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Application of artificial neural 
networks to estimate soil organic 
carbon in a high-organic-matter 
Mollisol 
 
Aplicación de redes neuronales artificiales para estimar el carbono orgánico del suelo en un 
Mollisol con elevado contenido de materia orgánica
Aplicação de redes neuronais artificiais para estimar o carbono orgânico num Molisolo com 
elevado teor de matéria orgânica

ABSTRACT
 
Soil organic carbon (SOC) has a key role in the global carbon (C) cycle. The complex relationships 
among the components of C cycle make the modelling of SOC variation difficult. Artificial neural 
networks (ANN) are models capable to determine interrelationships based on information. The 
objective was to develop and evaluate models based on the ANN technique to estimate the SOC 
in Mollisols of the Southeastern of Buenos Aires Province, Argentina (SEBA). Data from three 
long term experiments were used. Management and meteorological variables were selected as input. 
Management information included numerical variables (initial SOC (SOCI); number of years from 
the beginning of the experiment (Year), proportion of soybean in the crop sequence; (Prop soybean); 
crop yields (Yield), proportion of cropping in the crop rotation (Prop agri), and categorical variables 
(Crop, Tillage). In addition, two meteorological inputs (minimum (Tmin) and mean air temperature 
(Tmed)), were selected. The ANNs were adequate to estimate SOC in the upper 0.20 m of Mollisols 
of the SEBA. The model with the best performance included six management variables (SOCI, Year, 
Prop soybean, Tillage, Yield, Prop agri) and one meteorological variable (Tmin), all of them easily 
available and with low level of uncertainty. Soil organic C changes related to soil use in the SEBA 
could be satisfactorily estimated using an ANN developed with simple and easily available input 
variables. Artificial neural network technique appears as a valuable tool to develop robust models to 
help predicting SOC changes. 

RESUMEN
 
El carbono orgánico del suelo (SOC) tiene un papel clave en el ciclo global del carbono. Las relaciones complejas 
entre los componentes del ciclo de C hacen difícil la modelización de la variación del SOC. Las Redes Neuronales 
Artificiales (ANN) son modelos capaces de determinar las interrelaciones existentes basadas en información 
disponible. El objetivo fue desarrollar y evaluar modelos basados en la técnica de ANN para estimar el SOC en 
Mollisoles del sudeste de la Provincia de Buenos Aires, Argentina (SEBA). Fueron empleados datos provenientes de 
tres experimentos de larga duración conducidos en el SEBA. Variables de manejo y meteorológicas fueron seleccionadas 
como entradas de las ANN. La información de manejo incluyó variables numéricas (SOC inicial (SOCI); número 
de años desde el inicio del experimento (Year), proporción de soja (Prop soybean), rendimiento de cultivos (Yield), 
proporción de la agricultura en la secuencia (Prop agri)) y variables categóricas (cultivo (Crop), sistema de labranza 
(Tillage)). Además, dos variables meteorológicas (temperatura mínima (Tmin) y temperatura promedio (Tmed)) 

Received: 14.08.2017       Revised: 25.10.2017        Accepted: 25.10.2017

DOI: 10.3232/SJSS.2017.V7.N3.03

Moreno R.111

Irigoyen A. I. 1,2 

Monterubbianesi 
M. G.1

Studdert G. A. @, 1 

studdert.guillermo@
inta.gob.ar

@ Corresponding Author

1 Facultad de Ciencias 
Agrarias, Universidad 
Nacional de Mar del 
Plata, Unidad Integrada 
Balcarce. Ruta Nac. 226 
km 73,5 – CC 276. 7620 
Balcarce, Prov. Buenos 
Aires, Argentina.

2 Associate Researcher 
of Comisión de 
Investigaciones 
Científicas. Prov. de 
Buenos Aires, Argentina.

AUTHORS



SJSS. SPANISH JOURNAL OF SOIL SCIENCE           YEAR 2017           VOLUME 7           ISSUE 3

180

KEY WORDS 
Modeling, cropping 

systems, tillage 
systems.

PALABRAS 
CLAVE 

Modelación, 
sistemas de cultivo, 

sistemas de labranza.

PALAVRAS-
CHAVE

Modelação, 
preparação do solo, 
sistemas de cultivo.

fueron consideradas. Las ANN estimaron adecuadamente el SOC en los 0,20 m superiores de Mollisoles del SEBA. 
El modelo con mejor desempeño fue desarrollado a partir de una variable meteorológica (Tmin) y seis variables de 
manejo (SOCI, Year, Prop sowbean, Tillage, Yield, Prop agri), todas ellas fácilmente accesibles y con bajo nivel de 
incertidumbre.

RESUMO
 
O carbono orgânico do solo (SOC) tem um papel fundamental no ciclo global do carbono. As relações complexas 
entre os componentes do ciclo do C dificulta a modelação da variação do SOC. As redes neuronais artificiais (ANN) 
são modelos capazes de determinar as inter-relações existentes com base em informação disponível. O objetivo deste 
trabalho foi desenvolver e avaliar modelos baseados na técnica de ANN para estimar o SOC em Molisolos do 
sudeste da província de Buenos Aires, Argentina (SEBA). Foram utilizados dados de três ensaios de longa duração 
conduzidos em SEBA. Variáveis meteorológicas e de gestão foram selecionadas como dados de entrada das ANN. 
Informações de gestão incluíram variáveis numéricas (concentração inicial de SOC (SOCI); número de anos desde 
o início do ensaio (Year), a proporção de soja na sequência da colheita; (Prop soja), rendimento da colheita (Yield); 
proporção de cultivo na sequência da rotação da cultura (Prop agri)) e variáveis categóricas (cultivo (Crop), e 
sistema de lavoura (Tillage)). Além disso, consideraram-se duas variáveis meteorológicas (temperatura média do 
ar (Tmed) e temperatura mínima do ar (Tmin)). Os modelos baseados em ANN demonstraram ser adequados 
para estimar o SOC nas camadas superiores (0,20 m) dos Molisolos do SEBA. O modelo com melhor desempenho 
foi desenvolvido a partir de uma variável meteorológica (Tmin) e seis variáveis de gestão (SOCI, Year, Prop soja, 
Tillage, Yield, Prop agri), sendo todas as varáveis facilmente acessíveis e com baixo nível de incerteza. As alterações 
no SOC relacionadas com o uso do solo no SEBA poderiam ser satisfatoriamente estimadas usando uma ANN 
desenvolvida a partir de variáveis simples e facilmente disponíveis. A técnica de ANN parece ser uma ferramenta 
válida para desenvolver modelos robustos para ajudar a prever as alterações de SOC.

1. Introduction

Soil organic carbon (SOC) is both source and sink of atmospheric C dioxide and plays a 
key role in the global carbon (C) cycle. Besides, its content impacts on soil nutrient supply 
and on soil water storage capacity and, therefore, on crop yields. In addition, it is one of 
the most sensitive soil components to land use (Quiroga and Studdert 2015). However, the 
relationships among the components of C cycle and the factors that determine their fluxes, 
are very complex and, therefore, their study and prediction turn difficult (Parton et al. 1987; 
Smith et al. 1997).

