
that it is always negatively skewed. Similarly, we show that 
the logarithm of the lognormal data follows a Normal 
distribution and that it is always symmetrical. 

 
2.1.  Weibull and Gumbel relationship 

 
The Weibull distribution is given by 
 
𝑓𝑓(𝑡𝑡) = 𝛽𝛽

𝜂𝜂
�𝑡𝑡
𝜂𝜂
�
𝛽𝛽−1

exp �−�𝑡𝑡
𝜂𝜂
�
𝛽𝛽
�  (2) 

 
In eq. (2), t >0 and β and η are the Weibull shape and 

scale parameters respectively. On the other hand, the Gumbel 
distribution is given by  
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𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎𝐺𝐺

exp ��𝑥𝑥−𝜇𝜇𝐺𝐺
𝜎𝜎𝐺𝐺

� − exp �𝑥𝑥−𝜇𝜇𝐺𝐺
𝜎𝜎𝐺𝐺

��  (3) 
 
In eq.  (3) -∞< x <∞ with x=ln(t) and μG is the location 

parameter and σG is the scale parameter [19].  Thus, based on eq. 
(2) and eq. (3), the relation between both distributions is as follows. 

Theorem: If a random variable t follows a Weibull 
distribution [t~W(β, η)], then its logarithm x=ln(t) follows a 
Gumbel distribution [x~G(μG,σG)] [20]. 

Proof: Let F(ln(t)) = P(ln(t) ≤ ln(T)) be the cumulative 
function of x = ln(t), with T representing the failure time 
value. Thus, in terms of x, F(ln(t)) = Pr[ln(t) ≤ x]; F(x) = 
Pr[t ≤ exp(x)]. Then by substituting t = exp(x), F(x) is  

 
𝐹𝐹(𝑥𝑥) = 1 − exp �− �𝑡𝑡

𝜂𝜂
�
𝛽𝛽
� = 1− exp �− �exp(𝑥𝑥)

𝜂𝜂
�
𝛽𝛽
�  (4) 

 
Finally, based on the relations between the Weibull and 

Gumbel parameters given by [20].  
 
𝜇𝜇𝐺𝐺 = 𝑙𝑙𝑙𝑙(𝜂𝜂) (5) 
 
𝜎𝜎𝐺𝐺 = 1

𝛽𝛽
  (6) 

 
and by taking W=((x-µG)/σG), eq. (4) is given by                    

F(x) = 1-exp{-exp{(x-ln(η))·β}} which in terms of W is  
 
𝐹𝐹(𝑥𝑥) = 1 − exp{− exp{𝑤𝑤}}     (7) 
 
from eq. (7), the reliability function is 
 
𝑅𝑅(𝑡𝑡) = 1− 𝐹𝐹(𝑡𝑡) = exp {− exp{𝑤𝑤}}  (8) 
 
and the density function is given by  
 
𝑓𝑓(𝑥𝑥) = −𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
= exp{𝑤𝑤 − exp{𝑤𝑤}} (9) 

 
clearly, eq. (9) in terms of W is   
 
𝑓𝑓(𝑥𝑥) = 1

𝜎𝜎𝐺𝐺
exp ��𝑥𝑥−𝜇𝜇𝐺𝐺

𝜎𝜎𝐺𝐺
� − exp �𝑥𝑥−𝜇𝜇𝐺𝐺

𝜎𝜎𝐺𝐺
��  (10) 

 
Since eq. (10) is as in eq. (3), we conclude that the 

logarithm of Weibull data follows a Gumbel distribution. On 
the other hand, by using the moment method [21] (sec. 
1.3.6.6.16), the parameters of eq. (10) are given by:  

 
𝜇𝜇𝐸𝐸𝐸𝐸 = 𝐸𝐸(𝑥𝑥) = 𝜇𝜇𝑌𝑌 + 𝛾𝛾𝜎𝜎𝐸𝐸𝐸𝐸  (11) 
 
𝜎𝜎𝐸𝐸𝐸𝐸 = √6

𝜋𝜋
𝜎𝜎𝑌𝑌   (12) 

 
where µY and σY are the mean and the standard deviation 

of the log data.  
 

2.1.1.  Dispersion of the Gumbel distribution 
 
In order to show the dispersion of the log Weibull 

variable, several Weibull probability density functions (pdf) 
with fixed scale parameter η=50 and variable shape 
parameter β are plotted in Fig. 1. Fig. 2, corresponds to the 
conversion of the Weibull pdf of Fig. 1 on Gumbel pdf.   

 
Figure 1 Weibull pdf for η=50   
Source: The authors 

 
 

 
Figure 2 Gumbel pdf for µG=3.91 
Source: The authors 

 
 
As can be seen in Fig. 2, the Gumbel distribution is 

always negatively skewed. Moreover, it is important to 
highlight that the Gumbel skew is constant at γ1= –1.13955, 
and as demonstrated by [22], it can be estimated as   

 
-2∙63/2ζ(3)/π3≈-1.13955. 

 
On the other hand, as shown in next section, the logarithm 

of lognormal data follows a Normal distribution. 
 

