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RESUMEN: En este trabajo se analiza un problema de selección de variables para regresión lineal. En este caso el conjunto 

de variables independientes se particiona en grupos disjuntos. El problema consiste en la selección de variables, pero con 

la restricción consistente en que el conjunto de variables que se seleccione debe de tener al menos una variable de cada 

grupo. Este problema tiene múltiples aplicaciones, concretamente el diseño de los indicadores sintéticos en diferentes áreas 

(sociología y economía entre otras). Los diferentes grupos de variables corresponden a los diferentes puntos de vista del 

problema que se está analizando. Por lo tanto estos indicadores deben de contener variables de todos los grupos. Para 

resolver este problema se propone un método de Branch & Bound que obtiene soluciones exactas. Además, se proponen y 

analizan diferentes estrategias para reducir los tiempos de cálculo de este método. Se han realizado diferentes experimentos 

computacionales que muestran los buenos resultados de ambas estrategias, (tanto por separado como conjuntamente): 

consiguen reducir notablemente los tiempos de cálculo del método Branch & Bound y permiten resolver problemas de 

tamaño mayor. 

Palabras claves: Selección de variables; Indicadores sintéticos; Método de Branch & Bound; Preselección; Heurísticos. 

 

ABSTRACT: The abstract should summarise the context, contents and conclusions of the paper in less than 200 words 

preferably in less than 150 words. It should not contain any references or displayed equations. Typeset the abstract in Times 

New Roman and indent the text. Type similarly the keywords below. A variable selection problem in the context of Linear 

Regression is analyzed. In this case, the set of original independent variables is partitioned into disjoint groups. The 

problem consists in the selection of independent variables, but with one restriction: the set of variables that is selected 

should at least have one variable from each group. This problem has a wide scope of application, specifically the design of 

composite indicators in different areas (sociology, and economy, among others). The different groups of variables 

correspond to different viewpoints of the problem under analysis. Therefore, these indicators should contain independent 

variables from all the groups.  For this problem, a Branch & Bound method is proposed to obtain optimal solutions. 

Moreover, two strategies are proposed and analyzed, to reduce the calculation times of this method. Different 

computational experiments were completed that showed the good results of both strategies, (both separately and jointly): 

they managed to reduce the calculation times of the Branch and Bound method considerably, thereby offering solutions to 

moderated-sized problems. 

 

Keywords: Variable selection; Composite indicators, Branch & Bound methods; Pre-selection, Heuristics. 
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1. Introduction 

1.1. Motivation 

Research frequently generates datasets comprising one dependent or response variable and multiple 

independent or predictor variables, giving a dataset that is multivariate and multidimensional. Traditional 

analysis of such datasets has been based on General Linear Models often using Multiple Linear Regression. 

Other more recent methods are based on neural networks, support vector machine, nearest neighbor, etc. In 

the simplest case the Multiple Linear Regression implies a regression of the selected dependent variable 

with respect to the complete suite of predictor variables. Although this full model regression approach 

might seem logical, there are several key problems. One of the most important is the following: having 

multiple predictors in a model adds noise to the analysis, with the effect that non-significant results may be 

returned, even when the model contains significant predictors (Mundry and Nunn 2009).  

In earlier works on the selection of variables, such as those mentioned in sub-section 1.2, there are no 

prior restrictions on the sets of variables to select. All in all, in some works the maximum size of the sub-

set of variables to select should not exceed a previous value. However, to the best of our knowledge, no 

other type of prior restrictions are considered in the previous literature (except in the work that is cited in 

the following paragraph).  

In this work, a special variable selection problem for linear regression is analyzed. Specifically, the set 

of original independent variables is partitioned into disjoint groups and the set of variables that is selected 

should contain elements from all the groups. We consider the following constraint, in order to ensure the 

“participation” of every group in the final solution: the sub-set of selected variables must include at least 

one variable from each group. In addition, it ensures that all viewpoints are considered and helps to avoid 

the selection of variables with high correlations between each other (in general the variables of the same 

group are usually more highly correlated between each other than with the rest of the group). This constraint 

has been considered in Pacheco et al. (2013) in the Principal Component Analysis (PCA) context. To our 

knowledge there are no other references in the literature on this specific variable selection problem (that is, 

considering this constraint). We go on to explain the importance of this constraint. 

As has been commented in Pacheco et al. (2013), in many studies the initial variables are divided into 

previously selected groups. In these cases it is required, or at least recommended to use variables from all 

the groups under consideration. This happens, for example, in the construction of composite indicators that 

are used in several areas (economy, society, quality of life, nature, technology, etc.). The composite 

indicators are used as measures of the evolution of regions or countries in such areas. The synthetic 

indicators should try to cover all points of view of the problem (which may be identified with each of the 

different groups of variables). To do so, they should therefore contain at least one variable from each group 

(or other types of similar conditions), so that they encompass all the points of view. The importance of 

composite indicators is explained in Nardo et al (2005a and 2005b) and Bandura (2008), among other 

references. The convenience of using variables from all groups under consideration is at least explicitly 

mentioned in Nardo et al. (2005a), Ramajo-Hernández and Márquez-Paniagua (2001) and López-García 

and Castro-Núñez (2004). There are previous groups of variables and every group participated in the final 

Composite Indicator, in several of the examples mentioned in the above references and links (and in others). 

Thus, in Tangian (2007), an example was given of building a composite indicator to measure the working 

conditions. In this work, 10 groups of variables are considered (Physical environment, Health, Time factors, 

etc.). In Chan et al (2005), a composite indicator was built to be used as an analytical tool to examine the 

quality of life in Hong Kong. The Index is now released annually. It consists of 20 variables that are grouped 

into three groups: Social (10 variables), economic (7) and environmental (3). In Nardo et al. (2005a and 

2005b), a Technology Achievement Index was proposed, and the following groups are considered: creation 

of technology (2 variables); diffusion of recent innovations (2); diffusion of old innovations (2); and, human 

skills (2). In López-García and Castro-Núñez (2004), an indicator for regional economic activity was 

constructed for Spain. The following groups are considered: Agriculture (2 variables), Construction (5), 
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Industry (4), Merchandise Services (9), Non-Merchandise Services (2). In Blancas et al (2010) composite 

indicators to evaluate tourism sustainability are proposed and Parada et al (2015) obtain a synthetic 

indicator allowing the measurement of the degree of academic excellence. There are several further 

examples in the literature, some of them may be found in Bandura, (2008), an annual survey with around 

170 international composite indicators. 

As explained in the above paragraphs, the importance of this restriction is evident, above all in the 

studies that wish to reflect the impact of the different aspects or viewpoints of the study (which correspond 

with the different groups). It is, for example, what happens in the design of composite indicators, as has 

been described above. So, in this work, an exact method is proposed to search for optimal solutions to this 

problem with data bases with a moderate number of variables. In addition, different variants and strategies 

are analyzed, to shorten the computation time. The contributions are described in greater detail in sub-

section 1.3. 

1.2. Related Literature 

From a computational point of view, variable selection in regression and for classification is a NP-hard 

problem (Cotta et al. 2004). So the optimal solution is only found following lengthy computation times 

expended in large datasets. Therefore, several approximate methods have been proposed. For example, the 

conventional variable selection strategies involving sequential searches (forward selection, backward 

elimination, or stepwise selection) by using different goodness-of-fit measures such as the adjusted R2, 

Akaike Information Criterion (AIC), the Bayesian Information Criteria (BIC) and Mallows Cp. These 

methods have several well-acknowledged shortcomings: They will not always provide the best subset, they 

become increasingly ineffective in higher dimensions and show high sensitivity towards small changes in 

the data (Fan and Li 2001). The stepwise selection procedures are also prone to getting trapped in locally 

optimal models (Hocking 1976) and face design problems with complex patterns of multicollinearity (Hans 

and Dobra 2007). Despite the drawbacks, they are still the immediate choice in routine data analysis and 

because of their simplicity are applied in large data bases (Luo  and Ghosal 2016). Least Angle Regression, 

LARS (Efron et al. 2004) is another method that sequences the candidate predictors in order of importance. 