Empirical and stochastic models have been developed to describe complex interactions 
(Parton et al. 1987; Hansen et al. 1991; Franko et al. 1995; Liang et al. 2008; Kemanian and 
Stôckle 2010). However, their results tend to be over-simplified since they cannot take into 
account all the critical factors and non-linear relationships that influence C dynamics. On the 
other hand, some models are complex and/or require very detailed information that is not 
usually available or is difficult to estimate (e.g. Century model) (Levine and Kimes 1998), 
that make them unfeasible for generalized use. 

Some researchers appealed to the artificial neural networks (ANN) technique to overcome 
some limitations of other modeling techniques. Artificial neural networks allow describing 
complex interrelationships based on simple information available. The technique has been 
applied to estimate either properties or processes that define soil status variables, and 
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among them, to characterize SOC dynamics 
in different environments (Levine and Kimes 
1998; Ingleby and Crowe 2001; Somaratne 
et al. 2005). In Argentina, some estimation of 
SOC in soils of the Pampas and Chaco were 
satisfactorily performed (Álvarez 2008; Álvarez 
et al. 2009, 2011, 2012; De Paepe and Álvarez 
2013).

Despite the high and stable SOC content 
of the soils of the Southeastern of Buenos 
Aires Province, Argentina (SEBA) soils, the 
progressive increase of cropping in the last 
decades, has led to a sharp SOC loss (Sainz 
Rozas et al. 2011; Reussi Calvo et al. 2014). 
The sustainable use of these soils requires 
the knowledge of the impact of management 
practices on SOC dynamics to be able to use soil 
preserving its health. Some simulation models 
have been locally calibrated and validated with 
acceptable results (Studdert et al. 2011; Moreno 
et al. 2016), but they were not developed for 
the SEBA conditions. On the other hand, some 
preliminary attempts were done to estimate and 
interpret the variation of SOC in soils of the 
SEBA under conventional tillage, using ANN 
with promising results (Moreno et al. 2014a, 
2014b). We hypothesized that ANN models 
developed using available local information will 
satisfactorily estimate SOC changes in loam-
high-organic-matter-content soils under different 
cropping systems. The objective of this work 
was to develop and evaluate ANN models to 
estimate SOC content changes in soils of the 
SEBA.

2. Materials and methods

2.1. Experimental site

Data from three long-term soil management 
experiments carried out in the experimental field 
of the Unidad Integrada Balcarce, Balcarce, 
Buenos Aires Province, Argentina (37º 45' S, 
58º 18' W, 138 m over sea level) between 1976 

and 2012 was used. The experiments were set 
on a soil complex of Typic Argiudoll (Soil Survey 
Staff 2014) (Mar del Plata series (INTA 1979)) 
and Petrocalcic Argiudoll (Soil Survey Staff 
2014) (Balcarce series, with petrocalcic horizon 
below 0.7 m depth (INTA 1979)). Clay, silt, sand 
and soil organic matter concentrations of the 
soil complex surface layer (0-20 cm depth) are 
232, 343, 425, and 63.0 g kg-1, respectively, and 
the texture class is loam (INTA 1979). Cation 
exchange capacity, base saturation and pH are 
24.0 cmolc kg-1, 74.1% and 6.1, respectively. 
Bulk density varies between 1.1 and 1.25 Mg m-3.  
The slope is less than 2% and, therefore, soil 
water erosion was considered negligible. Climate 
is mesothermal sub-humid to humid (according 
to Thornthwaite) or temperate-humid without a 
dry season (according to Köppen). The median 
annual rainfall is 939 mm yr-1 and annual mean 
daily temperature is 13.9 °C (Agri-Weather  
Station, Unidad Integrada Balcarce, located 
~1000 m away from the experiments).

2.2. Experiment description 

Information from three long term experiments 
carried out with a randomized complete block 
design and a split-plot treatment arrangement, 
was used: 

1) “Continuous Cropping”: carried out between 
1984 and 1995 with 16 crop sequences 
including wheat (Triticum aestivum L.), soybean 
(Glycine max (L) Merr.), maize (Zea mays L.), 
and sunflower (Helianthus annuus L.) under 
conventional tillage (CT, moldboard plow, disk 
harrow, and field cultivator) and with and without 
N (WN and WON, respectively). This experiment 
is more thoroughly described in Studdert and 
Echeverría (2000).

2) “Crop-pasture Rotations”: carried out between 
1976 and 2006 with different combinations 
of periods under cropping (wheat, soybean, 
maize, sunflower, potato (Solanum tuberosum 
L.), and oat (Avena sativa L.) and vetch (Vicia 
sativa L) or red clover (Trifolium pratensse L.) 
as green manures) with and without N (WN 
and WON, respectively), and periods under 

[ APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO ESTIMATE SOIL ORGANIC CARBON IN A  
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grass-based pastures. Between 1976 and 1993 
tillage system was CT and between 1994 and 
2006 some treatments were under CT and other 
under no-tillage (NT). More information about 
this experiment between 1976 and 1993 can 
be found in Studdert et al. (1997). The phase 
between 1994 and 2003 has been described 
in Eiza et al. (2005). Between 2004 and 2006, 
treatments and tillage systems were the same 
as described by Eiza et al. (2005). 

3) “Tillage systems”: carried out from 1997 with 
the sequence maize, sunflower, wheat, under 
two tillage systems (CT and NT) and with and 
without N (WN and WON, respectively). More 
information about this experiment can be found 
in Diovisalvi et al. (2008). 

Soil organic C concentration at 0-0.20 m depth in 
the fall of most of the years of each experiment 
(Moreno et al. 2016) had been determined 
through wet combustion with maintenance 
of the reaction temperature (120 °C) for 90 
min (a variant of the Walkley-Black method, 
Schlichting et al. 1995). Concentration of SOC 
was converted into stock (Mg C ha-1) using bulk 
density determined or estimated as described 
by Studdert et al. (2011). Furthermore, crop 
productivity data was available as grain yield 
at commercial humidity content (14.0% for 
wheat, 14.5% for maize, 13.5% for soybean 

and 11.0% for sunflower), as tuber yield for 
potato and dry matter of aboveground biomass 
for oat and vetch (Moreno et al. 2016). Yields 
for grass-based pastures, expressed as dry 
matter of aboveground biomass, were estimated 
according to Agnusdei et al. (2001).

2.3. ANN-based models 

An ANN is a parallel processing structure 
constituted by units (neurons) organized in 
layers that emulate biological neurons (Haykin 
2001). The ANN have the capacity of identifying 
complex relationships from input information 
(different input variables, x1 … xn, Figure 1) 
through the approximation of any mathematical 
function along a training procedure to yield a 
desired output. Besides, ANN are capable of 
storing knowledge about the relationships among 
input variables and about its proper functioning, 
that could be made available through different 
analysis techniques (Braga et al. 2007). 