2.2.  Lognormal and normal relationship 
 
As it is well known, the lognormal data logarithm follows 

a Normal distribution [19]. If Y~N(µ, σ2), then X=eY  (non-
negative) has a lognormal distribution. Thus, because the 
logarithm of X yields a Normal variable (Y=ln(X)) then the 
lognormal distribution is given by 

 
𝑓𝑓(𝑡𝑡) = 1

𝑡𝑡𝜎𝜎𝑥𝑥√2𝜋𝜋
 exp �− 1

2
�𝑙𝑙𝑙𝑙 𝑡𝑡−𝜇𝜇𝑥𝑥

𝜎𝜎𝑥𝑥
�
2
�  (13) 

 
In eq. (13) μx and σx are the log mean and log standard 

deviation. Similarly, the Normal distribution is given by 
 
𝑓𝑓(𝑡𝑡) = 1

𝜎𝜎𝑁𝑁√2𝜋𝜋
 exp �− 1

2
�𝑡𝑡−𝜇𝜇𝑁𝑁

𝜎𝜎𝑁𝑁
�
2
�  (14) 
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Figure 3 Lognormal pdf for μx=1       
Source: The authors 

 

 
Figure 4 Normal pdf for μ=1 
Source: The authors 

 
 
Note that, although the Normal distribution is the most widely 

used distribution in statistics, it is rarely used as lifetime 
distribution. However, in reliability the Normal distribution is 
used as a model for ln(t), when t has a lognormal distribution. 

 
2.2.1.  Dispersion of the normal distribution 

 
Fig. 3 represents several lognormal pdf for µx=1 and 

variable σx. Plotted Normal pdfs of Fig. 4 correspond to the 
logarithm of the lognormal pdfs plotted in Fig.3. By 
comparing Fig.3 and Fig.4, we observe although the 
lognormal distribution is always positively skewed, its 
logarithm is always symmetrical.  

Therefore, based on the log data behavior, the 
characteristics that completely define whether data follow a 
Weibull or lognormal distribution are given in next section. 

 
3.  Discrimination properties 

 
This section presents that enough conditions are met in 

order to show that lognormal data follow a lognormal 
distribution and that Weibull data follow a Weibull 
distribution.  Additionally, the critical characteristic to 
discriminate between both distributions when data follow 
neither a lognormal nor a Weibull distribution is given also. 

3.1.  Lognormal properties 
 
In order to select the lognormal distribution as the best 

model to represent the data, the following characteristics 
have to be met. First, the coefficient of variation has to be 
equal to the log-standard deviation σx (σx=CV). Thus, because 
based on the mean and on the standard deviation of the 
observed data defined as 

 
𝜇𝜇 = exp �𝜇𝜇𝑥𝑥 + 𝜎𝜎𝑥𝑥2

2
�  (15) 

 
𝜎𝜎2 = exp{2𝜇𝜇𝑥𝑥 + 𝜎𝜎𝑥𝑥2} (exp{𝜎𝜎𝑥𝑥2}− 1)  (16) 
 
the CV index is given by 
 
𝐶𝐶𝐶𝐶 = 𝜎𝜎

𝜇𝜇
= �exp{𝜎𝜎𝑥𝑥2}− 1  (17) 

 
Then from eq. (17) clearly σx ≈ CV.  Second, the log mean 

µx should be located at the 50th percentile. The reason is that 
the lognormal data logarithm follows a Normal distribution 
(see sec. 2.2). Third, since the total sum square (Sxx) is 
cumulated by the contribution before (Sxx--) and after (Sxx+) 
the mean µx is as follow  

 
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑥𝑥− + 𝑆𝑆𝑥𝑥𝑥𝑥+ = ∑(𝑥𝑥 − 𝜇𝜇𝑥𝑥)2  (18) 
 
Then, due to the symmetrical behavior of the lognormal 

data logarithm, then in the lognormal case, the contribution 
before and after the mean must be equal; it is to say for the 
lognormal case Sxx--= Sxx+. 

Thus, because when σx ≈ CV, µx is located in the 50th 
percentile and Sxx--= Sxx+, we should directly fit the 
lognormal model. Similarly, the characteristics to be met for 
the Weibull distribution are as follow: 

 
3.2.  Weibull properties 

 
In the Weibull case, because the Weibull data logarithm 

follows a Gumbel distribution, and because the Gumbel 
distribution is always negatively skewed (See sec 2.1.1), then 
the following characteristics have to be met. First, the 
coefficient of variation should be different from the standard 
deviation of the data logarithm (σx ≠ CV). Second, the log 
mean µx should be located around the 36.21th percentile. 
Third, the contribution to Sxx  before µx is always greater than 
the contribution after µx; in other words, due to the negative 
skewness of the Gumbel distribution, in the Weibull case Sxx-
->Sxx+. Thus, because σx ≠ CV, µx is located around the 
36.21th percentile and Sxx-->Sxx+, then we should directly fit 
the Weibull distribution. Nonetheless, the next section will 
describe what happens when the above statements do not 
hold at all.  

 
3.3.  Weibull or lognormal distribution? 

 
The discrimination process, when data neither completely 

follow a Weibull distribution nor completely follow a 
lognormal distribution, is based on the following facts. 1) For 
a Weibull shape parameter β≥2.5, the Weibull pdf is similar 
to the lognormal pdf [23]. 2) For β≥2.5, the log-standard 
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deviation σx tends to be the CV (σx ≈ CV), and µx tends to be 
located near the 50th percentile. 3) For Weibull data, 
regardless of the β value, the contribution before and after the 
mean tends to be different (Sxx-->Sxx+). Now for the Normal 
distribution we always expect that Sxx--=Sxx+ and for the 
Gumbel distribution we always expect that Sxx-->Sxx+; thus, 
because from eq. (18), Sxx-- captures the skewness of the 
Gumbel distribution, then based on the MLR analysis, in the 
proposed method the product of the y vector with the Sxx-- 
and Sxx+ contribution is used as the critical variable to 
discriminate between the Weibull and the lognormal 
distributions. In order to show that, the linear regression 
analysis on which the proposed method is based must first be 
introduced.  

