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Abstract
Corn is a very important agricultural product, however, some pests may cause damage to the corn productivity such as Spodoptera 

frugiperda, which prevents the plant from growing in a regular manner. Since the indiscriminate use of the pesticide may cause an 
increasing resistance of the insect besides an environmental damage, it is important to estimate the areas and the dominant directions 
where the insect may propagate. The main aim of this work was to study the spreading of the fall armyworm in a commercial agricultural 
area in the South of Brazil. For this, we considered a set including the location of each corn plant attacked by the insect. In particular, we 
assumed that the spatial locations given by the geographic coordinates constitute a spatial point pattern following a stationary Poisson 
point process. In order to detect the presence of possible dominant directions in the distribution of the fall armyworm infestation 
we studied the anisotropic features of the data by using some second-order spatial point-pattern analysis techniques such as the K 
directional test, the wavelet-based test, and the quadrat counting test. All the results showed that spatial distribution of fall armyworm 
may follow a clustered Poisson point process with the presence of an evident anisotropy mainly due to the shape and the distance 
between corn plants of the experimental area. These preliminary results could be used for reducing and optimizing the use of pesticides 
with a consequent decrease of the environmental impact.
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Introduction

The fall armyworm is one of the pests that cause the 
greatest damage to the corn (Zea mays L.) crop, leading 
to a loss of about 34% of the grain production (Cruz et 
al., 1999). The insects feeds in the whorl of corn from 
its emergence to the formation of spikes, and if not 
controlled causes the death of the plant. In the world, 
corn is one of the most valuable cereal grain crop, it 
is used for both human and animal consumption. Corn 
is also used to make numerous non-food products. 
It can be cultivated in a large part of the world, and 
Brazil is a big world producer of the grain. Given 
its usefulness, it is extremely important to take into 

account its productive potential, resistance to diseases, 
types of soil besides the climatic conditions concerning 
to optimize the yield of grain crops. 

In general, the pest control is made through the 
chemical pesticides, which besides polluting the 
environment also cause the increasing of the resistance 
of the insect. For this reason control techniques for the 
insect are researched. For example Sena Jr. et al. (2003) 
developed an algorithm for identifying damaged corn 
plants by the fall armyworm using digital colour images. 
Yu et al. (2003) studied detoxification capability in 
larval fat bodies and midguts, and adult abdomens of 
insecticide-resistant and -susceptible fall armyworms. 
They concluded that the insecticide resistance observed 
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was due to multiple resistance mechanisms. Niu et al. 
(2013) studied the resistance of the fall armyworm to 
certain types of protein with regards to propose a hybrid 
resistant to the caterpillar. In Florida and Lousiana 
Yang et al. (2013) determined the susceptibility of S. 
frugiperda to a pyramided Bt corn hybrid containing 
Agrisure®Viptera™ 3111 corn.

Statistical methods based on spatial point processes 
provide useful tools for points randomly distributed 
on the plane or in space in many fields of knowledge, 
such as ecology, biology, epidemiology, seismology, 
archaeology, astronomy, and geography. However, 
most of the analyses are made assuming isotropy of the 
process without an adequate confirmation (Guan et al., 
2006). This fact is often due to a lack of studies that 
consider the investigation of the isotropy in this type 
of data. In ecology, seismology, and biology, Guan et 
al. (2006), Mateu & Nicolis (2015) and Rajala et al. 
(2016) presented a few studies for anisotropy. The first 
one, proposed a formal test for isotropy based on the 
asymptotic joint normality of the sample second-order 
intensity function. Mateu & Nicolis (2015) proposed a 
wavelet-based test, and Rajala et al. (2016) developed 
a two-stage non-parametric method for quantifying 
geometric anisotropy for patterns that are compressed 
or stretched. 

