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ABSTRACT 

 

The present work studies the application of a probabilistic methodology in the sensitivity analysis of a steel column to 

identify the dominant parameters in its load capacity. Monte Carlo type simulations in combination with the finite 

element method were carried out to achieve the proposed objective. The geometric nonlinearity in the model was 

considered in order to reflect large deflections and initial geometric imperfections. The results show that the sensitivity 

of the column to a specific input parameter depends on the slenderness ratio and therefore the column will be more 

sensitive to one parameter or another depending on that relationship. 

 

KEYWORDS: Buckling load; finite element analysis; stochastic modelling; modal analysis. 

 

RESUMEN 

 

En este trabajo se presenta un estudio probabilístico para el análisis de sensibilidad de una columna de acero con el fin 

de identificar los parámetros que más afectan su capacidad de carga. Se llevaron a cabo simulaciones tipo Monte Carlo 

en combinación con simulaciones numéricas mediante el uso del método de elementos finitos. En el modelo numérico, 

se consideró la no linealidad geométrica con el objeto de considerar grandes desplazamientos e imperfecciones 

geométricas iniciales. Los resultados muestran que la sensibilidad de la columna a una variable de entrada específica 

depende de la relación de esbeltez y, por lo tanto, la columna será más sensible a una variable u otra dependiendo de 

esa relación. 

 

PALABRAS CLAVE: Carga de pandeo; análisis por elementos finitos; modelado estocástico; análisis modal. 

 

1. INTRODUCTION 

The stochastic/probabilistic nature of the loading 

conditions, geometry and material properties in 

engineering design problems has led to the development 

over the years of probabilistic methods that consider the 

effect of the intrinsic uncertainties in the variables on the 

behaviour of structural elements. Presently, the technical 
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literature offers methods in which the probabilistic 

approach is used to address the lack of homogeneity of 

parameters in structural analysis problems [1, 2, 3]. In 

fact, with the availability of high-speed computers 

currently available, statistical simulations based on 

Monte Carlo methods can be performed to determine the 

probabilistic characteristics of the mechanical behaviour 

of a certain structure [4]. On the other hand, with the 

progress of software for finite element modelling and 

analysis, we have tools that allow analysing complex 

structures [5, 6], and at the same time, to carry out 

probabilistic studies that allow, for example, to 

investigate the response of a structural model to the 

uncertainty of a particular input variable. In this regard, 

the present work has the purpose to illustrate the 

application of a probabilistic approach to performing a 

sensitivity analysis of a steel column with simply 

supported ends in order to identify the dominant 

parameters that affect its ultimate strength. 

 

2. FINITE ELEMENT MODEL 

 

A finite element model of the column was developed 

using ANSYS [7]. Beam type elements BEAM23 of the 

ANSYS library [7] were used for the discretization of the 

domain, and only half of the column was modelled due 

to symmetry in the geometry and in the boundary 

conditions (Figure 1). Moreover, in order to properly 

characterise the modal shapes of the buckling problem, a 

total of 10 elements were used. Additionally, the material 

has an elastoplastic behaviour, and the nonlinear 

response of the column was traced employing the 

modified Riks method [8]. 

 

 
Figure 1. (a) Scheme of the studied column, (b) finite element 

model. 

 

Table 1 compares the ultimate load obtained through 

nonlinear finite element analysis (PEF) with the critical 

load (PCR) calculated from the Euler formula for columns 

with articulated ends and different effective lengths (Le). 

Table 2 shows the mean values of the input parameters 

(diameter, modulus of elasticity, yield strength, etc.)  

used in these calculations. Note that the difference 

between the values obtained from the finite element 

analyses with those given by Euler's formula is due to the 

fact that Euler's formula is based on the theory of ideal 

columns, where the geometry is perfect, only small 

deflections are considered, and the material obeys 

Hooke's law. However, the problem analysed herein 

concerns a compression member initially deflected by a 

small amount, with an elastoplastic behaviour and with 

the possibility of undergoing large deflections. 