 
4.  Weibull and lognormal linear regression analysis 

 
This section shows that by using MLR, the ratio of the 

slopes of the lognormal and Weibull distributions (b1ln/b1w) is 
indeed efficient to discriminate between the negative and 
symmetrical skew behavior. Before showing that, the MLR 
analysis for the Weibull and lognormal distributions will first 
be introduced.  

 
4.1.  Weibull linear model 

 
The Weibull and lognormal distributions can be analyzed 

as a regression model of the form  
 
𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 (19) 
 
The linear form of the Weibull distribution is based on the 

cumulative density function, given by  
 
𝐹𝐹(𝑡𝑡) = 1 − 𝑅𝑅(𝑡𝑡) = 1 − exp �−�𝑡𝑡

𝜂𝜂
�
𝛽𝛽
� (20) 

 
Thus, by applying double logarithm, its linear form is 
 

y𝑖𝑖 = ln�−ln�1 − 𝐹𝐹(𝑡𝑡𝑖𝑖)�� 
     = −𝛽𝛽 ln(𝜂𝜂) + 𝛽𝛽 ln(𝑡𝑡𝑖𝑖) = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥𝑖𝑖 (21) 
 
where F(ti) is estimated by the median rank approach [24] 

given by  
 
𝐹𝐹(𝑡𝑡𝑖𝑖) = 𝑖𝑖−0.3

𝑛𝑛+0.4
  (22) 

 
From eq. (21), the shape parameter β is directly given by 

the slope b1, and the scale parameter η is given by  
 
𝜂𝜂 = exp �−𝑏𝑏0

𝛽𝛽
� = exp �𝜇𝜇𝑥𝑥 −

𝜇𝜇𝑦𝑦
𝛽𝛽
�  (23) 

 
Additionally, it is necessary to note that in eq. (21) y=ln(-

ln(1-F(t))) represents the behavior of the Gumbel distribution 
(negative skew), and that once the Weibull parameters β and 
η are known, the expected data can be estimated as 

 
ln(𝑡𝑡𝑖𝑖) = y𝑖𝑖

𝛽𝛽
+ ln(𝜂𝜂) = ln�− ln�1−𝐹𝐹(𝑡𝑡𝑖𝑖)��

𝛽𝛽
+ ln(𝜂𝜂)   (24) 

 

Clearly, from eq. (24), the ln(ti) value depends only on y. 
And since from the double logarithm the y values before 
F(t)=1-e-1=0.6321 are always negatively skewed, then in 
order for that data follows a Weibull distribution, its 
logarithm has to be negatively skewed as well. This fact 
implies that in the Weibull case, Sxx-->Sxx+ is always true. 
On the other hand, the analysis for the lognormal distribution 
is as follows. 

 
4.2.  Lognormal linear model 

 
Since for the lognormal distribution the cumulative 

density function is given by 
 
𝐹𝐹(𝑡𝑡) = 1 − 𝑅𝑅(𝑡𝑡) = 𝛷𝛷 �𝑙𝑙𝑙𝑙 𝑡𝑡−𝜇𝜇𝑥𝑥

𝜎𝜎𝑥𝑥
�  (25) 

 
Then the lognormal linear relationship is given by  
 

𝑦𝑦𝑖𝑖 = 𝛷𝛷−1�𝐹𝐹(𝑡𝑡𝑖𝑖)� = 𝑍𝑍𝑖𝑖 
     = − 1

𝜎𝜎𝑥𝑥
𝜇𝜇𝑥𝑥 + 1

𝜎𝜎𝑥𝑥
𝑙𝑙𝑙𝑙(𝑡𝑡𝑖𝑖) = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥𝑖𝑖  (26) 

 
where µx is given by µx=-b0/b1, and σx is given by σx=1/b1 

and F(ti) is estimated as in eq. (22). On the other hand, µx and 
σx can respectively be estimated directly from the data as  

 
𝜇𝜇𝑥𝑥 = 1

𝑛𝑛
∑ ln 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1  (27) 

 

𝜎𝜎𝑥𝑥 = �∑ (ln 𝑡𝑡𝑖𝑖−𝜇𝜇𝑥𝑥)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1
   (28) 

 
From eq. (26) y=Φ-1(F(t)) represents the behavior of the 

Normal distribution (symmetrical behavior). Thus, once the 
lognormal parameters µx and σx are known, the expected data 
can be estimated from eq.(26) as follows:  

 
ln(𝑡𝑡𝑖𝑖) = 𝜎𝜎𝑥𝑥𝑦𝑦𝑖𝑖 + 𝜇𝜇𝑥𝑥 = 𝜎𝜎𝑥𝑥𝛷𝛷−1�𝐹𝐹(𝑡𝑡𝑖𝑖)�+ 𝜇𝜇𝑥𝑥  (29) 
 
On the other hand, since ln(ti) in eq. (29) follows a normal 

distribution, then its behavior is always symmetrical, and as 
a consequence of the lognormal case, the contribution to the 
Sxx variable is equivalent before and after 𝜇𝜇𝑥𝑥. In other words, 
in the lognormal case, Sxx--=Sxx+. Now that it has been seen 
that for the Weibull distribution Sxx-->Sxx+, and that for the 
lognormal distribution Sxx--=Sxx+, let us describe the linear 
regression analysis to show that the ratio of the Weibull and 
lognormal regression coefficients efficiently represents the 
Sxx-- and Sxx+ behavior. 