The use of spatial point pattern analysis in agriculture 
was considered by Spósito et al. (2007), who studied 
the disease of the black spot in an orange crop in Brazil. 
They evaluated the point pattern of the infected trees 
by three different methods, the binomial dispersion 
index, the Ripley K function and Monte Carlo test, and 
concluded that the disease shows a clustered behavior 
in the region under study. Ribeiro Jr. et al. (2009) used 
point processes to detect and model specific patterns 
in the occurrence of the thrips disease in onion. They 
used the Mantel test to detect the point pattern and 
later described the pattern by a mixed spatial Poisson 
process with a geostatistical random component. They 
also obtained maps of the prediction of the levels of 
susceptibility to infestation in the study area.

In this work we study the spreading of the fall 
armyworm along an agricultural experimental area at 
Paraná State, Brazil, comparing methods of anisotropy 
by means of the spatial point patterns. The main 
purpose is to examine its spatial distribution along the 
study area, investigating possible dominant direction 
of infestation of the fall armyworm, and if the pattern 
presents characteristics of clustering, regular or random 
spreading. This knowledge provides the farmer a more 
adequate management of his crop by considering the 
characteristics of the dispersion of the insect along the 
area in consortium with the techniques of precision 
agriculture. The lack of literature that incorporates 

spatial point processes and agriculture motivated this 
work.

Material and methods 

The data set

The experiment was carried out in an agricultural 
commercial area of 27 ha located in the city of Cascavel, 
Paraná state, Brazil (approx. 24.95o S, 53.57o W and 
650 m asl). Local soil is classified as Rhodic Hapludor 
(Soil Survey Staff, 2014). The climate of the region is 
classified as mesothermic and super humid temperate 
with average annual temperature around 21oC.  A 
representation of the location of the experimental area 
is presented in Fig. 1a.

For the data sampling, we considered as a possible 
event each plant of corn attacked with the fall 
armyworm in the experimental area during the crop 
year 2015/2016. For every observed infected plant we 
registered the geographical coordinates as an event of 
interest, which were obtained using a GEOEXPLORE 
3 GPS positioning system receiver in a Universal 
Transverse Mercator (UTM) coordinate system.

The study area (Fig. 1) included 9360 corn plants of 
which 1303 were infected by the S. frugiperda. This 
study area was cultivated with the hybrid Pioneer 
30F53YH variety, developed by the company DuPont 
Pioneer, under direct seeding system, with a population 
of 82,222 plants/ha. Along the season we applied 
1095 kg of fertilizers (8% N, 20% P and 18% K). The 
planting of the seeds began on August 28, 2015 and 
ended on August 31, 2015 and was performed with line 
spacing of 0.45 m and between plants of approximately 
0.33 m. The sampling was made on October 15, 2015, 
when the corn crop was in vegetative growth stage.

Statistical analysis of anisotropy

A spatial point pattern is a stochastic mechanism 
that generates a countable set of events xi in the plane 
(Diggle, 2003). Events can be scattered in the region 
of the plane in three forms of relationship, namely 
completely spatial random (CSR) as represented in Fig. 
2a, regular in Fig. 2b, and clustered in Fig. 2c. In spatial 
point analysis, the main objective is to identify possible 
properties and forms of relationship of the phenomenon 
under study taking into account its spatial sites, through 
geographical coordinates.

A spatial point process is considered to be stationary 
under translations if the distribution is unchanged when 
the origin of the index set is translated (Ripley, 1981; 
Diggle, 2003; Illian et al., 2008), and is said to be 
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isotropic if its distribution is invariant under rotations 
about the origin. Otherwise the process can be said to 
be anisotropic. The assumption of stationarity simplifies 
drastically the statistics of point patterns (Baddeley et 
al., 2006) because the chance of observing some point 
configuration at a specific location is independent of the 
location. Usually, the assumption of isotropy is made 
by simpler interpretation and ease of analysis (Guan et 
al., 2006). In other words, stationarity implies that it 
is possible to estimate some properties of the process 
from a single realization on the region A, because these 
properties are the same in different, but geometrically 
similar, sub regions of A. Isotropy means that they are 
invariant with respect to directions (Mateu & Nicolis, 
2015). In the following, we assume that the process N 
is stationary, but not necessarily isotropic. The simplest 
example of a stationary and isotropic point process is 
the homogeneous Poisson point process. 