Another approach is the addition of a penalty term to the objective function of least squares regression to 

ensure the sparcity of the model. For example the LASSO method (Least Absolute Shrinkage and Selection 

Operator; Tibshirani 1996) and Bridge (Frank and Friedman 1993; Fu 1998). Fan and Li (2001) used 

another penalty function, namely Smoothly Clipped Absolute Deviation (SCAD). Finally the Nonnegative 

Garrote (Breiman 1995) uses a penalty on shrinkage factors of the regression coefficients. However, none 

of these variable selection methods are robust to outliers. Robust versions of the LARS, LASSO and SCAD 

methods have been considered in the literature (Owen 2006; Khan et al. 2007; Wang et al. 2007; Wang and 

Li, 2009; Arslan 2012 and Alfons et al. 2013).  

In general all these previous methods are prone to getting trapped in locally optimal models and face 

design problems with complex patterns of multicollinearity, specifically in large datasets (Hans and Dobra 

2007). In order to avoid these shortcomings several metaheuristic techniques have been developed for 

solving large problems, such as Simulated Annealing (Meiri and Zahavi 2006) and Genetic algorithm 

(Kilinc et al. 2016; Zhu et al. 2017). 

More recent works have applied these methods to real data; for example Hasan et al. (2015) and Sun et 

al. (2016). Some works also cover other prediction and/or classification models, for example Kim and Hong 

(2017), Bouveyron and Jacques (2010), Genuer, et al (2010) and Ma et al (2006).  

The majority of methods on variable selection for regression are heuristic techniques, such as those 

mentioned above. Nevertheless, exact methods have also been developed to obtain optimum solutions in 

small or medium-size problems; for example, Gatu and Kontoghiorghes (2006), Gatu et al (2007) and 

Brusco et al (2009). An example of exact variable selection methods in other prediction and/or classification 

models may be found in Brusco and Steinley (2011). 
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As has been seen, there are very many references of works in which the problem of variable selection 

in linear regression models are analyzed. Nevertheless, as commented in sub-section 1.1, in none of these 

works do we find the specific problem of variable selection that is analyzed in this work (and that has been 

explained and reasoned in sub-section 1.1). To our knowledge, this variable selection problem has only 

previously been analyzed in Pacheco et al (2013), albeit in the context of PCA. No references on either 

regression or classification models have been found. 

1.3. Contribution 

In this work, an exact method for the variable selection problem in regression models (described in sub-

section 1.1), is proposed. Also, different tools and strategies are proposed for improving its computation 

time such as: use of filters or pre-selection to avoid unnecessary explorations, and the use of previous 

information obtained by means of the execution of a simple and fast heuristic. 

A set of computational experiments have been executed, which demonstrates the high efficiency of 

these tools. Indeed, the computational time is reduced significantly with these tools and, therefore, the size 

of problems that can be solved in moderate time is increasing.  

In summary, the main contributions of the work are as follows: 1) an analysis of a new variable selection 

problem in regression. This problem has important applications, specifically in the field of composite 

indicators. 2) The design of an exact method to find optimal solutions to this problem in moderate-size 

datasets. 3) The incorporation to this exact method of some strategies that reduce computational times. It 

should be pointed-out that the first of these strategies (filter or preselection) is an “ad-hoc” design for this 

specific problem. Nevertheless, the second one, (the use of previous information obtained by a fast 

heuristic), could be easily used once adapted to other problems (not only variable selection, but also location 

problems, for example). 

The remainder of this work is organized as follows: in section 2, the definition of the problem is outlined. 

In section 3, the basic Branch & Bound method is explained and the different tools to accelerate the Branch 

and Bound method are analyzed in Section 4. Section 5 contains a description of the simple and fast 

heuristic method. The computational experiences are shown in section 6. In section 7, an example based on 

real data is proposed. The last section presents the final conclusions of the study and our related future 

research lines. 

 

2. Definition of the Problem 

2.1. Prior Definitions  

Consider a data matrix, X, corresponding to m cases and characterized by n variables. We shall label the 

set of variables 𝑉 = {1, 2, … , 𝑛} (the variables are identified by their indices for the sake of simplicity).  

Let 𝑥𝑖𝑗  be the value of variable j in the case i, i=1,…,m; j = 1,…,n; Let 𝑥𝑗 be the column vector with the 

values of variable j, in other words  

𝒙𝒋 = (

𝑥1𝑗

𝑥2𝑗

⋮
𝑥𝑚𝑗

)      𝑗 = 1, … , 𝑛. 

 
It is known that 𝑋 = (𝑥𝑖𝑗)

𝑖=1,…,𝑚;𝑗=1,…,𝑛
= (𝒙𝟏 𝒙𝟐 … 𝒙𝒏) 

Let 𝑦𝑖 be the value of a variable 𝑦 in the case 𝑖, 𝑖 = 1, … , 𝑚; 
For any subset of variables 𝑆  𝑉, let’s define 
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𝑓(𝑆) =  R-squared (R2) value of the linear regression model with y as the dependent 

variable and S as set of independent variables. 

2.2. Formulation of the Problem 

Consider a partition in 𝑞 groups of the set of variables 𝑉, that is 𝑉 = ⋃ 𝐺𝑟
𝑞
𝑟=1 ; where 𝐺𝑟  represents each 

group of variables into which V is divided.  Let 𝑝 ∈ 𝑁, verifying 1 ≤ 𝑝 ≤ 𝑛, so that the problem may be 

defined as:   

Maximize 𝑓(𝑆)                                         (1) 

subject to: 

|𝑆|  =  𝑝                                                        (2) 

𝑆  𝐺𝑟       𝑟 = 1, . . . , 𝑞,   if 𝑝  𝑞   

| S  Gr |  1 𝑟 = 1, . . . , 𝑞,   if 𝑝 < 𝑞                                      (3) 

𝑆  𝑉                                          (4) 

 

The optimum solution and the value corresponding to the problem defined by (1)-(4) are respectively 

denoted by 𝑆𝑝
∗ and 𝑔(𝑝), that is 𝑔(𝑝)  =  𝑓(𝑆𝑝

∗).  

Apparently, there is no real or practical interest in determining the values of 𝑔(𝑝) for 𝑝 < 𝑞. 

Nonetheless, these values help to accelerate the execution of the Branch & Bound Method as will be 

explained in detail in section 3. 

As it has been said in the introduction, one of the main applications of this model is the design and/or 

the update of the composite indicators. Suppose a composite indicator formed by a big set of variables. If 

the set of variables that formed the composite indicator is too big it could be convenient (both from the 

economic point of view, and from the point of view of understanding) to reduce the number of variables 

that explain the indicator, while the approximation (correlation) to the initially obtained indicator is 

maximized. In other words, the objective is to select a subset of variables of smaller size, which is able to 

explain most of the information of the initial composite indicator (that is, the one obtained with all the 

original variables). On the other side, if the set of original variables is composed by groups that reflect the 

different aspects of the analysed problem (some examples have been described in the introduction) it should 

be convenient that the subset contains variables of all of these groups.   

So, in the previous formulation  𝑉  is the set of original variables, 𝐺𝑟  represents each group of variables 

that reflects the different aspects of the analysed problem,  𝑦 is the variable that contains the values of the 

composite indicator originally obtained and 𝑆 is the subset of smaller size that must be obtained.  

In section 7, an example with real data is given of this problem. In this case, it is a question of analyzing 

the evolution of Spanish economy, through the different socio-economic variables divided into 6 different 

groups. 
 

3. Description of the Basic Branch & Bound Method 

The corollary in Appendix 1 allows the design of an exact Branch & Bound (BnB) based-method, similar 

to others found in the literature for several variable selection problems (Brusco and Steinley 2011; Pacheco 

et al. 2013). When 𝑝0 (𝑝0 ≥ 𝑞, 𝑝0 ≤ 𝑛) is a fixed value, then this method allows us to find the optimal 

solutions, 𝑆𝑝
∗ and 𝑔(𝑝), for all values of p (𝑝 ≤ 𝑝0), when the value of 𝑛 is moderate.  

The BnB algorithm performs a recursive analysis of the set of solutions. This analysis is performed by 

means of a search tree. Each node of the tree corresponds to a set of solutions. When a node 𝐽 is explored, 

the question of whether the set of associated solutions can improve some of the values 𝑔(𝑝) found up until 

that moment is determined. If it is determined that no associated solution to node 𝐽 can improve any value 

of g, the exploration of that node is ended. If otherwise, the associated set is divided into two subsets that 
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are associated with both nodes 𝐾 and 𝐿 that emerge from node 𝐽. Subsequently, nodes 𝐾 and 𝐿 are explored. 

The node of origin that corresponds to all the solutions is explored first. 