 
4.3.  Multiple linear regression analysis 

 
In order to discriminate between the Weibull and 

lognormal distributions, first, the Weibull parameters of eq. 
(21) and the lognormal parameters of eq. (26) have to be 
estimated by using linear regression analysis as follows 

 
𝑏𝑏0 = 𝜇𝜇𝑦𝑦 − 𝑏𝑏1𝜇𝜇𝑥𝑥  (30) 
 
𝑏𝑏1 = ∑ 𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)𝑛𝑛

𝑖𝑖=1
∑ (𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)2 𝑛𝑛
𝑖𝑖=𝑖𝑖

= 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

  (31) 
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The related multiple determination coefficient (R2), is  
 

𝑅𝑅2 = 𝑏𝑏1 ∑ 𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)𝑛𝑛
𝑖𝑖=1

∑ �𝑦𝑦𝑖𝑖−𝜇𝜇𝑦𝑦�
2𝑛𝑛

𝑖𝑖=1
= 𝑏𝑏1𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆
  (32) 

 
Thus, since from eq. (30) and eq. (31), we observe that 

the estimated coefficients are based on the key variable Sxx, 
then we conclude that the regression coefficients b0 and b1 
represent the Sxx behavior also. Based on these parameters, 
the proposed method is outlined in the next section. 

 
5.  Proposed method 

 
The proposed method is based on the fact that the critical 

characteristic to discriminate between the Weibull and the 
lognormal distributions is the Sxx contribution to the log 
standard deviation 𝜎𝜎𝑥𝑥. Thus, in order to present the steps of 
the proposed method to discriminate between the Weibull 
and lognormal distributions, it is necessary first to show that 
via MLR, the regression coefficients (slopes) b1ln/b1w ratio 
completely incorporates the negative skew and the 
symmetrical behavior of the observed data, and that the 
multiple linear regression coefficient R2 completely depends 
on the b1ln/b1w ratio. 

 
5.1.  The ratio b1ln/b1w efficiently capture the Sxx behavior 

 
The analysis for the Weibull and lognormal distributions 

is given below. 
 

5.1.1.  Weibull analysis 
 
In order to show that the regression coefficients (slopes) 

b1ln/b1w ratio completely incorporates the skew behavior of 
the Weibull distribution represented by Sxx, it is necessary to 
first show that based on the b1ln/b1w ratio given by 

 
𝑏𝑏1𝑙𝑙𝑙𝑙
𝑏𝑏1𝑤𝑤

= ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)𝑛𝑛
𝑖𝑖=1
∑ 𝑦𝑦𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)𝑛𝑛
𝑖𝑖=1

= 𝑆𝑆𝑆𝑆𝑦𝑦𝑙𝑙𝑙𝑙
𝑆𝑆𝑆𝑆𝑦𝑦𝑤𝑤

  (33) 
 
For the Weibull distribution, Sxyw>Sxyln. To observe this, 

it should be remembered that because the Weibull response 
variable yw given by yw =ln[-ln(1-F(t))] is higher weighted in 
the initial values (lower percentiles), and because for Weibull 
data, Sxx- tends to be greater than Sxx+, then the impact of 
Sxx-- over Sxyw given by Sxyw=yw(x-µ) is higher in the initial 
values. As should be noted, this fact implies that when data 
follows a Weibull distribution, the difference between Sxyw 
and Sxyln tends to be higher. Likewise, from eq. (33), this fact 
implies that for Weibull data the b1ln/b1w ratio or Sxyln/Sxyw 
decreases.  

 
5.1.2.  Lognormal analysis 

 
In the lognormal case, because the lognormal response 

variable yln, given by yln = Φ-1(F(t)), is symmetrical around 
the 50th percentile, then for lognormal data Sxx—it tends to be 
Sxx+ (see sec 3.1).  As a consequence, the impact of Sxx-- on 
Sxyln=yln(x-µ) is lower than that of the Weibull distribution. 
This fact implies that for lognormal data, the difference 

between Sxyw and Sxyln tends to be lower than when data is 
Weibull. As a result of this lower impact, when data is 
lognormal in eq. (33), the b1ln/b1w ratio or its equivalent 
Sxyln/Sxyw increases. 

Thus, because based on the Sxx behavior, for Weibull data 
the b1ln/b1w ratio decreases, and for lognormal, data it 
increases, then we conclude that because Sxy=y(x-µ) clearly 
captures the behavior of Sxx, then the b1ln/b1w ratio efficiently 
captures the behavior of Sxx also.  

Now it will be shown that because the R2 index depends only 
on the b1ln/b1w ratio, then it also captures the behavior of Sxx. 
Consequently, the R2 index can also be used to discriminate 
between the Weibull and the lognormal distributions. 