Figs. 2(a), 2(b) and 2(c) show simulated CSR, regular 
and cluster spatial point patterns, respectively. The 
difference of them is the distance between the points. 
For the regular pattern the distances between neighbor 
points appear to be constant, while for the cluster 
pattern there are groups of points over the region. In the 
CSR pattern the distance between the points is random.  

Consider N, a two-dimensional spatial point process, 
where each event is given by             . Let A be the region 
where the points are taken, denote as |A| the area of this 
region, and as N(A) the random number of points in 
A. The intensity function may be described by the first 
order property, given as

     	      	                 	

where E[.] is the expected value; N(.) is the number of 
events in the plan region; dx is a small region containing 
the event x; |dx| is the area of the region dx. For a stationary 

process λ(x) = λ , where λ is the average number of events 
per unit area (Daley & Vere-Jones, 2002).

The estimation of the first-order property, or intensity 
of the point pattern, is usually performed through kernel 
functions (Baddeley et al., 2006, 2015),

where k(.) is the kernel function with ʃ k(u)du = 1, and 
h>0 is the smoothing parameter. The intensity estimate 
at the point x depends only on the spatial relationship 
between x and the elements of the sample, xi (i = 1, …, 
N(A)), quantified by the metric embedded in the kernel 
function. In order to estimate λ(x) by using the kernel 
function as described in Eq. [2], we used the kernel2d 
function of the package splancs (Rowlingson & Diggle, 
2016) represented by Figs. 2d-2f. The kernel intensity 
function estimation using quartic smoothing parameter, 
h=0.2, was performed for each simulated pattern 
and it is shown in Figs. 2d, 2e and 2f corresponding 
to the estimation of the first-order property for each 
type of simulated point pattern. It is worth to note that 
the intensity seems almost constant for the simulated 
regular pattern as in Fig. 2e, and for the simulated 
cluster pattern there are regions with different values of 
intensity as in Fig. 2f.

The second-order properties of a point process can 
be observed using the covariance between events of 
two areas. The second-order intensity provides a way 
of describing the relationship between pairs of points 
and is defined as

 	                   	  

where dx is a small region containing the event x; dy is 
a small region containing the event y and |dx| and |dy| 

Figure 1. Experimental area in Cascavel, Paraná State, South of Brazil (a), and satellite image of experimental area with the polygon 
of the study area (b).

[3]

2R∈ x
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2R∈ x
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distribution (Illian et al., 2008); for a CSR process 
we have K(r) = πr2. For a cluster process the points 
have more neighbors than expected under CSR, and 
therefore the estimates for K(r) will be greater than πr2. 
On the other hand, for a regular pattern, the estimates of K(r) 
will be less than πr2 (Diggle, 2003). Fig. 3 represents the K 
function (Eq. [4]) and the empirical envelope of 95% for 
each pattern simulated in Figs. 2a, 2b and 2c, respectively.

A directional counterpart of Ripley K function was 
proposed by Rajala et al. (2016) as a non-parametric 
methodology to study anisotropy in spatial point 
patterns. Instead of counting all data points falling 
inside a circle of radius r centered at a data point, we 
could replace the circle by another geometrical shape 
(Baddeley et al., 2015). For a unit vector u, the conical 
directional K-function is defined as

        

where λ is the intensity, and Cu(r,θ) denotes a double 
cone in the direction u with an slant height of length r 
and an apex angle of size 2θ centered in 0 (Redenbach 
et al., 2009). 

The function is obtained by counting how many 
pairs of events in the pattern have both their vector 
of difference angle less than θ radians from direction 
u and difference vector length less than range r. The 
procedure consists in comparing each of the directions 
that is defined by the researcher with the function under 
CSR. In order to do this, it is necessary to assume that 

are the areas of regions dx and dy, respectively. For a 
stationary process, λ2 (x,y) = λ2 (x-y), and for a stationary, 
isotropic process, λ2 (x-y) = λ2 (r) where  r =||x-y||  is the 
Euclidean distance (Daley & Vere-Jones, 2002).