More specifically, the solutions associated with each node 𝐽 are determined by two subsets 𝐴 and 𝐵 ⊂

𝑉, such that 𝐴 ∩ 𝐵 = . In this way, the set of solutions for 𝐽 are all subsets 𝑆 ⊂ 𝑉 that contain 𝐴 (𝐴 ⊂ 𝑆) 

and that do not contain elements of 𝐵 (𝐵 ∩ 𝑆 = ∅). (In other words, the elements of 𝐴 would be “fixed, and 

those of 𝐵 “forbidden”). Division of node 𝐽 in nodes 𝐾 and 𝐿 entails the determination of an element 𝑎 ∈

𝑉– 𝐴– 𝐵. Subsequently, the sets 𝐴’ = 𝐴 ∪ {𝑎}, 𝐵’ = 𝐵, 𝐴’’ = 𝐴 and 𝐵’’ =  𝐵 ∪ {𝑎} are defined and then 

nodes 𝐿 and 𝐾 are respectively associated with the solutions determined by 𝐴’’ and 𝐵’’ (𝐿) and 𝐴’ and 𝐵’ 

(𝐾). Figure 1 illustrates the functioning of this recursive division. 

 

 
Figure 1. Branch process in the Branch & Bound method 

Let 𝐴 and 𝐵 be two subsets 𝐴, 𝐵 ⊂ 𝑉, such that 𝐴 ∩ 𝐵 = ∅; a description in pseudocode of the exploration 

of each node associated with them is as follows: 

 

Procedure ExplorationNode (𝐴, 𝐵) 

 

If ∃ 𝑟 ∈ {1, . . . , 𝑞}: 𝑉– 𝐵 ∩ 𝐺𝑟 = ∅, then Exit (finalize Exploration of the node)                        (6) 

If 𝑓(𝐴) > 𝑔(|𝐴|) and 𝐴 is a feasible set then make 𝑆|𝐴|
∗ = 𝐴 and 𝑔(|𝐴|) = 𝑓(𝐴)                        (7) 

If 𝑓(𝑉– 𝐵) > 𝑔(|𝑉– 𝐵|) then make 𝑆|𝑉–𝐵|
∗ = 𝑉– 𝐵 and 𝑔(|𝑉– 𝐵|) = 𝑓(𝑉– 𝐵) 

If (|𝐴| = 𝑝0)  or  (𝐴 ∪ 𝐵 = 𝑉) then Exit (finalize Exploration of the node)    

If 𝑔(|𝐴|) ≥ 𝑓(𝑉– 𝐵) then Exit (finalize Exploration of the node)                          (8) 

Determine 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥 { 𝑓(𝐴 ∪ {𝑣}) / 𝑣 ∈ 𝑉– 𝐴– 𝐵 }                           (9) 

Make 𝐴’ = 𝐴 ∪ {𝑎} and 𝐵’ = 𝐵 

Execute Exploration_node (𝐴’, 𝐵’) 

Make 𝐴’’ = 𝐴 and 𝐵’’ = 𝐵 ∪ {𝑎} 

Execute Exploration_node (𝐴’’, 𝐵’’) 

 
Pseudocode 1. Procedure ExplorationNode 

 
 
Thus, the BnB method can be described in the following way 

 

Method BnB 

 

Make 𝑔(𝑝)  =  0, ∀ 𝑝 ≤ 𝑝0                                                       (10) 

J

K L

A

B

A’ = A  {a}

B’ = B

A’’ = A

B’’ = B  {a}
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Make 𝐴 = ∅, 𝐵 = ∅ 

Execute ExplorationNode(𝐴, 𝐵) 

 

Pseudocode 2. Method BnB 

 
Finally, the following point should be made: 

• A set 𝐴 is feasible, in line (6), if the following condition is fulfilled: 

 if |𝐴| ≥ 𝑞 then 𝐴 ∩ 𝐺𝑟 ≠ ∅    ∀ 𝑟 = 1, . . . , 𝑞 

 if |𝐴| < 𝑞 then |𝐴 ∩ 𝐺𝑟| ≥ 1  ∀ 𝑟 = 1, . . . , 𝑞 

• The restriction that is asked for in line (8) of the Exploration_node procedure ensures that there 

are no solutions in that node that will improve the values of 𝑔 and the exploration should therefore 

be ended. This is based on the corollary from sub-section 3.1. In fact, it follows that any solution 

𝑆 in that node verifies 𝐴 ⊂ 𝑆 ⊂ 𝑉– 𝐵. Therefore, if the restriction in line (8) is fulfilled, then 

𝑓(𝑆) ≤ 𝑓(𝑉– 𝐵) ≤ 𝑔(|𝐴|) ≤ 𝑔(|𝑆|); so, 𝑆 will not improve 𝑔(|𝑆|). 

• It has to be said that, although 𝑆𝑝
∗ and 𝑔(𝑝) are respectively defined as the optimum solution and 

its corresponding value to the problem (1) – (4) (sub-section 2.2), in the description of the 

algorithm they are the corresponding approaches found during the search. Obviously at the end of 

the execution of the BnB method 𝑆𝑝
∗ and 𝑔(𝑝) correspond with this optimum and its objective 

function value. 

• As may be confirmed in pseudocodes 1 and 2, the algorithm solves the problem (1) – (4) for all 

the values of 𝑝 such that 𝑝 ≤ 𝑝0. It must be pointed out that all the values 𝑔(𝑝), 𝑝 ≤ 𝑝0 (including 

those corresponding to 𝑝 < 𝑞) are important for the algorithm to function properly. In fact, high 

values of 𝑔(𝑝) permit the restriction in line (8) of the ExplorationNode procedure to be met, and 

unnecessary explorations are therefore avoided. If only the value of g(p0) is updated, but the values 

𝑔(𝑝) for 𝑝 < 𝑝0 are not updated, then 𝑔(𝑝) = 0 will remain true, for 𝑝 < 𝑝0. So, this restriction 

may never be satisfied and therefore the exploration of the corresponding node will have to 

continue, even though it contains no reliable solutions. Therefore, to avoid high computation time, 

it is important that the algorithm updates all the values of g(p), for 𝑝 ≤ 𝑝0 (including those 

corresponding to 𝑝 < 𝑞), even though our final interest is only to determine 𝑆𝑝0
∗  and 𝑔(𝑝0). In this 

sense, a strategy to reduce the computation time (that will be explained in more detail in section 

4) is not to start the algorithm with 𝑔(𝑝) = 0 in line (10), but with good approximations to 𝑔(𝑝) 

and 𝑆𝑝
∗. Concretely, it will be proposed as initial values of 𝑔(𝑝) and 𝑆𝑝

∗ those obtained by a rapid 

heuristic method. In this way, the fulfilment of the restriction in line (8) is favored from the start 

and unnecessary explorations are therefore avoided. In section 6, through the computational 

experiments with the different variants of the Branch & Bound method described in section 4, the 

effect of using this strategy is analyzed. 

4. Description of Different Tools and Variants 

In order to reduce the computational time of the basic Branch and Bound method some modifications are 

proposed. These modifications consist in adding certain tools (use of filters and previous heuristics 

information) and they result in different variants. The modifications and the corresponding variants are 

described below: 

• The restriction of having one element of each group in the solutions that are obtained, can be 

taken into account when considering the element a to enter. Unnecessary explorations may be 

avoided if preference is given to the variables of those groups that have no element in 𝐴. More 

formally, a subset of variables 𝑃𝑟𝑒_𝑆𝑒𝑙 ⊂ 𝑉 − 𝐴 − 𝐵 may be formed and 𝑎 can be chosen in this 

subset. The subset 𝑃𝑟𝑒_𝑆𝑒𝑙 (pre-selected variables) is defined as follows: 
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          If 𝐴 ∩ 𝐺𝑟 ≠ ∅, ∀ 𝑟 ∈ {1, . . . , 𝑞} then make 

            𝑃𝑟𝑒_𝑆𝑒𝑙 = 𝑉 − 𝐴 − 𝐵; 

   otherwise, make  

              𝑃𝑟𝑒_𝑆𝑒𝑙 =  { 𝑣 ∈ (𝑉 –  𝐴 –  𝐵) ∩ 𝐺𝑟: 𝑟 ∈ {1, . . . , 𝑞}, 𝐴 ∩ 𝐺𝑟 = ∅ }. 