 
5.2.  The R2 index is completely defined by the b1ln/b1w ratio 

 
In order to show that the R2 index is completely defined for 

the b1ln/b1w ratio, it will be first be noted that based on eq. (32), 
the relationship between b1w parameter and the Weibull Rw index 
and the relationship between the b1ln parameter and the lognormal 
Rln index can be formulated by the following relation  

 

𝑏𝑏1 = 𝑅𝑅2𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

   (34) 
 
Secondly, in doing this it should be observed that by 

taking away Sxy=b1Sxx from eq. (31), and by replacing it in 
eq. (34), b1 is directly related with σx, σy and R2, as follows 

 

𝑏𝑏1 = 𝑅𝑅2𝑆𝑆𝑆𝑆𝑆𝑆
𝑏𝑏1𝑆𝑆𝑆𝑆𝑆𝑆

= 𝑅𝑅 𝜎𝜎𝑦𝑦
𝜎𝜎𝑥𝑥

  (35) 
 
where 
 

𝜎𝜎𝑦𝑦 = �∑ �𝑦𝑦𝑖𝑖−𝜇𝜇𝑦𝑦�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛−1

 (36) 
 

𝜎𝜎𝑥𝑥 = �∑ (𝑥𝑥𝑖𝑖−𝜇𝜇𝑥𝑥)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1
  (37) 

 
Thus, from eq. (35), the Weibull b1w and Rw values are 

related with the lognormal b1ln and Rln values as follows 
 
𝑏𝑏1𝑤𝑤 = 𝑅𝑅𝑤𝑤 𝜎𝜎𝑦𝑦𝑦𝑦

𝜎𝜎𝑥𝑥
  (38) 

 
𝑏𝑏1𝑙𝑙𝑙𝑙 = 𝑅𝑅𝑙𝑙𝑙𝑙 𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦

𝜎𝜎𝑥𝑥
  (39) 

 
Next, it will be shown that because the Rln/Rw ratio depends 

only on the b1ln/b1w ratio, then the R2 index can be used to 
efficiently discriminate between the Weibull and the lognormal 
distributions. Having done this, it should also be noted from eq. 
(38) and eq. (39) that σx is the standard deviation of the data 
logarithm, and that it is the same for both distributions. This fact 
(σx= σx) implies from eq. (38) and eq. (39) that 

 
 
𝑅𝑅𝑤𝑤 𝜎𝜎𝑦𝑦𝑦𝑦
𝑏𝑏1𝑤𝑤

= 𝑅𝑅𝑙𝑙𝑙𝑙 𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦
𝑏𝑏1𝑙𝑙𝑙𝑙

  (40) 
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Therefore, based in eq. (40), the relationship between the 
Rln and the Rw indices is given by 

 

𝑅𝑅𝑙𝑙𝑙𝑙 = 𝑅𝑅𝑤𝑤 �
𝑏𝑏1𝑙𝑙𝑙𝑙
𝑏𝑏1𝑤𝑤

� �𝜎𝜎𝑦𝑦 𝑤𝑤

𝜎𝜎𝑦𝑦 𝑙𝑙𝑙𝑙
�  (41) 

 
And because the σy w/σy ln ratio is constant in the analysis, we 

conclude that the Rln/Rw ratio depends only on the b1ln/b1w ratio. 
Consequently, the R2 index is efficient to discriminate between 
the Weibull and the lognormal distributions. Additionally, it is 
important to highlight that the σyw/σyln ratio in eq. (41) is constant 
also, and that this is so because σy defined in eq. (36) depends 
only on the sample size n. Thus, once n is known (or selected, see 
[25] eq. (13)), σy is constant. 

 
5.3.  Steps of the proposed method 

 
Because based on the observed data, the R2 index efficiently 

represents the Sxx behavior, then based on the observed data, the 
steps of the proposed method to discriminate between the 
Weibull and the lognormal distributions are as follows. 

By using the Weibull y vector defined in eq. (21) (or the 
lognormal y vector defined in eq. (26)) and the observed data 
logarithm (ln(t)=x), the Weibull (or lognormal) correlation is 
estimated as Sxy=∑yi(xi-µx). 
1) From the logarithm of the observed data, estimate the 

variance of x as Sxx=∑(xi-µx)2. 
2) By using the Weibull (or lognormal) Sxy value from step 

1 and the Sxx value from step 2 into eq. (31), estimate the 
Weibull (or lognormal) slope b1 coefficient. 

3) By using the Weibull y vector defined in eq. (21) (or the 
lognormal y vector defined in eq. (26)), estimate the 
Weibull (or lognormal) variance of y as Syy=∑(yi-µy)2. 

4) By using the Weibull (or lognormal) slope b1 coefficient from 
step 3, Weibull (or lognormal) Sxy value from step 1 and the 
Weibull (or lognormal) Syy value from step 4 into eq. (32), 
estimate the Weibull (or lognormal) coefficient R2. 

5) Compare the Weibull and the lognormal R2 indices, select the 
distribution with higher R2 value. If Rw

2>Rln
2 select Weibull 

distribution; otherwise select lognormal distribution. 
 

6.  An application 
 
The efficiency of the R2 index to discriminate between the 

Weibull and the lognormal distribution is shown in a stress-
strength analysis by using data in section 1. Table 1 Data 
corresponds to the stress load in a machine that uses a plunger 
to press a shaft into a bushing. Table 2 Data corresponds to 
the strength of the plunger when it is subjected to 
compression loads [26]. Thus, the selection of the stress 
distribution by using the proposed method is as follows. 