Ripley  (1976,  1977)  presented  an  alternative 
characterization of the second-order properties (Eq. [3]) of 
a stationary and isotropic process, given by 

 

The term λK(r) is the mean number of points other than 
the typical point in a ball of radius r centered at the typical 
point. The K :[0, ∞ ) → [0, ∞) function is estimated as 

  	                   	    

where dij is the distance between the i-th and j-th points, 
I(x) is the indicator function with the value 1 if x is true 
and 0 otherwise, and λ is the estimate of Eq. [1].

This function has shown its importance as a spatial 
dependency summary since it allows quantifying 
spatial dependence between different regions of the 
process, and is also known as reduced second-order 
analysis. It has been widely used in two-dimensional 
point processes because it enables the detection of the 
point pattern in different distance scales simultaneously 
and the observed point pattern can be compared to 
known stochastic process models for different point 
configurations (Diggle, 2003).

The shape of K(r) relative to that of the CSR 
provides valuable information on the point process 

[5]

Figure 2. Simulations of Poisson spatial point patterns, random (a), regular (b) and cluster (c). Esti-
mated intensity function for random (d), regular (e) and cluster simulated pattern (f).

(a) (b) (c)

(d) (e) (f)

λ̂
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Monte Carlo simulation determines the significance of 
the directional wavelet coefficients. By assuming that 
the null hypothesis is isotropy, an isotropic random 
point pattern should be expected to have the same value 
of the directional scalogram for all possible directions. 
Nicolis et al. (2010) considered the logarithm of the 
variance of the wavelet coefficients over all scales as 
test statistic,

                     
                        

An alternative method to study the isotropic 
behavior of the data set is the histogram of the k-th 
nearest neighbor angle. For each event in the point 
pattern, we calculate the distance to the k-th nearest 
neighbor and the azimuth angle α between this pair of 
events where α ϵ [-π, π]. The isotropic behavior of the 
data set is done by comparison with the theoretical 
value 1/2π where peaks above this theoretical value 
indicate a possible dominant angle direction of 
anisotropy. The histograms can be used to investigate 
in which nearest neighbor the process reaches 
isotropy, that is, when there are no more peaks in 
the histogram. We used the knnangle function of 
the Kdirectional package (Rajala, 2017) to build the 
histograms.

To confirm the form of relationship of the point 
pattern we calculated the quadrat counting test 
(Illian et al., 2008). It is a test of CSR that uses 
the  χ2  statistic based on quadrat counts where the 
study area A is divided into sub regions called 
quadrats (A1, A2, …, Aq) of equal area. The test 
counts the number of points that fall in each 
quadrat nj = N(A ∩ Aj) for j=1, ..., q. Under the 
null hypothesis of CSR, the nj are independent and 
identically distributed Poisson random variables. 
The test statistic is given by

                                                   

where s2 is the sample variance. If the distribution is 
Poisson, the variance is exactly the mean under CSR 

anisotropy is geometrical, i.e. a result of compression 
or stretching and modeled by a linear transformation 
comprised of scaling and rotation (Rajala et al., 
2016).

Mateu & Nicolis (2015) developed an anisotropy 
wavelet-based test by using the empirical logarithm 
of the directional scalogram, assuming that under the 
null hypothesis of isotropy a random point pattern is 
expected having the same value of the directional sca-
logram for all possible directions. Let   f(x), x   R2,  be a 
function. The continuous directional wavelet transform 
for scale a and orientation θ is given by

 

where the over line denotes complex conjugate. There are 
many different directional wavelets   Ѱ a,b (x, θ) proposed in 
literature, see for example Neupauer & Powell (2005). 