An ANN is characterized by its structure or 
architecture, the training algorithm and the 
activation functions (Braga et al. 2007) and it is 
imperative to define them to develop an ANN-
based model. A schematic representation of an 
artificial neuron (basic unit in an ANN model) is 
shown in Figure 1.

[ MORENO R., IRIGOYEN A. I., MONTERUBBIANESI M. G. & STUDDERT G. A. ]

Figure 1. Scheme of an artificial neuron, adapted from Haykin (2001).
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The multilayer perceptron network (MLP) is 
one of the most commonly used feed forward 
ANN type. A MLP network consists of one input 
layer, one or more hidden layers and one output 
layer. The strength of the connection between 
two neurons in adjacent layers is represented 
by what is known as a ‘synaptic weight’. The 
additive junction (Σ) represents the addition 
of signals in the inputs layer weighted by their 
respective synaptic weights (wk). Then, the 
activation function (φ) limits the amplitude of 
the output of the neuron. The bias bk increases 
or decreases the input to activation function, 
assigning positive or negative values. According 
to the bias (positive or negative), the relationship 
between the induced field or activation potential 
(vk) and the output (yk) is transformed. 

Mathematically, an ANN can be described by the 
equations:

Eq. 1
 + bk

Eq. 2
vk = uk + bk

where yk is the output neuron; φ is the activation 
function; xi is the i-th input variable; wki is the 
synaptic weight of the k neuron for the i-th 
input variable, and bk is the bias. The artificial 
neuron computes its output (yk) according to the 
Equation (1). In Equation (2) vk indicates the 
weighted inputs (uk) affected by the bias (bk). 

The size of the network is linked to the nature 
of the problem to be solved and the number of 
patterns or training pairs of inputs (x) - outputs 
(y) (Rogers and Dowla 1994). Then, the 
dimensionality of the models tends to be much 
higher in more complex problems (Maier and 
Dandy 2000). In addition, network architecture 
determines the number of connection weights 
(free parameters) and the way information flows 
through the network (Maier and Dandy 2000). 
The number of free parameters (N) is defined 
by:

Eq. 3
N = (n * m + m) + (m * x + x)

where n is the number of inputs, m is the number 
of hidden layers and x is the number of outputs.

2.4. Development of ANN-based models

Multilayer perceptron models with a unique 
hidden layer were developed to estimate SOC 
in the soil upper 0.20 m. It has been shown that 
only one hidden layer is required to approximate 
any continuous function (Cybenko 1989). In 
this study we developed MLP network models 
with one hidden layer and one output layer. 
Therefore, the size of each network was defined 
by the number of input variables and the number 
of neurons in the hidden layer.

To go through the mechanism of model 
development we pre-selected 16 input variables 
(three categorical variables and 13 quantitative 
variables) based on availability of information 
and potential relationships with SOC stock 
variation:

- Nitrogen fertilization (WN or WON) (categorical).
 
- Tillage: tillage system (NT or CT) (categorical).

- Crop: preceding crop to soil sampling for SOC 
content determination (categorical).

- Year: number of years since the beginning of the 
experiment up to soil sampling for SOC content 
determination for each treatment (quantitative).

- Yield: average grain yield of all the crops in the 
sequence (kg grain ha-1) since the beginning of 
the experiment up to the year before soil sampling 
for SOC content determination (quantitative). 

- C Input: average input of C by crop sequence 
(Mg ha-1) since the beginning of the experiment 
up to the preceding crop to soil sampling for SOC 
content determination (quantitative). To calculate 
C input, wheat, soybean, sunflower and maize 
grain yields, potato tuber yield, and oat and vetch 
aboveground dry matter production were used. 
The calculation of residue input mass by wheat, 
soybean, sunflower, maize, and potato was 
done using the grain or tuber yield, and harvest 
indexes (HI) and the below- (root biomass + 
rhizodeposition)/aboveground biomass (RB/
TAB) relationship used by Studdert et al. (2011). 

[ APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO ESTIMATE SOIL ORGANIC CARBON IN A  
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For oat and vetch, RB/TAB was assumed 
the same as for wheat (Studdert et al. 2011). 
Pasture aboveground dry matter production 
was estimated as reported by Agnusdei et al. 
(2001) for similar pastures. Pasture RB/TAB was 
estimated according to Bélanger et al. (1992). 
Carbon content of plant tissues was assumed as 
0.43 kg C kg-1 (Sánchez et al. 1996).

- Prop agri: proportion of cropping in the whole 
crop rotation (quantitative).

- Prop SC: proportion of summer crops in the 
whole crop rotation (quantitative). 

- Prop SC agri: proportion of summer crops in 
the cropping phases (quantitative).

- Prop soybean: proportion of soybean in the 
cropping phases (quantitative).

- SOCI: SOC at the beginning of each experi-
ment (Mg ha-1).

- Pp: accumulated precipitation (mm) (quanti-
tative).

- ET0: annual reference evapotranspiration 
estimated by Penman-Monteith model (mm) 
(quantitative).

- Tmin: mean annual minimum air temperature 
(°C) (quantitative).

- Tmax: mean annual maximum air temperatu-
re (°C) (quantitative).

- Tmed: mean annual mean air temperature 
(°C) (quantitative).

Values for each meteorological variable were 
the result of the summation (Pp) or average 
(Tmin, Tmax, Tmed) of data over the 12 months 
previous to each soil sampling for SOC content 
determination. 

Total data was split into training, test and 
validation groups with the proportion 60:20:20. 
The training group (n = 1083) was used during 
model training. The validation group (n = 359) 
was used for cross-validation (Maier and Dandy 
2000) and the test group (n = 359) was used 
to evaluate the final performance of each model 
(Haykin 2001). Data for each group was randomly 
selected and distribution of frequencies among 
groups were homogenous (Kruskal-Wallis test, 
p > 0.05) (data not shown). To define which of 
the 16 pre-selected variables would be used as 
better input variables we based on Spearman 
correlation analysis between observed SOC in the  
upper 0.20 m and each one of them (Table 1).

Variable* Overall
Data group

Training Validation Test

Year -0.58 -0.56 -0.62 -0.56

Yield (kg ha-1) -0.22 -0.25 -0.19 -0.16

C input (Mg ha-1) -0.12 -0.16 NS§ NS§

Prop agri 0.18 0.23 NS§ NS§

Prop SC -0.08 NS§ NS§ -0.12

Prop SC agri -0.20 -0.22 -0,16 -0.17

Prop soybean -0.32 -0.34 -0.31 -0.29

SOCI (Mg ha-1) 0.42 0.39 0.46 0.45

Pp (mm) NS§ NS§ NS§ NS§

ET0 (mm) NS§ NS§ NS§ -0.10

Tmin (°C) -0.27 -0.26 -0.31 -0.24

Tmed (°C) -0.23 -0.22 -0.26 -0.22

Tmax (°C) -0.05 NS§ NS§ NS§

* For variable description see text. § NS: not significant.