 

Therefore, the first variant (PreSel1) consists of the substitution of line (9) from the         

ExplorationNode procedure by the following two lines: (9a) and (9b)  

 

           Determine the sub-set  𝑃𝑟𝑒_𝑆𝑒𝑙 ⊂ 𝑉 − 𝐴 − 𝐵 (as it is defined above)                       (9a) 

           Determine a = argmax { f(A{v}) / v  Pre_Sel }                                                   (9b) 

 

The effect of using this alternative form of selecting a will be analyzed in the computational tests. 

 

• The second variant (PreSel2), is very similar to PreSel1. The only difference is that in the variant 

PreSel2 the subset Pre_Sel is defined as follows: 

 

   If 𝐴 ∩ 𝐺𝑟 ≠ ∅, ∀ 𝑟 ∈ {1, . . . , 𝑞} then make 

  𝑃𝑟𝑒_𝑆𝑒𝑙 = 𝑉 − 𝐴 − 𝐵; 

   otherwise, make  

  𝑃𝑟𝑒_𝑆𝑒𝑙 =  { 𝑣 ∈ (𝑉 –  𝐴 –  𝐵) ∩ 𝐺𝑟𝑚𝑖𝑛  } 

  where  𝑟𝑚𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛 { |(𝑉– 𝐴– 𝐵) ∩ 𝐺𝑟|: 𝑟 ∈ {1, . . . , 𝑞}, 𝐴 ∩ 𝐺𝑟 = ∅ } 

 

In these two variants, preference is given to the groups without elements in 𝐴, in case such groups are 

found. In the variant 𝑃𝑟𝑒𝑆𝑒𝑙1, the elements of 𝑉– 𝐴– 𝐵 of all these groups are included in 𝑃𝑟𝑒_𝑆𝑒𝑙.  In 

variant PreSel2 the elements of the group with the fewest elements in 𝑉– 𝐴– 𝐵 among those groups are 

included. The idea of this second alternative is “to force fill”, in the nodes of the “right branch”, the set 𝐵 

of elements of this group (in other words to remove elements of that group from 𝑉– 𝐵). If this condition 

arises, the exploration at that node is ended, in line (6), and the number of explorations may be reduced. 

As explained earlier, the expression of line (8) can help to identify and to avoid unnecessary 

explorations. However, the values of 𝑔(𝑝) are initially given a value of 0, as indicated in the expression of 

line (10). This value means that there is no compliance with the condition of line (8) in the first iterations, 

and the corresponding explorations are therefore not interrupted. Subsequently, compliance with this 

condition is forthcoming more and more as the values of 𝑔(𝑝) are updated and increased. 

Therefore, one idea that may help to increase the proportion of times that compliance with the condition 

of line (8) is forthcoming, and thereby to reduce the explorations, is to find initial values of 𝑔(𝑝) as quickly 

as possible that are as high as possible. In this sense, different heuristic algorithms have demonstrated that 

they can find good solutions to variable selection problems. Among the most recent references, the works 

of Pacheco et al (2009), Brusco et al (2009) and Brusco (2014) may be mentioned. In addition, a much 

shorter computing time is required by these heuristics methods than the time required by the exact methods. 

So that, the heuristic strategies can be good options to obtain good initial (high) values of 𝑔(𝑝) (and the 

corresponding approximations to 𝑆𝑝
∗). 

Moreover, the execution of a heuristic method can give further useful information to be used in an 

efficient way in the execution of the Branch & Bound method. Specifically, this information may be used 

to select element a in line (10) for ramification. In particular, the proposition is to determine ∀𝑎 ∈ 𝑉.  

𝑚𝑎𝑥𝑣(𝑎) = 𝑚𝑎𝑥{𝑓(𝑆): 𝑎 ∈ 𝑆, |𝑆| = 𝑝0,   𝑆 solution visited in the execution of the heuristic} 

These values were found during the execution of the heuristic. Subsequently, in the execution of the 

Branch & Bound method, the element 𝑎 ∈ 𝑃𝑟𝑒_𝑆𝑒𝑙 with a higher 𝑚𝑎𝑥𝑣(𝑎) in each exploration is chosen 

in line (10). In doing so, the calculation of the 𝑓 function to determine this element is not necessary, at the 
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same time as a logical rather than an arbitrary criterion is employed. In fact, the elements that belong to the 

solution 𝑆𝑝0
∗  obtained by the heuristic will be selected in the first explorations. 

Thus two new variants, (named InfHeur1 and InfHeur2) are proposed. These variants simultaneously 

combine the use of the 𝑃𝑟𝑒_𝑆𝑒𝑙 sub-set and the use of information provided by a heuristic, as has been 

explained. So variant InfHeur1 consists of the two following modifications: 

• In line (10) of the BnB method, substitute:  

     Make 𝑔(𝑝) = 0, for 𝑝 ≤ 𝑝0       

            by 

     Read the values of 𝑔(𝑝) and the corresponding 𝑆𝑝
∗ values obtained by the heuristic method 

• Substitute line (9) of the ExplorationNode procedure by the following two lines: (9a) and (9b)  

       Determine the sub-set 𝑃𝑟𝑒_𝑆𝑒𝑙 ⊂ 𝑉– 𝐴– 𝐵 as defined in variant PreSel1                       (9a) 

       Determine 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥 { 𝑚𝑎𝑥𝑣(𝑣) / 𝑣 ∈ 𝑃𝑟𝑒_𝑆𝑒𝑙 }           (9b) 

The variant InfHeur2 is very similar to variant InfHeur1. The variant InfHeur2 consists of the same two 

previous modifications, but it determines the sub-set 𝑃𝑟𝑒_𝑆𝑒𝑙 (in line 9a) as defined in variant PreSel2; that 

is 

Determine the sub-set 𝑃𝑟𝑒_𝑆𝑒𝑙 ⊂ 𝑉– 𝐴– 𝐵 as defined in variant PreSel2.                                        (9a) 

In summary, the difference between InfHeur1 and InfHeur2 is the way as this 𝑃𝑟𝑒_𝑆𝑒𝑙 sub-set is defined 

and built in step (9a). In InfHeur1 the 𝑃𝑟𝑒_𝑆𝑒𝑙 sub-set is defined as in the variant PreSel1  ̧and in InfHeur2 

the 𝑃𝑟𝑒_𝑆𝑒𝑙 sub-set is defined as in the variant PreSel2. Obviously, the heuristic method should have 

previously been run to execute these two variants. As it has been mentioned in the introduction, in the 

following section a heuristic algorithm is described, which will be used to generate this previous 

information. 

In the computational tests, the effect of these modifications (defining and using the 𝑃𝑟𝑒_𝑆𝑒𝑙 set and 

using information contributed by a heuristic method) will be examined in section 6. 

5. A Simple and Fast Heuristic Algorithm 

As commented in section 4, a heuristic method should have previously been run to execute variants 

InfHeur1 and InfHeur2. We have designed a fast heuristic method to solve the problem defined by (1) – 

(4), for different values of 𝑝 (𝑝 ≤ 𝑝0). The Heuristic algorithm, that we propose in this section, obtains the 

approximations to the values of 𝑔(𝑝) (and those corresponding to 𝑆𝑝
∗) in a gradual manner; that is beginning 

with 𝑝 = 1 and ending with 𝑝 = 𝑝0. Also, the solution obtained for 𝑝 − 1 is used as previous information 

to find the initial solution for 𝑝. The set of solutions for the different values of 𝑝 are kept in the vector 𝑺, 

𝑺 = (𝑆1
∗, 𝑆2

∗, … , 𝑆𝑝0
∗ ) and the corresponding values of 𝑔 are kept in 𝑮, 𝑮 = (𝑔(1), 𝑔(2), … , 𝑔(𝑝0)). The 

Heuristic algorithm is described in pseudocode 3. 

 

 

 
Heuristic Algorithm (input: 𝑝0; var: 𝑺, 𝑮) 

 

1. Determine 𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 { 𝑓({𝑖}) ∶  𝑖  𝑉 } 

2. Do 𝑆1
∗ = {𝑖∗}, 𝑔(1) = 𝑓(𝑆1

∗) 

3. For 𝑝 = 2 to 𝑝0 do 

  begin 

 4. Do 𝑆𝑎𝑛𝑡 = 𝑆𝑝−1
∗  

 5.  Determine 𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 { 𝑓(𝑆𝑎𝑛𝑡 ∪ {𝑖}) ∶ 𝑖 ∈ 𝑉– 𝑆𝑎𝑛𝑡 , 𝑆𝑎𝑛𝑡 ∪ {𝑖} 𝑖𝑠 𝑎 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑒𝑡 } 

 6. Make 𝑆 = 𝑆𝑎𝑛𝑡 ∪ {𝑖∗} 
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 7. Execute LocalSearch(𝑝, 𝑆) 

 8. Do 𝑆𝑝
∗ = 𝑆 and 𝑔(𝑝) = 𝑓(𝑆𝑝

∗) 

 end  

 
Pseudocode 3. Heuristic Algorithm 

 
As may be seen, the heuristic algorithm obtains the initial solution for 𝑝 = 1, which is trivial. 