 
6.1.  Stress data analysis 

 
From the stress observed data shown in Table 4, we note 

that because 1) the σx≈CV (σx=CV=0.0055), 2), µx is located 
near the 50th percentile, and 3) Sxx--

 = 53% ≈ Sxx+
 = 47%. 

Then, from section 3.1, it is reasonable to expect that the 
lognormal distribution represents the data. 

The above statement is verified by applying the proposed 

method to the Table 1 data. The required values Sxy, Sxx and 
Syy to apply the method are estimated by applying the MLR 
analysis to the stress data. The values for the Weibull and the 
lognormal distributions are given in Table 4.  

Thus, by using data of Table 4, the lognormal analysis is 
as follows. From step 1, Sxyln=7.1714 (column 9). From step 
2, Sxx=1.3412 (column 10). From step 3, and eq. (31), 
b1ln=5.3471. From step 4, Syyln=39.4812 (column 13). 
Therefore, from step 5, and eq. (32), Rln

2=0.9712.   
Similarly, by applying the proposed method to the 

Weibull distribution, we have from step 1, Sxyw=8.8996 
(column 8). From step 2, Sxx, as in the lognormal case, is also 
Sxx=1.3412 (column 10). From step 3, and eq. (31), 
b1w=6.6357. From step 4, Syyw=61.9775 (column 12).  
Therefore, from step 5, and eq. (32), Rw

2=0.9528.   
Finally, as expected, by comparing the Weibull and 

lognormal R2 indices, in step 6, we have that 
Rln

2=0.9712>Rw
2=0.9528. Thus, we conclude that the failure 

governing the stress distribution is the lognormal 
distribution. On the other hand, the selection of the strength 
distribution by using the proposed method is as follows.  

 
6.2.  Strength data analysis 

 
The strength data is given in Table 5. From this data, we note 

that while 1) the σx≈CV (σx=CV=0.0077) and 2) the µx is located 
near the 50th percentile, 3) the Sxx-- contribution is greater than the 
Sxx+ contribution Sxx--=61%> Sxx+=39%. Thus, because from 
section 3.3 the characteristics of the lognormal distribution are not 
completely met, then we conclude that data can be better 
represented by the Weibull distribution. However, the estimation 
of the R2 index is necessary. When doing this, the values of Sxy, 
Sxx and Syy are estimated by using an MLR analysis of the strength 
data. The MLR analyses for the Weibull and the lognormal 
distributions are summarized in Table 5. 

By using Table 5 data and by applying the proposed method for 
the lognormal distribution, we have that, from step 1, Sxyln=1.9402 
(column 9). From step 2, Sxx=0.3298 (column 10). From step 3, 
and eq. (31), b1ln=5.8820. And from step 4, Syyln=12.2451 (column 
13). Therefore, from step 5, and eq. (32) R2=0.9319.   

Similarly, by applying the proposed method for the Weibull 
distribution, we have that, from step 1, Sxyw=2.4320 (column 8). 
From step 2, Sxx as in the lognormal case, is Sxx=0.3298 (column 
10). From step 3, and eq. (31), b1w=7.3730. And from step 4, 
Syyw=18.5330 (column 12).  Therefore, from step 5, and eq. (32), 
Rw

2=0.9675.   
Finally, by comparing the R2 indices as in step 6, we have that 

Rw
2=0.9675>Rln

2=0.9319. Thus, the failure governing the 
strength distribution is the Weibull distribution. 

As a summary, because the stress data follows a lognormal 
distribution and the strength data follows a Weibull distribution, 
then for the stress-strength analysis the lognormal-Weibull 
combination has to be used. Therefore, from Table 3, the 
corresponding lognormal-Weibull reliability is R(t)=0.9860. 
Finally, the effect that a wrong selection of the distribution has 
over the estimated reliability is given in Table 3. Although the 
reliability values given in Table 3 were estimated by using the 
Weibull++ software, the next section provides the formulas to 
estimate such values. 
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Table 4 
Load data analysis 

1 2 3 4 5 6 7 8 9 10 11 12 13 
th perc i T x=ln(t) F(t) yw yln Sxyw Sxyln Sxx ∑Sxx Syyw Syyln 