Kumar (1995) proposed the function
                                

with regard to identify the behavior of the process in 
different directions. η(a, θ )characterizes the distribution 
of the energy at different scales and directions. The 
directional scalogram is obtained from the variance of 
wavelet coefficients for each scale and each direction, 
given by         

Mateu & Nicolis (2015) applied the fully anisotropic 
Morlet wavelet transforms given in Neupauer & Powell 
(2005) to the intensity function   (x), estimated by the 
box counting method, where x denotes locations. Let m 
be the possible directions          with i=1, …, m; L 
possible scales aj with j=1, …, L, and N(A) spatial points bk, 
k=1, …, N(A). The directional wavelet transforms                                             	
are conducted for a range of scales and orientations at 
all positions in the domain of   (x). Denote by         the 
variance of the corresponding wavelet coefficients for a 
particular direction θi and scale aj,

(a) (b) (c)

Figure 3. Ripley K function for the simulated point patterns: random (a), regular (b) and cluster (c). The red 
dotted line represents the theoretical CSR case                  and the grey region is the empirical envelope of 
95%. The continuous black line represents the observed data. 

2)( rrK π=

[6]
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s2 /   = 1 . Moreover, if s2 /   < 1 then there is too little 
variation among quadrat counts, suggesting regularity 
rather than randomness. Similarly, if s2 /     >1 there is too 
much variation among counts, suggesting clustering. 

For the data analysis we used the software R 
version 3.3.3 (R Team, 2017) and the R packages 
spatstat version 1.47-0 (Baddeley & Turner, 2005) and 
Kdirectional version 1.01 (Rajala, 2017).

Results

The Fig. 1a represents the location of the corn plants 
attacked by the S. frugiperda in the study area. The 
scattering of the points along the region does not seem 
to present any evident dominant direction for the attack 
of the fall armyworm. 

By applying the kernel method of Eq. [2] to estimate 
the intensity function, we observed some directional 
clustering, corresponding approximately to the angles 
of 135 and 45 degrees (Fig. 4). The method allowed 
to see how the concentration changed in the studied 
area but it was not very useful for detecting anisotropic 
patterns since it is based on isotropic kernel functions. 

A first study of anisotropy is performed by the 
histogram of the nearest neighbor angle, which shows 
a descriptive behavior of the isotropy of the point 
pattern. Fig. 5 represents the histograms for the first 
and third nearest neighbor angle, respectively. The 
histogram obtained for the first nearest neighbor 
angle (Fig. 5a) shows two main directions given by 
the highest peaks. The first direction corresponds 
approximately to the angles 135 and 315 degrees, 
and the second highest peaks due to the angles 45 and 
217 degrees. It is worth to note that these directions 
correspond to the directions used by the planter 
machine. When considering the histogram of the third 
nearest neighbor angle (Fig. 5b), there were only 
two main dominant directions, 135 and 315 degrees, 
however there was a reduction in the density value. 
We also noted that the process tended to be below the 
theoretical line to all the others degrees. 

With regard to correct the anisotropy observed 
in the histogram analysis, we rotated the data set by 
45 degrees clockwise. The rotated point pattern is 
represented by Fig. 6b. And, in order to eliminate the 
border effect of the design of the experimental area, we 
selected a number of points in the center of the area 
which is represented by Fig. 6c.

In the following, we calculated the directional K 
given by Eq. [5], and the wavelet test of Eq. [7] to the 
three data sets for comparing the isotropy/anisotropy 
features. The second-order property, as defined in 
Eq. [3], is estimated by the directional K function. 

We used a cone shape with angles 2θ = 0, 45, 90 
and 135 degrees with respect to the x-axis, since 
these directions are normally used in the literature to 
study anisotropy. Fig. 7 represents the directional K 
function for each pattern and each of the considered 
directions with an empirical envelope of 95% for the point 
pattern under the null hypothesis of CSR. It is evident for 
the original data strong clustering for each direction, as 
visualized by the directional K function in Fig. 7a. We 
observed that the most dominant direction of anisotropy 

Figure 4. Estimated intensity function using quartic kernel 
with smoothing parameter h=2 and a regular grid of 400 
× 400 pixels.

1/2 =ns

1/2 =ns1/2 =ns

Figure 5. Histograms of the nearest neighbor angle for the 
first neighbor (a), and third neighbor (b). For this graph, 
0 corresponds to 0o, 0.79 to 45o 1.57 to 90o, 2.36 to 135o, 
5.50 to 315o and 6.28 to 360o.