Subsequently, it uses the solution obtained for 𝑝 – 1 (𝑆𝑎𝑛𝑡) in each iteration to complete a rapid initial 

solution 𝑆 for 𝑝. This initial solution is improved by a local search procedure (LocalSearch) and by doing 

so, the approximation to 𝑆𝑝
∗ and 𝑔(𝑝) is obtained. 

The procedure LocalSearch is an iterative method. It works as follows: In each iteration the set of the 

‘neighborhood solutions’ of the current solution 𝑆, is explored; if the current solution 𝑆 is improved by its 

best neighborhood solution, 𝑆’, then the current solution moves to 𝑆’. The process ends if none of the 

neighborhood solutions improve the current solution. The set of the ‘neighborhood solutions’ of the current 

solution 𝑆 is denoted 𝑁(𝑆). The procedure LocalSearch is described in Pseudocode 4. 

 

 
Procedure LocalSearch(input: 𝑝0, var 𝑆) 

Repeat 

1. 𝑓𝑜𝑙𝑑 = 𝑓(𝑆) 

2. Determine 𝑆’ = 𝑎𝑟𝑔𝑚𝑎𝑥 { 𝑓(𝑆’’) ∶ 𝑆’’ ∈ 𝑁(𝑆) } 

3. If 𝑓(𝑆′) >  𝑓(𝑆) then do 𝑆 = 𝑆’ 

until 𝑓(𝑆′) ≤ 𝑓𝑜𝑙𝑑  

 
Pseudocode 4. Procedure LocalSearch 

 
The set 𝑁(𝑆) is the set of feasible solutions which can be reached from 𝑆 by neighborhood moves (in 

this way, the neighboring moves are identified with the solutions that they generate). In this case, each 

move is defined by the exchange of an element of 𝑆 by an element outside it. The concept of the feasible 

solution is established in section 3. 

6. Computational Experiences 

In order to analyze the performance of the basic Branch and Bound method and its variants a set of 

computational experiments have been executed. So that, we can also analyze the efficiency of the proposed 

tools to reduce the computational time of the Branch and Bound method (definition and use of the 𝑃𝑟𝑒_𝑆𝑒𝑙 

subset and use of information provided for a heuristic). 

In order to perform these computational experiments a set of the matrices 𝑋 and 𝑦 have been designed. 

The process of the design these matrices are described in subsection 6.1. In sub-section 6.2 the 

computational experiences and the corresponding results are described. 

It should be indicated that all the algorithms, methods and procedures that have been described in this 

work were implemented in Object Pascal using the Delphi compiler and the development environment Rad 

Studio (XE10 – Seattle). All the experiments were performed on an i7 4790 CPU 3.6 GHz PC using the 

same compiler. 

6.1. Design of Data Matrices 

A series of data matrices have been generated for the different computational tests. These matrices are 

composed of the 𝑋 matrix of the independent variables, and for the dependent variable (column) y. The 

process of generating these matrices (similar to those used in Brusco et al 2009, and Pacheco et al 2013) 

consists of designing population correlation matrices 𝐿 with size 𝑛; a set of 𝑚 vectors following the normal 
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distribution with the 𝐿 correlation matrix is generated from each population correlation matrix 𝐿, these m 

vectors compose the 𝑋 matrix (every vector is a row) and finally the 𝑦 column is obtained from 𝑋. 

The method of generating vectors of a certain multivariate normal distribution of order 𝑛, 0 means, and 

the correlation matrix 𝐿, that is 𝑁(𝟎, 𝐿),  is as follows. A lower triangular matrix 𝑇, of order 𝑛, is calculated 

such that 𝑇 · 𝑇’ = 𝐿, subsequently row-vectors 𝒛 with distribution 𝑁(𝟎, 𝐼𝑛) are generated, and 𝒙 = 𝒛 · 𝑇 is 

calculated; the 𝒙 vectors calculated in this way follow the distribution 𝑁(𝟎, 𝐿).  

There are several ways of obtaining the lower triangular matrix 𝑇 such that 𝑇 · 𝑇’ = 𝐿. In our case, the 

square root method was used, which we find in works by Naylor (1977) and Rubinstein (1981). Also, 

different methods may be found in these texts to generate the values of a normal distribution 𝑁(0,1). 

The population correlation matrices 𝐿 are designed according to a simple pattern: the correlations 

between the different variables can have two values: a high value, if they belong to the same group, or 

otherwise a low one. The population correlation matrices therefore depend on 𝑛 and 𝑞 and on the following 

parameters: 

• 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 : size of each group (to simplify, let us suppose groups of the same size, and then 

𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 = 𝑛/𝑞) 

• 𝑤𝑐𝑜𝑟 : correlation between variables of the same group (let us suppose that this correlation is 

higher than between the variables of different groups) 

• 𝑙𝑐𝑜𝑟 : correlation between variables of different groups. 

The following values will be set for the tests: 𝑙𝑐𝑜𝑟 = 0.2; 𝑤𝑐𝑜𝑟 = 0.7. Besides, 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 will take 

two values: 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 = 3 and 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 = 5.  

As has been explained above, for every correlation population matrix 𝐿, a set of 𝑚 vectors, (cases), are 

generated following the distribution 𝑁(𝟎, 𝐿). A value of 𝑚 = 100 was used. These m vector (cases) compose 

the matrix 𝑋. 

Finally, the values of 𝑦𝑖  , 𝑖 = 1, … , 𝑚, are obtained in the following way: 

𝑦𝑖 = 𝛽1 · 𝑥𝑖1 + 𝛽2 · 𝑥𝑖2 +··· + 𝛽𝑛 · 𝑥𝑖𝑛 + 0.5 · 𝜀 

where, 𝜀 is a vector generated from the normal distribution 𝑁(0,1). 

The values of 𝛽𝑖 are distributed in the same way in all the groups. Specifically, in the groups of 

𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 = 3 the values are distributed as follows:  

𝛽1 = 0, 𝛽2 = 0.3, 𝛽3 = 1, 𝛽4 = 0, 𝛽5 = 0.3, 𝛽6 = 1, … 

and so on.  

In the same way, in the groups of 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 = 5, the values are distributed as follows: 

 𝛽1 = 0, 𝛽2 = 0, 𝛽3 = 0.3, 𝛽4 = 0.3, 𝛽5 = 1, 𝛽6 = 0, 𝛽7 = 0, 𝛽8 = 0.3, 𝛽9 = 0.3, 𝛽10 = 1, … 

and so on.  

Observe that for each matrix X, the partition of the set of variables V is also established, in disjoint sets, 

(𝑉 = ⋃ 𝐺𝑟
𝑞
𝑟=1 ), according to the values of 𝑞 and 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝, as previously explained. So, if 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 =

 3 then 𝐺1 = {1,2, 3}, 𝐺2 = {4, 5,6},, and so on; if 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 =  5, then 𝐺1 = {1,2, 3,4,5}, 𝐺2 =

{6,7,8,9,10}, and so on. 

Finally, 7 types of matrices, with different values of 𝑞 and 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝, are considered. These values are 

shown in table 1. 
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Table 1. Groups of matrices 

Type # 𝑞 𝑠𝑖𝑧𝑒𝑔𝑟𝑜𝑢𝑝 

1 7 3 

2 8 3 

3 9 3 

4 5 5 

5 6 5 

6 7 5 

7 8 5 

 

A total of 10 matrices (𝑋 | 𝑦) were generated randomly for each type. These matrices are used in the 

computational experiments described in sub-section 6.2. 

The parameters related with the design of the population matrix, 𝑋, follows the same structure and 

values of Pacheco et al, (2013). The parameters of the linear model used to obtain the vector 𝑦 follows 

similar patterns of other recent works, (for example Gijbels and Vrinssen, 2015).  