 
Table 1. Comparison between numerical and theoretical (Euler) 

results. 

 

Le 

[m] 

PFE 

[kN] 

PCR 

[kN] 
Δ 

[%] 

2 700 818 14.42 

2.5 477 524 8.96 

3 339 364 6.86 

4 195 204 4.41 

 

3. MODELING OF GEOMETRIC 

IMPERFECTIONS 

 

Two basic considerations were considered to model 

geometric imperfections: First, the patterns of initial 

imperfection were characterised as a sum of the first three 

modes of instability, this means that the forms of 

imperfection simply correspond to a linear combination 

of those buckling modes. Another consideration is the 

fact that the maximum amplitude of imperfection at any 

point in the model is restricted to a value specified by the 

design codes. Herein, a mean value of imperfection 

amplitude of L/1500 was used according to reference [9]. 

 

The above considerations allow to introduce 

imperfections in the finite element model according to 

the following equation: 

 





n

i

iglxNnNiglxNnN wVW
1

)(  (1) 

where W is the matrix of imperfections of the structure, 

Nn is the number of nodes to move, Ngl is the number of 

imperfect degrees of freedom, which for the member 

under study is limited to a displacement in the direction 

perpendicular to its axis in the plane of buckling and a 

rotation about the axis perpendicular to such buckling 

plane. Vi is the matrix of modal forms and wi corresponds 

to the imperfection amplitudes allowed. 

 

 

 

 

(a) (b) 
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4. EIGENMODES OF INSTABILITY 

 

In order to obtain the modal shapes of buckling necessary 

to model the imperfections, it is necessary to determine 

the eigenmodes of instability of the column. This is 

performed in ANSYS [7] applying a linear perturbation 

procedure. 

First, the stiffness matrix corresponding to the load-free 

state of the structure is stored to then apply a small 

disturbance or load. Then, the initial stiffness matrix due 

to the applied perturbation is processed with ANSYS, and 

a calculation of eigenvalues is performed to determine a 

multiplier of the load that makes the structure unstable. 

Mathematically, the above can be written as follows: If 

the elastic stiffness matrix is K0 and the initial stiffness 

matrix due to a small perturbation Q is KΔ, then the 

multipliers of Q or eigenvalues λ and the eigenmodes or 

modes of instability Vi must satisfy the following 

equation: 

 

  00   iVKK 
 (2) 

 

From (2), critical loads are obtained by multiplying Q by 

λ. Obviously, for a practical problem, we are only 

interested in the first eigenvalue. 

 

Critical loads and buckling modes can be obtained 

simultaneously in ANSYS since this program creates a 

small set of base vectors that define a subspace, that in 

turn is transformed by successive iterations into a space 

that contains the eigenmodes of the entire system. Figure 

2 shows the modal shapes corresponding to the first three 

buckling modes with their respective critical loads. 

 

 
          (a)                    (b)                    (c) 

 
Figure 2. (a) Mode 1, PCR1 = 791kN, (b) Mode 2,  

PCR2 = 7117kN, (c) Mode 3, PCR3 = 19794kN 

 

5.  PROBABILISTIC MODEL 

 

The random nature of the geometrical properties and the 

material of the compression member studied is 

considered when considering these properties as 

probabilistic variables with known statistical 

distributions. Indeed, the variability of the yield strength 

and modulus of elasticity of the hot-rolled AISI 1035 

steel was obtained from reference [10]. Moreover, the 

variability in the cross-section of the column is expressed 

through manufacturing tolerances of the diameter of the 

cross-section as indicated in the AISI manual [11]. 

Additionally, the initial curvature of the structure is 

modelled according to Eq. (1) with a wi amplitude given 

by a Gaussian distribution. Table 2 summarises the 

statistical characteristics of each random input variable.  

In this table the term GAUSS denotes a normal 

distribution with a mean value and a standard deviation 

as statistical parameters, the term WEIB indicates a 

Weibull distribution of three parameters, and UNIF 

represents a uniform distribution characterised by its 

lower and upper bounds. 