Table 1. Spearman correlation coefficients (p < 0.05) between soil organic carbon stock in the upper 0.20 m 
of soil and different quantitative management and meteorological variables

[ MORENO R., IRIGOYEN A. I., MONTERUBBIANESI M. G. & STUDDERT G. A. ]



SJSS. SPANISH JOURNAL OF SOIL SCIENCE           YEAR 2017           VOLUME 7           ISSUE 3

185

Initial SOC and Year were the variables that 
showed the highest correlation with SOC, 
both for all data and after splitting it into the 
different data groups, with coefficients close to  
0.45 (SOCI) and -0.50 (Year). Likewise, 
correlation coefficients for Prop soybean, Yield 
and Prop agri, were high. On the other hand, 
among meteorological variables, only Tmin and 
Tmed showed significant correlation with SOC 
stock. Therefore, the interpretation of correlation 
coefficients led to the selection of five basic 
management variables as quantitative input 
variables (SOCI; Year, Prop soybean; Yield, 
Prop agri) and two meteorological variables 
(Tmin and Tmed). In addition, two categorical 
variables (Crop and Tillage) were selected due 
to their relationship with SOC stock (Moreno et 
al. 2014b). Even though this work was done for 
only one soil type and climatic condition, many 
of the selected variables resulted the same as 
those selected by other authors who developed 
ANN-based models for a broader range of 
environmental conditions of Argentina (Álvarez 
2008; Álvarez et al. 2009, 2011, 2012; De Paepe 
and Álvarez 2013).

Artificial neural network-based models were 
performed including different combinations of 
management and meteorological variables, and 
trained to estimate SOC stock. Methods followed 
to arrange the inputs in each combination were 
based on a priori knowledge of the system being 
modelled and on correlations analysis. 

Models defined were organized in three subsets 
as follows:

* Subset 1: ANN-based models with two 
management input variables resulting from 
the combinations of five input management 
variables, taken by two. Management 
variables used were the three quantitative 
variables with the highest correlation with 
SOC stock (SOCI, Year and Prop soybean, 
Table 1) and two categorical variables (Crop 
and Tillage). Seven out of ten possible 
models with only management variables 
(basic models) were chosen because of best 
performance. Additionally, other 21 models 
were defined including either each and both 
meteorological variables most correlated 
with SOC stock (Tmin and Tmed, Table 1). In 
summary, Subset 1 included 28 models. 

* Subset 2: ANN-based models with three 
management input variables resulting from 
the combinations of the seven selected 
management input variables (SOCI; Year, 
Prop soybean; Yield, Prop agri, Crop, Tillage, 
Table 1) taken by three. It was imposed the 
restriction that all models performed always 
had to include the two management input 
variables showing the highest correlation 
with SOC (SOCI and Year, Table 1) and one 
of the other management variables (a total of 
five basic models). Fifteen additional models 
were defined including either each and both 
meteorological variables most correlated 
with SOC stock (Tmin and Tmed, Table 1). In 
summary, Subset 2 included 20 models. 

* Subset 3: ANN-based models with more than 
three management input variables resulting 
from the combination of the three selected 
management input variables showing the 
highest correlation with SOC (SOCI, Year, 
and Prop soybean) with one (four-variable 
models), two (five-variable models) or three 
(six-variable models) of the other selected 
input variables. Most models in this subset 
were defined without meteorological, but 
some of them were also defined including 
either each and both meteorological variables 
most correlated with SOC stock (Tmin and 
Tmed, Table 1). Total of models defined in 
Subset 3 was nine. 

To solve estimation problems, a supervised 
training has to be carried out for which input 
variables and target observed outputs are 
provided to the ANN. Training or learning of an 
ANN with a defined structure is achieved by 
adjusting the weights of the neurons through 
an iterative algorithm that minimizes the error 
between the predicted and the target outputs. This 
process is equivalent to parameter adjustment 
in conventional statistical model fitting. Bias 
values were initially set as 1 and the final value 
for each ANN was determined in the process. 
In this work, the selection of ANN architectures 
was based on the application of a selected 
algorithm integrated on the Intelligent Problem 
Solver (IPS) of the Neural Network module of 
Statistica Software (Statsoft 2009). The inputs 
and the outputs of data sets were automatically 
normalized to improve the performance of ANN 
models. The maximal number of neurons was 

[ APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO ESTIMATE SOIL ORGANIC CARBON IN A  
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fixed related to the number of examples trained. 
The Automated Network Search (ANS) of the 
software, was set to retain the five models with 
the lowest cross-validation error (over 200 ANN 
for each combination of input variables it was 
asked to train) and then, the ANN with the best 
performance for each combination was chosen 
and evaluated. Two types of transformed sigmoid 
activation functions (i.e. logistic and hyperbolic 
tangent) were applied in the hidden layer and 
linear ones in the output layer. The sigmoid 
response allows a network to map a non-linear 
process and is recommended to avoid saturation 
and convergence in approximation problems.

2.5. Evaluation of ANN model performance 

The performance of the ANN was evaluated on 
test data group using several standard statistical 
performance evaluation criteria based on the 
difference between observed and simulated 
SOC stock values. Those statistical indicators 
were: mean of the differences between observed 
and simulated values (bias error, BE, Mg C ha-1),  
mean of those differences relative to the 
observed values (bias relative error, BRE, %), 
and root mean square error (RMSE, expressed 
as stock, Mg C ha-1) (Fox 1981). Performed ANN 
models were sort (increasing order) through each 
of the mentioned error types and ranked from 
the lowest to the highest and assigned a ranking 
number according to each of all three sorts. A 
final hierarchical overall ranking of performance 
was calculated as the average of the three 
ranking numbers achieved by each ANN-based 
model for all three sorts. This procedure enabled 
the determination of the ANN-based model with 
the best and that with the worst performance. 
Model performance was also evaluated through 
simple regression analyses between observed 
and simulated SOC stock values. The joint 
hypothesis of equality of intercept and slope 
of each simple linear regression to 0 and 1, 
respectively, was evaluated through F tests. All 
statistical analyses were performed with the R 
statistical package (R Core Team 2015).

3. Results and discussion

3.1. Description of models

A total 57 ANN-based models were developed 
(28 in Subset 1 (Table 2), 20 in Subset 2 (Table 3),  
and nine in Subset 3 (Table 4) to estimate SOC 
stock including between two and eight input 
variables and a maximum of ten neurons in the 
hidden layer. Most of the models had adequate 
structure, without problems during training, given 
the large number of training data (n = 1083).  
The models with Crop as input variable resulted 
in a higher number of free parameters, since 
this categorical variable presented 10 input 
options (i.e. ten different crops). Artificial neural 
networks with large structure (i.e. high number 
of input variables and/or of neurons in the 
hidden layer) could present problems of sub-
training. However, Rogers and Dowla (1994) 
indicated that if the number of weights (or free 
parameters) does not exceed the number of 
examples for training, such training problems 
would not be expected to occur. 