6.2. Analysis of Basic Branch & Bound Methods and Variants 

In this section the performance of the Branch & Bound method and its variants are compared by using a set 

of computational experiments. Specifically, all these methods have been executed for each and every matrix 

that is generated, as described in sub-section 6.1. The way in which the corresponding set of variables 𝑉 is 

divided in disjoint sub-sets Gr has also been described in sub-section 6.1. In all cases, the value  𝑝0 = 2 · 𝑞 

is used. 

The methods that are analyzed and compared in this section are as follows: the basic Branch & Bound 

method (BnB) and its variants PreSel1, PreSel2, InfHeur1 and InfHeur2. It should be remembered that as 

these are exact methods, the solutions that are obtained (the values of 𝑔(𝑝) and the corresponding 𝑆𝑝
∗ values) 

are always optimal. Therefore, the differences in the efficiency of the different methods should be measured 

by the calculation time that is employed. In table 2, the time employed in seconds for each method is shown 

for each matrix (Time). The symbol “*” indicates, for each matrix, the exact variant with the shortest 

calculation time. The following should be pointed out: as stated earlier, before the execution of the variants 

InfHeur1 and InfHeur2, the Heuristic method is executed (described in section 5). A column is therefore 

added with the execution time of the Heuristic method. 

Table 2. Computation time of each method 

 

Matrices BnB PreSel1 PreSel2 InfHeur1 InfHeur2 Heuristic 

Type # 

1 

1 8.178 4.552 2.228 2.412 1.585* 0.335 

2 8.185 4.632 3.822 2.803 1.624* 0.336 

3 8.115 4.665 3.315 3.400 2.292* 0.332 
4 6.259 3.566 2.267 2.704 1.548* 0.391 

5 6.266 3.642 2.230+ 3.049 1.909* 0.375 

6 7.861 4.227 2.369 2.692 1.597* 0.334 
7 7.004 4.187 4.127 2.485 1.328* 0.335 

8 7.874 4.312 2.053+ 3.012 1.880* 0.327 

9 11.824 6.515 3.885 3.352 2.275* 0.383 
10 7.693 4.423 4.289 3.355 2.166* 0.333 

2 

1 22.807 11.628 14.223 9.786 4.866* 0.586 

2 50.096 28.180 12.324 9.818 6.698* 0.594 
3 29.826 15.149 11.168 6.802 4.292* 0.605 

4 23.448 12.519 10.925 8.907 4.121* 0.572 

5 24.188 12.565 9.902 8.202 4.076* 0.743 
6 29.472 14.907 8.991 9.761 4.925* 0.661 

7 22.262 11.472 5.941 9.349 4.453* 0.588 

8 13.759 8.615 11.675 7.950 3.611* 0.562 
9 44.475 23.268 8.915 9.774 5.096* 0.626 

10 27.871 15.299 11.728 11.045 6.222* 0.788 
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Matrices BnB PreSel1 PreSel2 InfHeur1 InfHeur2 Heuristic 

Type # 

3 

1 85.655 40.673 29.571 32.526 14.680* 0.985 
2 106.821 49.732 36.333 32.660 15.355* 0.988 

3 146.531 67.591 26.667 31.346 12.437* 1.042 

4 124.232 51.665 60.583 33.418 16.578* 1.074 
5 78.628 40.762 21.754 29.759 9.961* 0.934 

6 80.212 37.923 36.913 31.689 13.519* 0.888 
7 102.018 47.532 30.105 33.532 15.913* 1.042 

8 88.715 41.550 20.376 30.852 13.667* 0.935 

9 109.953 55.109 37.578 36.635 17.559* 1.143 
10 91.688 43.984 41.395 31.560 14.845* 1.088 

4 

1 23.161 16.566 10.471 8.592 8.273* 0.236 

2 15.441 11.275 11.505 6.850 6.458* 0.275 

3 30.630 24.142 25.916 13.068 12.918* 0.315 
4 19.968 13.595 13.514 7.962 7.678* 0.424 

5 18.795 15.058 15.601 8.335 7.918* 0.398 

6 29.065 22.387 25.963 14.084 14.018* 0.322 
7 12.839 9.000 9.628 4.848 4.505* 0.233 

8 17.448 12.816 12.275 7.605 7.279* 0.352 

9 32.488 25.734 12.883 8.840 8.495* 0.290 
10 28.404 20.857 20.208 7.113 6.928* 0.382 

5 

1 281.129 229.820 272.928 78.968 77.197* 0.893 

2 115.541 72.087 91.695 26.640 23.972* 0.467 
3 101.412 76.978 90.245 49.066 46.928* 0.442 

4 133.038 93.123 96.948 56.648 55.607* 0.629 

5 109.366 67.413 103.564 41.530 39.736* 0.598 
6 178.352 131.850 78.520 57.972* 59.091 0.705 

7 118.442 68.705 180.158 46.558 45.546* 0.732 

8 165.463 112.672 61.556 52.942 52.750* 0.584 
9 113.971 69.582 96.135 44.940 44.237* 0.456 

10 114.791 74.519 84.633 38.962 35.881* 0.524 

6 

1 2162.385 1746.558 1059.107 437.480 430.979* 1.021 
2 632.697 403.787 539.758 241.909 232.662* 1.456 

3 977.758 662.249 671.738 663.582 638.168* 1.184 

4 910.269 562.934 727.655 361.445* 365.843 0.988 
5 1367.720 1103.653 1496.795 762.038 732.485* 0.941 

6 737.239 496.135 501.553 396.608 379.949* 1.162 

7 511.822 328.790 266.412 161.346 146.905* 0.877 

8 1061.915 830.588 437.599 332.380 318.450* 0.842 

9 873.878 553.175 212.365 155.497 136.268* 1.325 

10 946.731 652.591 711.091 370.250 358.752* 0.995 

7 

1 6299.295 4223.729 4626.273 2620.425 2568.623* 1.780 
2 4177.868 2835.552 3212.948 1065.095 1024.255* 2.192 

3 5030.946 2722.917 5334.591 2419.112 2347.922* 1.437 

4 3828.211 2354.243 1538.848 1552.349 1458.714* 1.619 
5 4665.308 2996.868 3193.335 2579.508 2538.410* 1.964 

6 3847.838 2333.476 2830.681 982.735 902.005* 2.728 

7 5290.648 3831.725 2258.020* 4352.498 4309.844 1.964 
8 5050.089 3285.511 6214.758 1529.485 1432.115* 1.425 

9 3872.271 4555.524 9926.658 2480.885 2328.264* 1.833 

10 9782.755 7033.737 6342.715 2942.014 2768.234* 1.425 

 

In table 2 the following points may be seen: 

• In all cases, the computation times of the original Branch & Bound method (BnB) are improved by all 

its variants (PreSel1, PreSel2, InfHeur1 and InfHeur2). In addition, these improvements are relevant: 

the reduction in the computation time is at least 20% and they manage to reach 90%. There are only 

five exceptions: in matrix 7 of type 5, matrix 5 of type 6 and matrices 3, 8 and 9 of type 7 the times of 

the BnB methods are lower than those of the PreSel2 method. The proposed strategies to improve the 

computation times of the BnB method have therefore functioned satisfactorily. 

• With regard to the definition and the use of the 𝑃𝑟𝑒_𝑆𝑒𝑙 set: the variant PreSel2 appears to use less 

computation time than PreSel1 in the smaller-sized matrices (types 1, 2 and 3), while those of a larger 

size (types 5, 6 and 7) PreSel1 appear to use less computation times than PreSel2. 
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• Moreover, when these variants (PreSel1 and PreSel2) are added, the use of information supplied by 

the heuristic method reduces the computation times even more. In this way, InfHeur1 improves the 

times of PreSel1 (in all cases except in matrix 3 of type 6 and matrix 7 of type 7) and InfHeur2 improves 

the times of PreSel2 in all cases (except for matrix 7 of type 7). 

• Finally, InfHeur2 achieves the best times between the exact methods (BnB and variants) in all case 

(except in matrix 7 of type 7, in which the best time is obtained by PreSel2 and the matrix 6 of type 5, 

in which the best time is obtained by InfHeur1). The variants InfHeur1 and InfHeur2 require prior 

execution of the Heuristic method. Nevertheless, as observed in the table, the time employed by this 

method is really irrelevant in comparison with those employed by the different exact methods, (except 

perhaps in the type 1 matrices). Only in instances 5 and 8 of matrix type 1 is the sum of the time 

InfHeur2 and Heuristic slightly lengthier than the time employed by PreSel2 (2.284 and 2.207 of 

InfHeur2 and Heuristic as against 2.230 and 2.053 of PreSel2). 