 1 9.6 2.2618 0.0161 -4.1190 -2.1412 1.8617 0.9678 0.2043  12.6740 4.5847 
 2 9.6 2.2618 0.0392 -3.2199 -1.7604 1.4553 0.7956 0.2043  7.0807 3.0990 
 3 12.3 2.5096 0.0622 -2.7453 -1.5365 0.5604 0.3136 0.0417  4.7799 2.3607 
 4 12.4 2.5177 0.0853 -2.4179 -1.3706 0.4740 0.2687 0.0384  3.4557 1.8785 
 5 12.4 2.5177 0.1083 -2.1661 -1.2356 0.4246 0.2422 0.0384  2.5830 1.5268 
 6 12.5 2.5257 0.1313 -1.9604 -1.1201 0.3686 0.2106 0.0353  1.9641 1.2546 
 7 12.6 2.5337 0.1544 -1.7857 -1.0178 0.3215 0.1832 0.0324  1.5049 1.0360 
 8 12.7 2.5416 0.1774 -1.6332 -0.9252 0.2811 0.1593 0.0296  1.1539 0.8561 
 9 12.7 2.5416 0.2005 -1.4974 -0.8400 0.2577 0.1446 0.0296  0.8806 0.7056 
 10 13.2 2.5802 0.2235 -1.3745 -0.7604 0.1835 0.1015 0.0178  0.6651 0.5782 
 11 13.5 2.6027 0.2465 -1.2620 -0.6854 0.1401 0.0761 0.0123  0.4943 0.4698 
 12 13.8 2.6247 0.2696 -1.1579 -0.6141 0.1031 0.0547 0.0079  0.3587 0.3771 
 13 14 2.6391 0.2926 -1.0607 -0.5457 0.0792 0.0408 0.0056  0.2518 0.2978 
 14 14.2 2.6532 0.3157 -0.9694 -0.4798 0.0586 0.0290 0.0037  0.1685 0.2303 
 15 14.4 2.6672 0.3387 -0.8829 -0.4160 0.0411 0.0193 0.0022  0.1050 0.1730 
 16 14.4 2.6672 0.3618 -0.8007 -0.3538 0.0372 0.0165 0.0022  0.0584 0.1252 
 17 14.4 2.6672 0.3848 -0.7220 -0.2929 0.0336 0.0136 0.0022  0.0266 0.0858 
 18 14.6 2.6810 0.4078 -0.6463 -0.2331 0.0211 0.0076 0.0011  0.0076 0.0543 
 19 14.6 2.6810 0.4309 -0.5733 -0.1741 0.0188 0.0057 0.0011  0.0002 0.0303 
 20 14.7 2.6878 0.4539 -0.5026 -0.1158 0.0130 0.0030 0.0007  0.0032 0.0134 
 21 14.9 2.7014 0.4770 -0.4337 -0.0578 0.0054 0.0007 0.0002 ∑=0.7109 0.0157 0.0033 
  22 15 2.7081 0.5000 -0.3665 0.0000 0.0021 0.0000 0.0000 53% 0.0370 0.0000 

50 23 15.2 2.7213 0.5230 -0.3007 0.0578 -0.0023 0.0004 0.0001  0.0667 0.0033 
 24 15.3 2.7279 0.5461 -0.2359 0.1158 -0.0033 0.0016 0.0002  0.1043 0.0134 
 25 15.3 2.7279 0.5691 -0.1721 0.1741 -0.0024 0.0025 0.0002  0.1497 0.0303 
 26 15.7 2.7537 0.5922 -0.1088 0.2331 -0.0043 0.0093 0.0016  0.2026 0.0543 

63.21 27 15.9 2.7663 0.6152 -0.0460 0.2929 -0.0024 0.0154 0.0028   0.2631 0.0858 
 28 16 2.7726 0.6382 0.0167 0.3538 0.0010 0.0208 0.0035  0.3313 0.1252 
 29 16.1 2.7788 0.6613 0.0794 0.4160 0.0052 0.0271 0.0042  0.4075 0.1730 
 30 16.5 2.8034 0.6843 0.1424 0.4798 0.0128 0.0430 0.0080  0.4919 0.2303 
 31 16.6 2.8094 0.7074 0.2061 0.5457 0.0197 0.0522 0.0092  0.5853 0.2978 
 32 16.8 2.8214 0.7304 0.2707 0.6141 0.0291 0.0661 0.0116  0.6883 0.3771 
 33 16.8 2.8214 0.7535 0.3366 0.6854 0.0362 0.0738 0.0116  0.8021 0.4698 
 34 16.9 2.8273 0.7765 0.4044 0.7604 0.0459 0.0864 0.0129  0.9280 0.5782 
 35 17.9 2.8848 0.7995 0.4745 0.8400 0.0812 0.1437 0.0293  1.0679 0.7056 
 36 17.9 2.8848 0.8226 0.5477 0.9252 0.0937 0.1583 0.0293  1.2246 0.8561 
 37 18 2.8904 0.8456 0.6251 1.0178 0.1104 0.1798 0.0312  1.4019 1.0360 
 38 18.1 2.8959 0.8687 0.7080 1.1201 0.1290 0.2041 0.0332  1.6053 1.2546 
 39 19.1 2.9497 0.8917 0.7988 1.2356 0.1885 0.2916 0.0557  1.8435 1.5268 
 40 19.7 2.9806 0.9147 0.9010 1.3706 0.2405 0.3658 0.0712  2.1315 1.8785 
 41 20 2.9957 0.9378 1.0214 1.5365 0.2880 0.4333 0.0795  2.4977 2.3607 
 42 20.1 3.0007 0.9608 1.1755 1.7604 0.3374 0.5052 0.0824 ∑=0.6302 3.0084 3.0990 
  43 22.3 3.1046 0.9839 1.4176 2.1412 0.5541 0.8369 0.1528 47% 3.9067 4.5847 
 µ 15.319 2.7137  -0.5590 0.0000       
 Σ 2.6934 0.1787          

  CV 0.1758       ∑ 8.8996 7.1714 1.3412   61.9775 39.4812 
Source: The authors 

 
 

Table 5 
Strength data analysis 

1 2 3 4 5 6 7 8 9 10 11 12 13 
th perc I t x=ln(t) F(t) yw yln Sxyw Sxyln Sxx ∑Sxx Syyw Syyln 