3.2. Model performance

According to the evaluation on test data group, 
linear regression analyses between observed and 
simulated SOC stock values were all significant 
(p < 0.05) (Tables 5, 6, 7). The joint hypothesis 
of equality of intercept and slope of each simple 
linear regression to 0 and 1, respectively, was not 
rejected (p > 0.05) in any case (Tables 5, 6, 7).  
However, R2 ranged only between 0.1 and 0.6 
(Tables 5, 6, 7). Other authors reported higher 
R2 values when estimating SOC concentrations 
with ANN for several soil types of Argentina 
(Álvarez et al. 2011, 2012; Berhongaray et 
al. 2013). The low R2 obtained in this work 
could be associated to the large variability 
in observed SOC stocks among experiment 
replications. Studdert et al. (1997) reported 
significant differences (p < 0.01) for observed 
SOC stocks among blocks in the “Crop-pasture 
rotations” experiment, with 50% of standard 
deviations ranging between 1.8 Mg C ha-1  
and 5.2 Mg C ha-1, and an average standard 
deviation of 3.4 Mg C ha-1. Likewise, Studdert 
and Echeverría (2000) also reported significant 
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Number
of
ANN

Input variables* Structure§ Activation 
function r N†

1 Year-SOCI MLP 2-10-1 Logistic 41

2 Year-SOCI-Tmin MLP 3-10-1 Hyp Tang 51

3 Year-SOCI-Tmed MLP 3-4-1 Logistic 21

4 Year-SOCI-Tmin-Tmed MLP 4-8-1 Hyp Tang 49

5 Year-Prop soybean MLP 2-8-1 Hyp Tang 33

6 Year-Prop soybean-Tmin MLP 3-7-1 Hyp Tang 36

7 Year-Prop soybean-Tmed MLP 3-7-1 Hyp Tang 36

8 Year-Prop soybean-Tmin-Tmed MLP 4-4-1 Hyp Tang 25

9 Year-Tillage MLP 3-6-1 Logistic 31

10 Year-Tillage-Tmin MLP 4-10-1 Hyp Tang 61

11 Year-Tillage-Tmed MLP 4-7-1 Hyp Tang 43

12 Year-Tillage-Tmin-Tmed MLP 5-10-1 Hyp Tang 71

13 SOCI-Prop soybean MLP 2-10-1 Hyp Tang 41

14 SOCI-Prop soybean-Tmin MLP 3-9-1 Logistic 46

15 SOCI-Prop soybean-Tmed MLP 3-8-1 Hyp Tang 41

16 SOCI-Prop soybean-Tmin-Tmed MLP 4-8-1 Hyp Tang. 49

17 SOCI-Tillage MLP 3-10-1 Logistic 51

18 SOCI-Tillage-Tmin MLP 4-7-1 Hyp Tang 43

19 SOCI-Tillage-Tmed MLP 4-6-1 Hyp Tang 37

20 SOCI-Tillage-Tmin-Tmed MLP 5-9-1 Logistic 64

21 Prop soybean-Tillage MLP 3-5-1 Hyp Tang 26

22 Prop soybean-Tillage-Tmin MLP 4-6-1 Hyp Tang 37

23 Prop soybean-Tillage-Tmed MLP 4-8-1 Hyp Tang 49

24 Prop soybean-Tillage-Tmin-Tmed MLP 5-6-1 Hyp Tang 43

25 Year-Crop MLP 11-8-1 Logístic 105

26 Year-Crop-Tmin MLP 12-8-1 Tang Hip. 113

27 Year-Crop-Tmed MLP 12-5-1 Tang Hip. 71

28 Year-Crop-Tmin-Tmed MLP 13-8-1 Tang Hip. 121

* See input variable description in text; § Structure: MLP n-m-x: n: number of input variables, m: number neurons in the 
hidden layer, x: number of output layers; q Activation function in the hidden layer: Hyp tang: hyberbolic tangent; † N: 

number of free parameters.

Table 2. Input variables, structure and activation functions of artificial neural networks (ANN) of 
multiperceptron type (MLP) trained to estimate soil organic carbon stock in the soil upper 0.20 m for  

Subset 1
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Number
of
ANN

Input variables* Structure§ Activation 
function r N†

29 Year-SOCI-Prop soybean MLP 3-8-1 Hyp Tang 41

30 Year-SOCI-Prop soybean-Tmin MLP 4-8-1 Hyp Tang 49

31 Year-SOCI-Prop soybean-Tmed MLP 4-10-1 Hyp Tang 61

32 Year-SOCI-Prop soybean-Tmin-
Tmed MLP 5-9-1 Logistic 64

33 Year-SOCI-Tillage MLP 4-5-1 Hyp Tang 31

34 Year-SOCI-Tillage-Tmin MLP 5-10-1 Hyp Tang 71

35 Year-SOCI-Tillage-Tmed MLP 5-9-1 Hyp Tang 64

36 Year-SOCI-Tillage-Tmin-Tmed MLP 6-8-1 Logistic 65

37 Year-SOCI-Yield MLP 3-5-1 Hyp Tang 26

38 Year-SOCI-Yield-Tmin MLP 4-5-1 Hyp Tang 31

39 Year-SOCI-Yield-Tmed MLP 4-8-1 Hyp Tang 49

40 Year-SOCI-Yield-Tmin-Tmed MLP 5-9-1 Hyp Tang 64

41 Year-SOCI-Prop Agri MLP 3-3-1 Logistic 16

42 Year-SOCI-Prop agri-Tmin MLP 4-10-1 Logistic 61

43 Year-SOCI-Prop agri-Tmed MLP 4-6-1 Hyp Tang 37

44 Year-SOCI-Prop agri-Tmin-Tmed MLP 5-10-1 Hyp Tang 71

45 Year-SOCI-Crop MLP 12-5-1 Hyp Tang 71

46 Year-SOCI-Crop-Tmin MLP 13-7-1 Hyp Tang 106

47 Year-SOCI-Crop-Tmed MLP 13-10-1 Hyp Tang 151

48 Year-SOCI-Crop-Tmin-Tmed MLP 14-8-1 Hyp Tang 129

* See input variable description in text; § Structure: MLP n-m-x: n: number of input variables, m: number of neurons in 
the hidden layer, x: number of output layers; r Activation function in the hidden layer: Hyp tang: hyberbolic tangent; † N: 

number of free parameters.