Table 3 and figure 2 show the average results by matrix type. 

Table 3. Computation time of each method: mean by matrices type 

Matrices 

Type 
BnB PreSel1 PreSel2 InfHeur1 InfHeur2 Heuristic 

1 7.926 4.472 3.058 2.926 1.820 0.348 
2 28.820 15.360 10.579 9.139 4.836 0.633 

3 101.445 47.652 34.127 32.398 14.452 1.012 

4 22.824 17.143 15.796 8.730 8.447 0.323 
5 143.151 99.675 115.638 49.423 48.095 0.603 

6 1018.241 734.046 662.408 388.254 374.046 1.079 

7 5184.523 3617.328 4547.883 2252.411 2167.839 1.837 

 

 

Figure 2. Computation time of exact methods: mean by matrices type 

 

The same conclusions may be reached from table 3 and figure 2 as from table 2: all the proposed variants 

improve the computation times of the original Branch & Bound (BnB) method. Moreover, the variants 

InfHeur1 and InfHeur2 improve the variants PreSel1 and PreSel2. Specifically, the variant InfHeur2 

achieves the best computation times of all the exact methods (even though it includes the additional times 

of the Heuristic method). In short, simultaneously combining both proposed strategies (the use of the 

Pre_Sel sub-set and the use of the information provided by a heuristic) achieve significant and relevant 

reductions in computation time of the exact original method (BnB method). 

In table 4 the percentile reductions are shown in the computation time of the four proposed variants 

with regard to the BnB method. 
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Table 4. Percentile reductions in computation time of the variants with regard to the BnB method 

 

Matrix Type PreSel1 PreSel2 InfHeur1 InfHeu2 

1 43.426 60.967 62.256 76.679 

2 46.470 58.389 64.830 81.974 

3 52.761 65.901 67.042 85.397 

4 25.522 29.953 60.960 62.412 

5 32.232 17.559 64.273 65.385 

6 30.316 34.693 60.472 62.057 

7 29.755 7.448 55.675 57.384 

 

As may be appreciated, the 4 variants achieve important reductions with respect to the original Branch 

& Bound method. Nevertheless, in the case of the PreSel1 and PreSel2 methods, the reductions appear to 

decrease as the size of the problem increases. In the case of PreSel1, the average reductions vary by 30% 

(matrix type 6 and 7) to 52% (matrix type 3). Besides, the variant PreSel2 drops from 60-65% (matrix type 

1 and 3) to little more than 7% (matrix type 7). In the case of InfHeur1 and InfHeur2, it is also seen that the 

reductions lessen as the size of the each matrix increases. Nevertheless, these are maintained even in the 

larger-sized matrices (matrices type 5, 6 and 7), at around 60% (55-65%). 

To end this section, the value of the solutions obtained by the exact methods will be compared with the 

value of the solution obtained by random selection of the variables. It should be recalled that all the exact 

methods (BnB and variants) obtain the optimum solution for each value of p. Therefore, all the exact 

methods give rise to the same solution (or solutions with the same value). In table 5, the results are shown 

of the values of the solutions obtained by the BnB method and the values of the solutions that were randomly 

obtained for 𝑝 = 𝑝0, (where 𝑝0 = 2 · 𝑞 as defined at the start of this sub-section): specifically the average 

results by matrix type. 

Tabla 5. Comparison of the optimum values (BnB) and those obtained by random selection 

Matrices Type 
BnB 

Random 

Selection 

1 0.99030 0.93163 

2 0.99373 0.95672 

3 0.99521 0.94828 

4 0.98380 0.89297 

5 0.98765 0.90904 

6 0.99116 0.92774 

7 0.99237 0.92709 

 

As expected, the random selection clearly gives rise to worse results than the optimum solution. In 

addition, it should be indicated that the randomly generated solution never coincides with the optimum 

solution. It should be pointed out that the random method has been designed to respect restriction 3 of the 

problem. Specifically, a variable is chosen at random from each one of the 𝑞 groups, subsequently 𝑝 –  𝑞 

variables are chosen, also at random, from among the remaining 𝑛 –  𝑞 variables. 

7. Analysis of a Real Case 

In order to show real applications of the model, an example with real data is commented on below, in an 

analysis of the evolution of Spanish economy. Specifically, in this case, Industrial Production Index (IPI) 

is taken as an endogenous variable and a set of 38 variables, describing different aspects of the Spanish 

economic, as the independent variables. These independent variables are divided in 6 different groups. The 

values correspond to monthly observations in the period 2005-2016 (both included). The table 6 shows the 
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groups and the variables composing each group. It must be highlighted that these variables and this division 

have been used in Bujosa et al (2013). Also the real data has been supplied by the Spanish Ministery of 

Economy and Competitiveness through its web of services (http://serviciosede.mineco.gob.es/Indeco/), 

specifically in the series of economic conjuncture data base. As it can be observed this website follows the 

same grouping. Also, as it is explained in Bujosa et al (2013), The Conference Board (TCB) has been 

working in the design of composite index by using a short list of variables from similar groups. 

In all, 144 cases were considered without the seasonal component. With the data described above, it is 

a matter of selecting the subsets of explanatory variables, verifying that there is at least one variable from 

each group, which obtains the best fit for 𝑅2. In our case, solutions will be obtained for all values of 𝑝 ≥ 𝑞. 

To do so, the BnB method was run and its variants for 𝑝0  =  𝑛. The cases corresponding to 8 first years 

(2005-2012) have been used to obtain these solutions (i.e. 𝑚 = 96). The remaining cases are used to observe 

the out-of-sample forecasting performance of the models previously obtained. 

Table 6. Variables used in the description of Spanish economy 

Group A: 

Gross fixed capital formation: consumption 

 1.   Cement consumption 

 2.   Construction production index  

 3.   Housing starts 

 4.   Building permits 

 5.   Total houses  

 6.   Official licenses 

 7.   Official licenses of buildings 

 8.   Official licenses of civil buildings 

Group B: 

Gross value added by industry 

 9.   Electricity consumption 

10.  Industrial new orders: general 

11.  Industrial new orders: Consumption goods 

12.  Industrial new orders: Intermediate Goods 

13.  Stocks of industrial orders 

14.  Availability of equipment goods 

Group C: 

Gross value added by services 

 

15.  Air traffic 

16.  Passengers entrance: tourists 

17.  Total tourists 

18.  Overnight accommodation 

19.  Transport of passengers by road 

20.  Indicator services activity 

21.  Fuel consumption 

22.  Workers in SS system: services sector 

Group D: 

Private consumption 

 

23.  Consumption goods availability 

24.  Real wage indicator  

25.  Car registrations  

26.  Motorcycle registrations 

27.  Retailing sales indicator 

28.  Consumer confidence index 

29.  Home situation in the last 12 months 

30.  Home situation over next 12 months 

31. Country situation in the last 12 months 

32. Country situation over next 12 months 

33. Commercial vehicles registration 

34. Wage income 

Group E: 

Labour market: affiliations to SS system 

35. Industry  

36. Construction 

37. Agriculture and fishing 

Group F: 

VAT revenues 
38. VAT revenues  

http://serviciosede.mineco.gob.es/Indeco/
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In table 7, the computation times for these methods are shown. As in the tests detailed in sub-section 

6.2, the Heuristic method was run before the execution of the variants InfHeur1 and InfHeur2. So, a column 

with the time (processor-time in seconds) of execution of the Heuristic method is also added.  

Table 7. Computation times employed with the real data 

Computational 

Time 

BnB PreSel1 PreSel2 InfHeur1 InfHeur2 Heuristic 

8996.628 4652.254 4321.578 3562.23 2945.562 7.847 

 
As may be appreciated in table 7, the exact methods (BnB method and its variants) expend and important 

amount of computational time. In any case these computational times corresponds with the computational 

times show in section 6.2 in similar size matrices. In table 8 and figure 3, the evolution is shown of the 

optimal values for the different values of 𝑝 ≥ 𝑞 (𝑞 = 6). 