(a)

(b)
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Figure 6. The original point pattern (a), the rotated point pattern by 45o clockwise (b) and a cut off center of the rotated 
pattern (c).

(a) (b) (c)

Figure 7. K directional function for the original (a), the rotated (b) and the cutted off (c) patterns with an empirical enve-
lope of 95% under the null hypothesis of CSR for each one. The distance r on the x-axis is given in meters.

Figure 8. Directional scalogram for the original pattern (a), rotated pattern (b) and central pattern (c) using the fully 
anisotropic Morlet wavelet. The wavelet transforms have been evaluated on a grid of size 64 × 64 pixels, for each 
direction           (x axis), and a=1… 30 scales (y axis). 

(a) (b) (c)

(a) (b) (c)

was 135o, the second most dominant direction was 45o. 
The other two directions (0o and 90o) showed almost the 
same behavior. Considering the rotated pattern shown 
in Fig. 7b, we observed a reduction of anisotropy and a 
weak clustering. In this case the most dominant direction 
of anisotropy was 90 degrees, followed by the zero degree 
direction. By taking the rotated center region of the study 
area, represented by Fig. 7c, we see a slight clustering 
and a very weak anisotropy. However, all the considered 
directional K functions were outside of the envelope, so we 
could assume that the process was not completely random.

Fig. 8 represents the directional scalograms for our 
data sets by applying the directional Morlet wavelet 
transform for each degree (from 1 to 180) and scale 
(from 1 to 30). For the original point pattern (Fig. 8a), 
we found an evident anisotropy in the direction of 
approx. 135 degrees in the highest level of resolutions 
and spreading on a larger angle range (between 80 

and 140 degrees) in the lowest levels (close to a=30). 
For the rotated point pattern (Fig. 8b), the directional 
scalogram showed a weak anisotropy with a dominant 
direction at the 80 degrees approximately. Finally, the 
scalogram evaluated on the central point pattern 
data (Fig. 8c) did not show any dominant direction.

We then performed the wavelet-based test by using 
the empirical logarithm of directional scalogram as 
described in Eq. [6]. The blue line in Fig. 9 represents 
the values of T(θi), i=1, … , 180 for the S. frugiperda 
data set. In order to test if the process was CSR we 
simulated 1000 isotropic Poisson point patterns 
and we evaluated the 2.5% and 97.5% of the total 
empirical distribution (red lines of Fig. 9). For the 
original data set (Fig. 9a), the T statistic is out of the 
95% empirical confidence interval for all the angles 
showing a peak around the angle 135. In this case the 
test clearly rejects the hypothesis that the process was 

K
d
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isotropic. When we performed rotation of the data set 
by 45 degrees, the resulted T statistic (Fig. 9b) did 
not present significant dominant directions except 
for the degrees in the range 80-85 which were 
slightly out from the empirical confidence interval. 
By observing the T statistic evaluated on the 
central rotated pattern (Fig. 9c), there were not any 
dominant directions and the considered point pattern 
seemed completely random, confirming the results 
obtained by the K-directional analysis. We think that 
the anisotropy of the original data set may be due 
to the shape of the experimental area: it seems that 
the insects tend to propagate on the closest plants. 
By correcting the anisotropy, the wavelet analyses 
showed a second dominant direction close to 80 
degrees that was not evident by the K-directional test. 
Since the centered data set seemed CSR we thought 
that the anisotropy of Fig. 9b was localized close 
to the border of the experimental areas. The main 
advantage of the wavelet test respect other statistical 
methods is that it is able to detect local anomalies of 
the data at different levels of resolutions. 

In order to analyze the clustering feature of the data 
we applied the quadrat counting test, as defined by 
Eq. [8]. Table 1 shows the obtained results. We should 
reject CSR hypothesis and conclude that our spatial 
point pattern was clustered. The results showed that 
for the vegetative growth state of the corn, in which 
the data sampling was performed, the fall armyworm 
presented clustering behavior.