Table 3. Input variables, structure and activation functions of artificial neural networks (ANN) of 
multiperceptron type (MLP) trained to estimate soil organic carbon stock in the soil upper 0.20 m for  

Subset 2

differences (p < 0.01) for SOC stocks among 
blocks of the experiment “Continuous cropping”, 
with an average standard deviation of  
3.6 Mg C ha-1 (50% of standard deviations 
ranging between 2.0 and 5.4 Mg C ha-1). This 

fact, together with the relative low observed 
SOC stock change (i.e. decrease) over the  
26 years evaluated, may have contributed to the 
low R2 values obtained.
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Number
of
ANN

Input variables* Structure§ Activation 
function r N†

49 Year-SOCI-Prop soybean-Tillage MLP 5-8-1 Hyp Tang 57

50 Year-SOCI-Prop soybean-Yield MLP 4-4-1 Hyp Tang 25

51 Year-SOCI-Prop soybean-Prop agri MLP 4-8-1 Logistic 49

52 Year-SOCI-Prop soybean-Tillage-
Yield MLP 6-4-1 Logistic 33

53 Year-SOCI-Prop soybean-Tillage-
Prop agri MLP 6-5-1 Hyp Tang 41

54 Year-SOCI-Prop soybean-Tillage-
Yield-Prop agri MLP 7-8-1 Hyp Tang 73

55 Year-SOCI-Prop soybean-Tillage-
Yield-Prop agri-T min MLP 8-8-1 Hyp Tang 81

56 Year-SOCI-Prop soybean-Tillage-
Yield-Prop agri-T med MLP 8-6-1 Logistic 61

57 Year-SOCI-Prop soybean-Tillage-
Yield-Prop agri-T min-Tmed MLP 9-9-1 Logistic 100

* See input variable description in text; § Structure: MLP n-m-x: n: number of input variables, m: number of neurons in 
the hidden layer, x: number of output layers; r Activation function in the hidden layer: Hyp tang: hyberbolic tangent; † N: 

number of free parameters.

Table 4. Input variables, structure and activation functions of artificial neural networks (ANN) of 
multiperceptron type (MLP) trained to estimate soil organic carbon stock in the soil upper 0.20 m for  

Subset 3

Number
of
ANN

Input variables*

Statistical indicators§

a b R2
p value

a = 0 and
b = 1

1 Year-SOCI 0.78 0.98 0.47 0.88

2 Year-SOCI-Tmin -0.60 1.00 0.52 0.97

3 Year-SOCI-Tmed 0.32 0.99 0.52 0.95

4 Year-SOCI-Tmin-Tmed 0.22 0.99 0.56 0.92

5 Year-Prop soybean -1.03 1.01 0.36 0.76

6 Year-Prop soybean-Tmin 2.21 0.97 0.41 0.89

7 Year-Prop soybean-Tmed 3.84 0.95 0.39 0.74

8 Year-Prop soybean-Tmin-Tmed 0.53 0.99 0.44 0.96

9 Year-Tillage 2.25 0.97 0.32 0.93

10 Year-Tillage-Tmin 2.68 0.96 0.43 0.77

11 Year-Tillage-Tmed -1.60 1.01 0.42 0.92

12 Year-Tillage-Tmin-Tmed 1.57 0.97 0.48 0.90

Table 5. Statistical indicators obtained on test data group from simple linear regressions between observed 
and simulated with artificial neural network (ANN) models of soil organic carbon stock at 0.20 m for  

Subset 1 (Table 2)
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13 SOCI-Prop soybean 0.55 0.99 0.28 0.91

14 SOCI-Prop soybean-Tmin 0.98 0.98 0.47 0.44

15 SOCI-Prop soybean-Tmed 1.56 0.97 0.35 0.93

16 SOCI-Prop soybean-Tmin-Tmed 0.64 0.98 0.52 0.45

17 SOCI-Tillage -8.40 1.09 0.23 0.31

18 SOCI-Tillage-Tmin -2.40 1.02 0.46 0.67

19 SOCI-Tillage-Tmed -6.20 1.07 0.40 0.40

20 SOCI-Tillage-Tmin-Tmed -4.74 1.05 0.56 0.24

21 Prop soybean-Tillage 6.26 0.92 0.10 0.78

22 Prop soybean-Tillage-Tmin 5.25 0.93 0.39 0.45

23 Prop soybean-Tillage-Tmed 4.01 0.95 0.28 0.82

24 Prop soybean-Tillage-Tmin-Tmed -4.07 1.05 0.46 0.65

25 Year-Crop -0.51 1.01 0.35 0.86

26 Year-Crop-Tmin 5.54 0.93 0.45 0.41

27 Year-Crop-Tmed 2.16 0.97 0.46 0.72

28 Year-Crop-Tmin-Tmed 6.35 0.91 0.50 0.08

* See input variable description in text; § Statistical indicators: a: intercept, b: slope, R2: coefficient of determination.

Number
of
ANN

Input variables*

Statistical indicators§

a b R2
p value

a = 0 and
b = 1

29 Year-SOCI-Prop soybean 1.55 0.97 0.49 0.88

30 Year-SOCI-Prop soybean-Tmin 1.93 0.97 0.54 0.80

31 Year-SOCI-Prop soybean-Tmed 2.36 0.96 0.53 0.64

32 Year-SOCI-Prop soybean-Tmin-
Tmed -0.13 0.99 0.56 0.57

33 Year-SOCI-Tillage 2.52 0.96 0.48 0.67

34 Year-SOCI-Tillage-Tmin 3.67 0.95 0.53 0.45

35 Year-SOCI-Tillage-Tmed 1.68 0.97 0.56 0.77

36 Year-SOCI-Tillage-Tmin-Tmed 2.27 0.96 0.59 0.61

37 Year-SOCI-Yield -1.58 1.01 0.50 0.75

38 Year-SOCI-Yield-Tmin -0.30 1.00 0.54 0.67

39 Year-SOCI-Yield-Tmed 1.18 0.98 0.52 0.91

40 Year-SOCI-Yield-Tmin-Tmed 0.41 0.99 0.56 0.45

Table 6. Statistical indicators obtained on test data group from simple linear regressions between observed 
and simulated with artificial neural network (ANN) models of soil organic carbon stock at 0.20 m for  

Subset 2 (Table 4)
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41 Year-SOCI-Prop agri -0.11 1.00 0.49 0.98

42 Year-SOCI-Prop agri-Tmin 1.52 0.97 0.54 0.78

43 Year-SOCI-Prop agri-Tmed 1.89 0.97 0.54 0.86

44 Year-SOCI-Prop agri-Tmin-Tmed 3.88 0.95 0.57 0.53

45 Year-SOCI-Crop 3.45 0.95 0.48 0.70

46 Year-SOCI-Crop-Tmin 5.13 0.93 0.57 0.21

47 Year-SOCI-Crop-Tmed 3.99 0.94 0.58 0.23

48 Year-SOCI-Crop-Tmin-Tmed 5.18 0.93 0.60 0.11

* See input variable description in text; § Statistical indicators: a: intercept, b: slope, R2: coefficient of determination.