Table 8. Evolution of the optimal values 

p 
Optimal 

value 
p Optimal value p Optimal value 

6 0.98751 17 0.99494 28 0.99631 

7 0.98982 18 0.99507 29 0.99641 

8 0.99084 19 0.99525 30 0.99645 

9 0.99175 20 0.99546 31 0.99647 

10 0.99248 21 0.99560 32 0.99648 

11 0.99296 22 0.99567 33 0.99649 

12 0.99339 23 0.99579 34 0.99649 

13 0.99396 24 0.99590 35 0.99649 

14 0.99431 25 0.99597 36 0.99649 

15 0.99456 26 0.99611 37 0.99649 

16 0.99478 27 0.99622 38 0.99649 

 

Figure 3. Evolution of the optimal values  

 

Both in table 8 and, above all, in figure 3, a relatively important “leaps” or improvements may be seen 

from 𝑝  = 6 to 𝑝 = 11 in the adjustment (from 0.98751 to 0.99296). From 𝑝 = 11 the improvements are 

insignificant. Therefore, if our intention is to look for models that on the one hand have a good adjustment, 

and on the other are simple, (in other words, have a moderately small number of explanatory variables), the 

most convenient options appear to be the optimal solutions corresponding to 𝑝 = 8, 9, 10 and 11. In fact, 

they imply choosing less than the third part of the original variables and their degree of adjustment is very 

similar to that obtained with all of the 38 original variables. Table 9 shows the variables that compose these 

4 optimal solutions (to simplify we denote them by 𝑆∗)- 
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Tabla 9. Variables in the optimal solutions 

p  𝑹𝟐 = (𝒇(𝑺∗)) Variables in 𝑺∗ 

8 0.99084 2    10   14   19   23   24   36   38 

9 0.99175 2    10   14   18   19   23   36   37   38 

10 0.99248 5    10   13   14   18   19   23   36   37   38 

11 0.99296 5    10   13   14   18   19   23   26   36   37   38 

 

As may be confirmed, in fact, at least one variable from each group has been tested, in these 𝑝 values. 

It can be observed the following variables appear in the four solutions: Industrial new orders: general (10), 

Availability of equipment goods (14), Transport of passengers by road (19), Consumption goods 

availability (23), Construction (36) and VAT revenues (38). 

As it has been commented above the cases corresponding to the period 2013-2016 are used to observe 

the out-of-sample forecasting performance of the models previously obtained. Specifically figure 4 

compares the evolution of these models with the evolution of the dependent variable IPI.  

 

 

 Figure 4. Evolution of the Spanish Industrial Production Index and the obtained models in the period 
2013-2016 

 

Also an adaptation of LASSO method has been implemented for this model. As it has been indicated 

in section 1.2 LASSO is based on selection variables by penalizing the coefficients. Figure 5 shows the 

results obtained by or BnB method, the LASSO adaptation and the Random Selection. The Branch and 

Bound method obtains the best results for all values of 𝑝; except for the largest ones in which ones the three 

methods obtain the same results. 
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Figure 5. Evolution of the values of solutions obtained by Branch & Bound method, LASSO adaptation and Random Selection 

8. Conclusions and Future Research 

In this work, a special variable selection problem for linear regression is analyzed. Specifically, the set of 

original independent variables is partitioned into disjoint groups and the set of variables that is selected 

should contain elements from all the groups. To the best of the authors’ knowledge there are no references 

in the literature about this specific variable selection problem in the context of linear regression.  

This model has a wide field of applications, for example in building composite indicators. The 

composite indicators should try to cover all points of view of the analyzed issue (economy, society, quality 

of life, nature, technology, etc.). Each of these different points of view can be identified with a group of 

variables. So that, the composite indicators should contain at least one variable from each group.  

In this work, a Branch & Bound method has been proposed to obtain optimum solutions. As well as having 

analyzed in detail some strategies and ideas that can accelerate this method (i.e. reduce its calculation time). 

Specifically, two strategies have been considered: the first one proposes “preselecting those variables, in 

the branching process, that “help” to fulfill the restrictions of the model; the second one proposes to use the 

information provided by a previously executed fast heuristic. In the computational tests, it is noted that both 

strategies combined are efficient. Important and significant reductions in calculation time are achieved, 

specifically in the largest analyzed problems. 

Next, we explain our future related research: 

• The heuristic algorithm used in this work is very simple, as may be seen in section 4. In future works, 

the question of whether more sophisticated heuristics can obtain even more precise information could 

be analyzed and whether this information can bring about an even larger reduction in the computational 

time. 

• One important shortcoming of our proposed methods is inherent to all exact methods: the analysis of 

the evolution of computing times indicates that for problems with more than 45-50 variables these 

times could be excessive. This is because of the variable selection (or feature selection) problems are 

NP-Hard, as explained in Introduction. In future works, the design of different methods based on 

metaheuristic strategies that may be used in larger-size problems will be analyzed. 
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Appendix A 

 

Corollary 

∀ 𝑝, 𝑝’ ∈ {1, … , 𝑛 }, if 𝑝 < 𝑝’ then  𝑔(𝑝) ≤ 𝑔(𝑝’). 

 

Proof:  

By simplifying, we can define 𝑝’ = 𝑝 + 1,  

Three cases may be distinguished: 1) 𝑝 < 𝑞 − 1;  2) 𝑝 = 𝑞– 1 and 3) 𝑝 ≥ 𝑞. 

In both cases by simplifying, we can define 𝑆𝑝
∗ = {1, . . , 𝑝}, and 𝑆’ = {1, … , 𝑝, 𝑝 + 1}.  

 

- First case: 𝑝 < 𝑞– 1 

 

In this case, with no loss of generality, we assume that 1 is an element of group 𝐺1, 2 is an element of group 

𝐺2, …, 𝑝 is an element of group 𝐺𝑝 and 𝑝 + 1 is an element of group 𝐺𝑝+1. In this way, 𝑆𝑝
∗ verifies the 

restriction (3) as  |𝑆𝑝
∗| = 𝑝 < 𝑞 and |𝑆𝑝

∗ ∩ 𝐺𝑟| ≤ 1, 𝑟 = 1, . . . , 𝑞; in other words, it contains at most an 

element from each group. 

 

Obviously 𝑆𝑝
∗ ⊂ 𝑆′. In addition |𝑆′ ∩ 𝐺𝑟| = 1 if 𝑟 = 1, … , 𝑝 + 1 and |𝑆′ ∩ 𝐺𝑟| = 0 if 𝑟 = 𝑝 + 2, … , 𝑞. 

Restriction (3) is therefore satisfied, as |𝑆’| = 𝑝 + 1 < 𝑞 and |𝑆′ ∩ 𝐺𝑟| ≤ 1, 𝑟 = 1, . . . , 𝑞. 

 

Therefore:  

𝑔(𝑝) = 𝑓(𝑆𝑝
∗) ≤ 𝑓(𝑆’) ≤ 𝑚𝑎𝑥 {𝑓(𝑆) ∶  𝑆 ⊂ 𝑉, |𝑆| = 𝑝 + 1, |𝑆 ∩ 𝐺𝑟| ≤ 1, 𝑟 = 1, . . , 𝑞} = 𝑔(𝑝 + 1) 

 

- Second case 𝑝 = 𝑞– 1 

 

The demonstration is similar to the first case: with no loss of generality, we assume that 1 is an element of 

group 𝐺1, 2 is an element of group 𝐺2, …, 𝑝 is an element of group 𝐺𝑝 and 𝑝 + 1 is an element of group 

𝐺𝑝+1. In this way 𝑆𝑝
∗ satisfies the restriction (3). 

 

Obviously 𝑆𝑝
∗ ⊂ 𝑆′. In addition |𝑆′ ∩ 𝐺𝑟| = 1 if 𝑟 = 1, … , 𝑞. Restriction (3) is therefore satisfied, as |𝑆’| =

𝑝 + 1 = 𝑞 and |𝑆′ ∩ 𝐺𝑟| ≠ 0, 𝑟 = 1, . . . , 𝑞. 

 

- Third case: 𝑝 ≥ 𝑞 

 

Obviously,  𝑆𝑝
∗ ⊂ 𝑆′. In addition, ′ ∩ 𝐺𝑟 ≠ ∅ , because 𝑆𝑝

∗ ∩ 𝐺𝑟 ≠ ∅, 𝑟 = 1, . . . , 𝑞.  

 

Therefore  

𝑔(𝑝) = 𝑓(𝑆𝑝
∗) ≤ 𝑓(𝑆’) ≤ 𝑚𝑎𝑥 {𝑓(𝑆): 𝑆 ⊂ 𝑉, |𝑆| = 𝑝 + 1, 𝑆′ ∩ 𝐺𝑟 ≠ ∅, 𝑟 = 1, . . , 𝑞} = 𝑔(𝑝 + 1). 

 