Discussion

The knowledge of the population spreading of 
S. frugiperda, the pest that causes a great deal of 
damage to the corn crop, is extremely important 
for the development of efficient techniques of both 
monitoring and crop management. In this research 
we applied spatial point processes techniques to study 
the dispersion of the fall armyworm in an agricultural 
commercial area.

From the estimation of the intensity function of 
the fall armyworm data (Fig. 4) we observe a major 
concentration of this insect in the zone close to the 
left border of the experimental area. However other 
small regions seemed characterized by clusters. The 
clusterization of the armyworm point pattern is also 
confirmed by the quadrat counting test (Table 1).

Our results also showed a significant anisotropy 
when considering the original data set. Both the 
K-directional and the wavelet based methods detected 
anisotropy along the directions 45 and 135 degrees, 
probably due to the design given by the planter 
machine and to the shape of the area. With the view 
to correct this anisotropy, we rotated the pattern by 45 
degrees clockwise. The resulting rotated point pattern 
did not present any dominant directions by using the 
K-directional method. Instead, the wavelet method 
detected a slight anisotropy around the angle 80. The 
different result obtained by the wavelet method respect 
the K-directional is probably due to the ability of the 

Figure 9. Directional wavelet test. Values of the statistic )( iT θ   i=1, ..., 180 for the Spodoptera frugiperda data set (solid 
line) and the 95% empirical confidence interval (red lines) obtained by simulating 1000 point pattern under the CSR hy-
pothesis, with λ=1303  for the original (a), rotated (b) data set, and λ=557 for the centered pattern (c).

(a) (b) (c)

Table 1. Results for quadrat counting test for different numbers of quadrats 

Quadrats orig
2χ d.f. 2/1

2
αχ − rot

2χ d.f. 2/1
2

αχ − cent
2χ d.f. 2/1

2
αχ −

8 135.36 45 65.41 82.38 63 86.83 75.79 63 86.83
12 210.15 93 121.57 198.57 142 176.88 151.25 143 178.00
16 335.78 158 194.70 335.15 252 297.86 267.98 255 301.12

d.f.: degrees of freedom;            ,          and           are the       quadrat counting statistic test for the original, rotated and central pattern, 
respectively; α = 0.05.

orig
2χ rot

2χ cent
2χ rot

2χ
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wavelet transform to locally analyze the point pattern at 
each angle and resolution scale.

In order to avoid any border effect, we selected a 
central subset of the rotated pattern and we estimated 
the K-directional and the directional scalogram on this 
last data set. In this case both methods did not detect 
any dominant directions and showed the completely 
randomness of the process. The difference between 
anisotropy studies techniques presented here consists of 
the number of resolution scales, once the wavelet test 
was able to identify dominant directions at scales finer 
than a K directional function. However, when comparing 
both results, we reached the same conclusion. To our 
knowledge, there are no results in the literature about the 
study of anisotropy for spatial point patterns in agriculture, 
for this reason it is not possible to make comparisons 
with other results. However, there are some works which 
analyze the clustering property of the S. frugiperda (e.g., 
Farias et al., 2008 and Rios et al., 2014). We think that 
our results on clustering are in general coherent with those 
of Farias et al. (2008) and Rios et al. (2014), although in 
our study we did not take into account the size of the fall 
armyworm. In particular, Farias et al. (2008) found that 
the spreading of the S. frugiperda for small larvae present 
aggregated behavior, and it becomes increasingly random 
with larval growth. Hernández-Mendoza et al. (2008) also 
concluded that the spatial distribution of the fall armyworm 
was strongly associated with the corn phenological stages. 
Since the experimental area considered in this work 
constitutes a small part of the full-size corn crop field, we 
think that more consistent results on anisotropy could be 
reached if using a larger area. We also think that better 
results on the S. frugiperda spatial distribution could be 
obtained by including the size of this insect. Since our 
data base did not contain this information we will consider 
these issues in future works together with the use of high-
resolution satellite or drones images for having a larger 
sampling area. Finally, we are planning to improve the 
estimation of the intensity function by using estimation 
techniques based on directional kernel and directional 
wavelet functions.
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