
Escobar et al.

ANN. MULT. GPU PROG.

Assessing Energy Consumption

and Runtime Efficiency of Master-

Worker Parallel Evolutionary

Algorithms in CPU-GPU Systems

Juan José Escobar1*, Julio Ortega1, Antonio

Díaz1, Jesús González1, Miguel Damas1

Abstract

Thanks to parallel processing, it is possible not only to
reduce code runtime but also energy consumption once
the workload has been adequately distributed among the
available cores. The current availability of heterogeneous
architectures including GPU and CPU cores with different
power-performance characteristics and mechanisms for
dynamic voltage and frequency scaling does, in fact,
pose a new challenge for developing efficient parallel
codes that take into account both the achieved speedup
and the energy consumed. This paper analyses the
energy consumption and runtime behavior of a parallel
master-worker evolutionary algorithm according to the
workload distribution between GPU and CPU cores and
their operation frequencies. It also proposes a model that
has been fitted using multiple linear regression and which
enables a workload distribution that considers both
runtime and energy consumption by means of a cost
function that suitably weights both objectives. Since
many useful bioinformatics and data mining applications
are tackled by programs with a similar profile to that of
the parallel master-worker procedure considered here,
the proposed energy-aware approach could be applied in
many different situations.

Keywords: Energy-aware workload distribution;
heterogeneous parallel architectures; master-worker parallel
evolutionary algorithms

1. Introduction

The availability of heterogeneous architectures enables
codes to take advantage of different levels of parallelism
to improve efficiency in terms of speedup. More
specifically, in current heterogeneous architectures,
graphic processing units (GPU) usually provide massive
data-level parallelism (DLP) together with thread-level
parallelism (TLP), which can also be used with multicore
microprocessors that include superscalar cores (or CPU
cores) implementing instruction-level parallelism (ILP).
Nevertheless, in addition to enabling performance
efficient parallel codes to be executed, heterogeneous

*Correspondence:

jjescobar@ugr.es

1
Dept. of Computer

Architecture and Technology,

CITIC, University of Granada

(Spain)

Full list of author information is

available at the end of the

article

Annals of Multicore and GPU Programming, vol. 4 (1). ISSN: 2341-3158. 23

mailto:jjescobar@ugr.es

Escobar et al.

architectures including GPU and CPU cores could also constitute an efficient
approach for saving energy, once various challenges arising from CPU-GPU
heterogeneous computing have been overcome. In fact, papers such as [1] consider
the efficient cooperation of CPU and GPU to be an important requirement for
achieving exascale performance. More specifically, in the future realm of exascale
platforms, power and energy efficiency are central issues as indicated in [2] which
cites a 2010 report by the US Department of Energy (DOE) which estimates that the
annual power cost of operating an exascale system implemented with current
technology to be about 2.5 billion dollars per year.

The current trend for tackling energy efficiency problems while preserving the
improvement in performance is represented by nodes which include various
superscalar multicore microprocessors (CPU cores) and GPUs (although other
accelerators such as FPGAs, vector units, etc. are also possible). Some of the
issues listed in [1] to be considered when developing performance-energy efficient
codes for heterogeneous CPU-GPU systems are the size of CPU and GPU
memories, CPU-GPU memory-bandwidth limitations, load balancing between the
GPU and CPU cores, the overlapping of data transfer with CPU and GPU
computation, and the characteristics relating to the amount of parallelism and branch
divergence of the application in question.

Many of these issues have been previously analyzed for different applications. In this
paper, we provide an insight into the development of a high-performing, energy-
efficient workload distribution of parallel master-worker evolutionary algorithms in
platforms where GPU and CPU cores are considered equal for sharing the
application workload. In the type of evolutionary procedure considered here, the
majority of the workload corresponds to the fitness evaluation of the solutions that
constitute the population evolved through generations (iterations) of the algorithm.
The way that solutions are allocated to GPU and CPU cores will therefore determine
the efficiency in performance and energy behavior of the parallel algorithm once a
suitable workload distribution among the available cores has been attained.

Following on from this introduction, Section 2 describes a cost function that takes
into account the two goals of runtime and energy consumption to direct the search
for efficient workload distributions; Section 3 explores our target application, i.e.
parallel master-worker evolutionary algorithms, details our experimentation, and
analyzes the results obtained; Section 4 describes the main contributions in this area
and references the most relevant papers; and Section 5, outlines our conclusions.