 1 21 3.0445 0.0455 -3.0679 -1.6906 0.8862 0.4884 0.0834  6.4067 2.8582 
 2 22 3.0910 0.1104 -2.1458 -1.2245 0.5200 0.2967 0.0587  2.5892 1.4993 
 3 23 3.1355 0.1753 -1.6463 -0.9333 0.3258 0.1847 0.0392  1.2311 0.8711 
 4 25 3.2189 0.2403 -1.2918 -0.7055 0.1479 0.0808 0.0131  0.5701 0.4977 
 5 26 3.2581 0.3052 -1.0103 -0.5095 0.0761 0.0384 0.0057  0.2242 0.2596 
 6 27 3.2958 0.3701 -0.7717 -0.3315 0.0290 0.0124 0.0014 ∑=0.2015 0.0552 0.1099 
  7 28 3.3322 0.4351 -0.5603 -0.1635 0.0007 0.0002 0.0000 61% 0.0006 0.0267 

50 8 30 3.4012 0.5000 -0.3665 0.0000 -0.0249 0.0000 0.0046  0.0290 0.0000 
 9 30 3.4012 0.5649 -0.1836 0.1635 -0.0125 0.0111 0.0046  0.1247 0.0267 

63.21 10 31 3.4340 0.6299 -0.0061 0.3315 -0.0006 0.0334 0.0101   0.2815 0.1099 
 11 31 3.4340 0.6948 0.1713 0.5095 0.0172 0.0513 0.0101  0.5012 0.2596 
 12 32 3.4657 0.7597 0.3549 0.7055 0.0470 0.0934 0.0175  0.7950 0.4977 
 13 32 3.4657 0.8247 0.5545 0.9333 0.0734 0.1235 0.0175  1.1908 0.8711 
 14 33 3.4965 0.8896 0.7902 1.2245 0.1289 0.1997 0.0266 ∑=0.1283 1.7606 1.4993 
  15 34 3.5264 0.9545 1.1285 1.6906 0.2178 0.3262 0.0372 39% 2.7730 2.8582 
 µ 28.3333 3.3334  -0.5367 0.0000       

 Σ 4.1519 0.1535          
  CV 0.1465       ∑ 2.4320 1.9402 0.3298   18.5330 12.2451 

Source: The authors 
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7.  Stress-Strength reliability 
 
The stress-strength reliability values of Table 3 were 

estimated as follow. For the lognormal-lognormal                   
stress-strength, the formulation given in eq. (42) was used 

 

𝑅𝑅 = 𝜙𝜙�µ𝑥𝑥𝑥𝑥−µ𝑥𝑥𝑥𝑥
�𝜎𝜎𝑆𝑆

2+𝜎𝜎𝑠𝑠2
�  (42) 

 
For the lognormal-Weibull stress-strength, the 

formulation given in eq. (43) was used 
 
𝑅𝑅 = � 1

𝑠𝑠𝜎𝜎𝑥𝑥√2𝜋𝜋
exp �− �1

2
�ln𝑠𝑠−𝜇𝜇𝑥𝑥

𝜎𝜎𝑥𝑥
�
2

+ � 𝑠𝑠
𝜂𝜂𝑆𝑆
�
𝛽𝛽𝑆𝑆
�� 𝑑𝑑𝑠𝑠

∞

0
  (43) 

 
For the Weibull-lognormal stress-strength, the 

formulation given in eq. (44) was used 
 
𝑅𝑅 = 1 −� 1

𝑆𝑆𝜎𝜎𝑥𝑥𝑥𝑥√2𝜋𝜋
exp �− �1

2
�ln𝑆𝑆−𝜇𝜇𝑥𝑥𝑥𝑥

𝜎𝜎𝑥𝑥𝑥𝑥
�
2

+ � 𝑆𝑆
𝜂𝜂𝑠𝑠
�
𝛽𝛽𝑠𝑠
�� 𝑑𝑑𝑆𝑆

∞

0
 (44) 

 
Finally, for the Weibull-Weibull stress-strength, the 

formulation given in eq. (45) was used 
 
𝑅𝑅 = 1 − ∫ exp �− �𝑤𝑤 + �𝜂𝜂𝑆𝑆𝑤𝑤

1/𝛽𝛽𝑆𝑆

𝜂𝜂𝑠𝑠
�
𝛽𝛽𝑠𝑠
��∞

0 𝑑𝑑𝑤𝑤  (45) 

 
Where  
 

𝑤𝑤 = � 𝑆𝑆
𝜂𝜂𝑆𝑆
�
𝛽𝛽𝑆𝑆

  (46) 
 

8.  Conclusions 
 
The reliability analysis for the Weibull and the lognormal 

distributions is performed by using the data logarithm. For 
the Weibull distribution, the logarithm data is negatively 
skewed. For the lognormal distribution, the logarithm data is 
symmetrical. Because for the Weibull distribution, the 
contribution to the variance before the mean is always greater 
than the contribution after the mean [Sxx-->Sxx+], then this 
behavior is used to discriminate between the Weibull and the 
lognormal distributions. Since the b1ln/b1w ratio efficiently 
represents the contribution behavior, and since the R2 index 
depends only on this ratio, then the R2 index is indeed 
efficient to discriminate between the Weibull and the 
lognormal distributions. Finally, it is important to highlight 
that when in the observed data, σx=CV, µx tends to the 50th 
percentile and Sxx--=Sxx+, then the lognormal distribution 
can be directly fitted. And when for the observed data, 
σx≠CV, µx tends to the 36.21th percentile and Sxx-->Sxx+, then 
the Weibull distribution can be directly fitted.   
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