Number
of
ANN

Input variables*

Statistical indicators§

a b R2
p value

a = 0 and
b = 1

49 Year-SOCI-Prop soybean-Tillage 5.16 0.93 0.50 0.42

50 Year-SOCI-Prop soybean-Yield -1.12 1.01 0.50 0.95

51 Year-SOCI-Prop soybean-Prop 
Agri 3.42 0.95 0.50 0.65

52 Year-SOCI-Prop soybean-Tillage-
Yield 0.47 0.99 0.53 0.99

53 Year-SOCI-Prop soybean-Tillage-
Prop agri 3.41 0.96 0.53 0.49

54 Year-SOCI-Prop soybean-Tillage-
Yield-Prop agri 7.03 0.91 0.54 0.07

55 Year-SOCI-Prop soybean-Tillage-
Yield-Prop agri-Tmin 6.58 0.91 0.58 0.14

56 Year-SOCI-Prop soybean-Tillage-
Yield-Prop agri-Tmed 4.31 0.94 0.57 0.36

57 Year-SOCI-Prop soybean-Tillage-
Yield prom-Prop agri-Tmin-Tmed 5.46 0.93 0.59 0.24

* See input variable description in text; § Statistical indicators: a: intercept, b: slope, R2: coefficient of determination.

Table 7. Statistical indicators obtained on test data group from simple linear regressions between observed 
and simulated with artificial neural network (ANN) models of soil organic carbon stock at 0.20 m for  

Subset 3 (Table 4).

Root mean square error, BRE, and BE values 
obtained on test data group when contrasting 
observed vs. simulated SOC stocks are presented 
in Figure 2. Most of the 57 ANN-based models 
defined showed acceptable results (Smith et al. 
1997). In general, RMSE ranged between 4.97 
and 7.39 Mg C ha-1 and did not differ from those 
reported by Álvarez et al. (2009) and some 
models yielded better indicators than those 
reported by Álvarez et al. (2011). Bias relative 

errors ranged between 4.69 and 7.26% and 
BE ranged between -0.39 and 0.49 Mg C ha-1.  
Other authors (Levine and Kimes 1998; 
Somaratne et al. 2005) reported even lower 
errors but they used both management variables 
and chemical properties as input variables. 

Error variability among ANN-based models 
including only two management variables 
(Subset 1, Table 2, Figure 2) was high. On 
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the other hand, error variability among ANN-
based models of Subsets 2 (three management 
variables, Table 3, Figure 2) and 3 (more than 
three management variables, Table 4, Figure 2), 
were lower than those of Subset 1 and similar 
between them. In all cases, the inclusion of the 
selected meteorological input variables (i.e. Tmin 

and/or Tmed, Tables 2, 3, 4) improved model 
performance through reducing errors (Figure 2).  
Therefore, SOC stock could be satisfactorily 
estimated with ANN models including only 
three management input variables and selected 
meteorological input variables.

Figure 2. Statistical indicators (root mean square error (RMSE), bias error (BE); relative bias error (BRE)) for each artificial 
neuron network (ANN) based model trained (number of ANN-based models can be seen in Tables 2, 3, and 4 for model Subsets 

1, 2, and 3, respectively). 
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3.3. Models with the best and the worst 
performances 

Table 8 shows the 10 ANN models with the 
lowest (best models, first 10 hierarchical 
positions) and the highest (worst models, last 
ten hierarchical positions) average of individual 
positions of ranking through RMSE, BRE, and 
BE. Root mean square errors of the ten best 
models ranged between 4.97 and 5.36 Mg C ha-1,  
BRE ranged between 4.70 and 5.09%, and 
BE ranged between -0.01 and 0.33 Mg C ha-1.  
Only one of the ten best models belongs to 
Subset 1 (ANN 4, Tables 2, 8) and only one 
did not include meteorological input variables 
(ANN 52, Tables 4, 8). Five out of nine of the 

best models including meteorological variables, 
included both Tmin and Tmed (ANN 57, 44, 36, 
4, and 48, Tables 2, 3, 4, 8). The best model 
(ANN 55, Tables 4, 8) also showed one of the 
highest R2 of observed vs. simulated SOC stock 
linear regressions (0.58, Table 7). On the other 
hand, all the worst models integrated Subset 1.  
Their RMSE ranged between 5.66 and  
7.40 Mg C ha-1, BRE ranged between 5.50 and  
7.26, and BE ranged between -0.23 and  
0.44 Mg C ha-1. Five out of all the worst models 
did not include meteorological variables and the 
rest, included only one (either Tmin or Tmed). The 
R2 of linear regression of observed vs. simulated 
with the worst model (ANN 17, Tables 2, 8)  
SOC stocks, was very low (R2 = 0.23, Table 5).

Number
of ANN Subset RMSE 

ranking
BRE 

ranking
BE

ranking 

Error
ranking
average

Final
hierarchy
ranking

55 3 6 1 1 2.7 1

57 3 4 4 9 5.7 2

44 2 8 6 8 7.3 3

36 2 3 3 36 14.0 4

56 3 7 5 33 15.0 5

35 2 10 8 29 15.7 6

4 1 11 18 22 17.0 7

52 3 25 23 4 17.3 8

43 2 18 21 14 17.7 9

48 2 1 2 50 17.7 10

15 1 52 51 17 40.0 48

25 1 39 49 34 40.7 49

18 1 43 39 43 41.7 50

14 1 41 41 54 45.3 51

22 1 49 48 39 45.3 52

13 1 54 54 30 46.0 53

19 1 48 47 47 47.3 54

21 1 57 57 32 48.7 55

5 1 51 52 44 49.0 56

17 1 56 56 57 56.3 57

Table 8. Best and worst positions within the hierarchical ranking of the trained artificial neural network 
(ANN) models on the basis of the average of the ranking positions (increasing order) sorting by three 

statistical indicators. RMSE: root mean square error (Mg C ha-1); BRE: bias relative error (%); BE: bias error 
(Mg C ha-1). The ANN are described in Tables 2, 3, and 4.
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Studdert et al. (2011) and Moreno et al. (2016) 
reported that the performance of RothC 
(Jenkinson et al. 1987) and AMG (Andriulo 
et al. 1999) models, respectively, to simulate 
SOC stock showed some differences between 
nitrogen fertilization levels and/or tillage 
systems. Therefore, we also evaluated the 
best (Figure 3) and worst (Figure 4) ANN-
based model performances through RMSE and 
BE discriminated by agronomic management 
(i.e. separately for each tillage system level 
(regardless nitrogen fertilization level) and for 
each nitrogen fertilization level (regardless 

tillage system level). According to RMSE, the 
best ANN estimated better (lower RMSE) SOC 
stock under NT and WN. However, dispersion 
of BE was a little higher and some ANN-based 
models showed no difference between levels of 
tillage system nor between nitrogen fertilization 
levels, but some others showed an inverse trend 
than that of RMSE. Anyway, the best ANN model 
(ANN 55, Table 8) did not show differences 
between the levels of both management 
practices, and, despite the differences, the 
RMSE were all within acceptable levels (Smith 
et al. 1997).