 
Table 2. Statistical characteristics of the input variables. 

 

Input variable Statistical Distribution 

Diameter of the cross 

section [mm] 
UNIF(75.94, 76.45) 

Elasticity modulus [GPa] GAUSS(206.8, 10.34) 

Yield stress [MPa] WEIB(2.88, 350, 272) 

Amplitude of 

imperfection [m] 

GAUSS(L/1500, 

L/4800) 

 

6.  SENSITIVITY ANALYSIS 

 

With the definition of the probabilistic model, a series of 

nonlinear finite element analyses were carried out in 

conjunction with Monte Carlo simulations to obtain the 

statistical data corresponding to the load capacity of the 

column and, then, evaluate its sensitivity to the input 

parameters (Table 2). Monte Carlo approach has been 

proven superior to other approaches for large variations 

of the stochastic parameters. The number of simulations 

needed within a Monte Carlo analysis to obtain a stable 

output of the results depends to a large extent on the 

variability of the input data. [12, 13]. 

 

Figures 3, 4, 5 and 6 show the histograms of the ultimate 

load for 100 and 200 simulations, respectively. With the 

data obtained through these simulations, we generated 

the sensitivity graphs that are shown in Figure 7. Notice 

that the data of the ultimate load of the compression 

member studied represents a probability density function 

that can be used to, subsequently, determine its structural 

reliability. However, the present work focuses only on the 

determination of sensitivities to then evaluate mechanical 

behaviour. 
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(a)  (b) 
Figure 3. Histogram for the ultimate load. Le = 2m. (a) 100 simulations, (b) 200 simulations. 

 

 
(a)  (b) 
Figure 4. Histogram for the ultimate load. Le = 2.5m. (a) 100 simulations, (b) 200 simulations. 

 

 
(a)  (b) 
Figura 5. Histogram for the ultimate load. Le = 3m. (a) 100 simulations, (b) 200 simulations. 
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(a) (b) 

  
(c) (d) 

 
Figure 7. Sensitivity of the ultimate load for the column. (a) Le 

= 2m, (b) Le = 2.5m, (c) Le = 3m, (d) Le = 4m. 

 

7. DISCUSSION 

 

From Figure 7, it is clearly seen that the dominant 

parameter in the load capacity of the compression 

member studied corresponds to the modulus of elasticity 

E of the material. This result was expected since it 

coincides with the behaviour described by column theory. 

It is also important to note that the effect of such 

parameter increases as the slenderness or length 

increases. However, the opposite occurs with the effect 

of yield strength Sy. This is due to the fact that, usually, 

very slender members will fail due to elastic instability, 

in contrast to more robust members where buckling 

occurs inelastic. Thus, the maximum load that an 

inelastic column can support is usually less than the Euler 

load for that same column (See Table 1). Furthermore, 

Figure 7 also indicates that the effect of the initial 

curvature or geometric imperfection of the compression 

member is of great importance. In fact, as it is known, 

such imperfections produce deflections from the 

beginning of the load and can drastically reduce the 

ultimate load of the column. Additionally, Figure 7 shows 

that the compression member is not as sensitive to a 

change in the tolerances of the diameter D of the cross-

section, as long as such tolerances are within permissible 

limits as established in the AISI manual [6]. 

 

8. CONCLUSIONS 

 

In this work, a rational treatment has been given to the 

uncertainty involved in a structural stability problem. 

Despite the simplicity of the problem described, the 

results obtained show that probabilistic procedures in 

conjunction with the finite element method can be used 

when considering the uncertainty in the mechanical 

behaviour of structural systems. Moreover, the presented 

methodology serves as a basis when determining the 

reliability of a structure, such that, with the simulations 

done, a cumulative distribution function is obtained and 

the probability that the structure reaches a specified 

ultimate load can be determined. 
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Figura 6. Histogram for the ultimate load. Le = 4m. (a) 100 simulations, (b) 200 simulations. 
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