Figure 3. Statistical indicators of the ten trained artificial neural network (ANN)-based models with the best performance (Table 
8) discriminated by management treatment: tillage system (a, c) and nitrogen fertilization (b, d). ANN #: ANN number (Tables 

2, 3, 4); Rank. #: ranking position according to Table 8; RMSE (a, b): root mean square error; BE (c, d): bias error. WON: 
treatments without nitrogen fertilization; WN: treatments with nitrogen fertilization; CT: treatment under conventional tillage; NT: 

treatments under no tillage. Dashed line in plots a) and b) indicate the general mean of RMSE (for the 57 ANN trained).
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The ANN-based model with the best performance 
(ANN 55, Table 4, Figure 3) was developed based 
on all (five) management variables combined 
with Tmin (Table 4). On the other hand, the worst 
performance was achieved by the ANN-based 
model with only two management variables 
(SOCI and Tillage) (ANN 17, Tables 4, 8, Figure 
4). The differences in statistical indicators 
between the best and the worst ANN-based 
models (Figure 2) were of 1.8 and 0.44 Mg C ha-1,  
and 1.9 percent points in RMSE, BE and BRE, 
respectively. Taking into account the complexity 
of the processes and interactions involved in 
SOC formation and degradation in relation to 
soil use, those differences can be considered 
negligible (Smith et al. 1997). However, even 
though small, the improvement of an ANN-based 
model performance including six management 
variables and one meteorological one (ANN 
55, Table 4), could be assumed as better 
representing the factors that define surface SOC 

dynamics in Mollisols of the SEBA. Besides, the 
input variables used by ANN 55 (Table 4) do not 
mean additional complication for potential users 
since they are easily available everywhere. 

The distribution of simulated and observed SOC 
stock over time, is a visual tool that can help to 
interpret model performance. Figure 5 shows 
the evolution of observed SOC stock values and 
those estimated with the best (ANN 55, Tables 4, 8)  
(Figure 5a) and the worst (ANN 17, Tables 2, 8) 
(Figure 5b) ANN-based models. Figure 6 shows 
the evolution of both observed and estimated 
with the best and worst models SOC stock values 
discriminated by tillage system and nitrogen 
fertilization levels. Whichever the fertilization 
treatment, both ANN (the best (ANN 55) and the 
worst (ANN 17) showed better performance over 
time under NT than under CT (Table 9).

Soil organic C stocks estimated with ANN 

Figure 4. Statistical indicators of the ten trained artificial neural network (ANN)-based models with the worst performance (Table 
8) discriminated by management treatment: tillage system (a, c) and nitrogen fertilization (b, d). ANN #: ANN number (Tables 

2, 3, 4); Rank. #: ranking position according to Table 8; RMSE (a, b): root mean square error; BE (c, d): bias error. WON: 
treatments without nitrogen fertilization; WN: treatments with nitrogen fertilization; CT: treatment under conventional tillage; NT: 

treatments under no tillage. Dashed line in plots a) and b) indicate the general mean of RMSE (for the 57 ANN trained).

[ APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO ESTIMATE SOIL ORGANIC CARBON IN A  
HIGH-ORGANIC-MATTER MOLLISOL ]



SJSS. SPANISH JOURNAL OF SOIL SCIENCE           YEAR 2017           VOLUME 7           ISSUE 3

196

55 (Table 4) showed the best match with 
observed values, especially up to 18 years 
since the beginning of the experiments. This 
model showed a better estimation to the 
observed changes and variability of SOC stock  
(Figures 3, 5a, 6). This may be attributed to the 

number of input variables involved, which made 
ANN 55 more representative of the variables 
influencing SOC dynamics. Anyway, input 
variables in ANN 55 are very few in relation to 
the high number of factors driving SOC variation.

Figure 5. Evolution of observed and simulated soil organic carbon since the beginning of the experiments. a) simulation with the 
best trained artificial neural network (ANN) model (ANN 55, Tables 4, 8); b) simulation with the worst trained ANN model (ANN 

17, Tables 2, 8). Vertical bars indicate standard error of the mean.
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Other ANN models developed in Argentina to 
predict SOC variations based on some other 
input variables showed different statistical 
indicators than those achieved in this work. 
Álvarez (2008) used the average C input, silt 
plus clay content and air temperature as input 
variables and reported an RMSE of 4.7 Mg C ha-1  

(similar to that achieved with ANN 55, Figures 2, 3).  
However, the R2 reported by Álvarez (2008)  
(R2 = 0.93) was much higher than that shown by 
ANN 55 (R2 = 0.58, Table 7). Likewise, Álvarez et 

al. (2011) also developed ANN models based on 
crop type, average grain yield and precipitation 
to predict gains and losses of SOC under 
different cropping systems. They obtained better 
statistical indicators (R2= 0.85 and RMSE = 0.63)  
than those obtained with our ANN 55, although 
lower than those reported by Alvarez (2008). 
On the other hand, the ANN with the worst 
performance (ANN 17, Tables 2, 8) did not match 
observed SOC changes over time (Figures 5b, 6). 

Figure 6. Evolution of observed and simulated soil organic carbon since the beginning of the experiments under different tillage 
and nitrogen fertilization treatments. Simulated values with the ANN showing the best (ANN 55, Tables 4, 8) and the worst (ANN 
17, Tables 2, 8) performances. a) conventional tillage without nitrogen; b) no-tillage without nitrogen; c) conventional tillage with 

nitrogen; d) no-tillage with nitrogen.
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4. Conclusions

Artificial-neural-network-based models were 
adequate to estimate SOC in the upper 0.20 
m of Mollisols of the SEBA. All ANN-based 
models trained could be used in the SEBA 
under different management situations. The 
model with the best performance (ANN 55) was 
developed including six management variables 
(SOCI, Year, Prop soybean, Tillage, Yield, 
Prop agri) and one meteorological variable 
(Tmin) as input variables, all of them easily 
available and with very low level of uncertainty. 
For our Mollisols, the composition of the ANN-
based models with better performances (top 
average hierarchical ranking order) showed that 
management variables were predominant over 
the meteorological ones. The number of input 
variables used is yet recommendable and does 
not imply serious difficulties for users under 
environmental and management conditions 
of SEBA. However, future studies based on 
knowledge extraction from ANN should allow 
improving interpretations of these results and 
to support the use of the technique of ANN 
to develop models using simple and easily 
available local information. 
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Number
of ANN

Tillage
system

Nitrogen
fertilization RMSE BRE BE

Mg C ha-1 % Mg C ha-1

55

CT
WN 4.09 4.47 -0.32

WON 5.11 4.99 0,26

NT
WN 3.90 4.37 0.01

WON 3.66 4.15 -0.36

17

CT
WN 6.40 7.11 -0.09

WON 6.49 6.83 0.62

NT
WN 4.20 4.82 0.17

WON 5.71 6.44 1.13

Table 9. Statistical indicators of models ANN with the best (ANN 55, Table 4) and the worst (ANN 17, Table 
2) performances. RMSE: root mean square error; BRE: bias relative error: BE: bias error; CT: conventional 

tillage; NT: no tillage; WN: with nitrogen, WON: without nitrogen
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