2. A cost function for power and performance aware scheduling

The problem to hand is to find an efficient workload distribution among the available
processors which is efficient both in terms of the speedup achieved and energy
consumption. In order to reach this goal, the required scheduling procedure should
be able to locate tasks on the available processors according to predictions about
their computational cost and the corresponding energy consumption. The scheduling
procedure therefore requires certain information about the performance and energy
consumption characteristics of the processors and the other elements in the system

where the tasks are executed. In Equation 1, the functions t*(𝐶𝑖 , 𝑓𝑗,𝑘(𝑖, 𝑗 = 1, . . 𝑝), (𝑘 =

1, . . , 𝐹𝐿)) and E*(𝐶𝑖 , 𝑓𝑗,𝑘(𝑖, 𝑗 = 1, . . 𝑝), (𝑘 = 1, . . , 𝐹𝐿)), respectively, correspond to

models for the running time and energy consumption in terms of the workloads (in

cycles) of the different p tasks, 𝐶𝑖 (𝑖, 𝑗 = 1, . . 𝑝), and the operating frequencies
𝑓𝑗,𝑘 (𝑗 = 1, . . 𝑝), (𝑘 = 1, . . , 𝐹𝐿) of the p processors where the corresponding tasks

have been allocated by the scheduling procedure.

∆𝑡 =
𝑡∗(𝐶𝑖 , 𝑓𝑗,𝑘(𝑖, 𝑗 = 1, . . 𝑝), (𝑘 = 1, . . , 𝐹𝐿)) − 𝑡𝑀𝐼𝑁

𝑡𝑀𝐴𝑋 − 𝑡𝑀𝐼𝑁

∆𝐸 =
𝐸∗(𝐶𝑖 , 𝑓𝑗,𝑘(𝑖, 𝑗 = 1, . . 𝑝), (𝑘 = 1, . . , 𝐹𝐿)) − 𝐸𝑀𝐼𝑁

𝐸𝑀𝐴𝑋 − 𝐸𝑀𝐼𝑁

(1)

24

Escobar et al.

In order to select a processor and the corresponding frequency for a given task, the
scheduling algorithm could use a cost function which takes into account both the
energy and runtime objectives through Δt and ΔE in Equation 1. In our case, we
propose the cost function Δ=aΔt+bΔE with 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, and a+b=1. This cost
function promotes allocations with low values of Δt and ΔE, and lower values for one
factor whenever the other factor grows. Depending on the relative values of a and b,
it is possible to place more importance on either lower runtime or lower energy
consumption. It is therefore necessary to define the time and energy models, t* and
E*, and the values of tMAX, tMIN, EMAX, and EMIN used in Equation 1. It is not easy to
determine models that provide accurate enough time and energy predictions to
enable efficient task scheduling procedures to be designed. In his article
[O’Brien2017], the author presents a detailed survey of the different energy and
power predictive models. Such models can be classified according to their level of
abstraction, their accuracy, whether they predict power and/or energy, and their
portability. The level of abstraction specifies whether all the components in a node
are modelled independently or the corresponding dependences among them are
modelled by considering either linear or non-linear dependences. An energy
consumption prediction model could forecast instantaneous or average power and
could take into account the dynamic power component, or both dynamic and static
components. The energy model, meanwhile, can either be predicted from time and
power models or from a specific energy model.

For example, one possible energy consumption model E* could be derived from the
power consumption equations corresponding to CMOS circuits that include the terms
associated to capacitive, short-circuit and leakage power. It is common to assume
that the capacitive term is the most significant and so power consumption in a
processor can be approximated as:

𝑃𝑜𝑤 = 𝛽 × 𝑓 × 𝑉2 (2)

where parameter β represents the product of the number of transistors switching in
the processor per clock cycle and the total capacitance load, f is the clock frequency
of the processor, and V is the supply voltage. The energy Ei consumed by a given
task i that requires Ci clock cycles in a processor with a supply voltage Vi can
therefore be estimated from (2) by

𝐸𝑖 = 𝛽 × 𝑓 × 𝑉𝑖
2 ×

𝐶𝑖
𝑓⁄ = 𝛽 × 𝑉𝑖

2 × 𝐶𝑖
(3)

Whenever a processor is idle, there is also a so-called indirect energy consumption
that for a given processor k can be estimated by

𝐸𝑘
𝑖𝑑𝑙𝑒 = 𝛽 × 𝑓 × 𝑉𝑖𝑑𝑙𝑒

2 × 𝑡𝑘 (4)

where Vidle is the supply voltage of the processor in its idle state, and tk is the amount
of time in which processor k has been in this state. The tasks are located on the
processors included in a heterogeneous platform with p processors, Pj (j=1,..,p).
Each processor Pj can operate at different voltage supply levels, Vj,l (l=1,..,ω(j)),
corresponding to different clock frequencies fj,l, (l=1,.., ω(j)).

The parameters tMAX and tMIN in Equation 1 can be estimated from the maxima and
minima values for the clock cycles Ci required to complete the estimated workloads
of the different tasks (i=1,…n) and the frequencies of the available processors, fj,l,
(j=1,..,p, l=1,.., ω(j)) as follows:

tMAX=max(Ci (i=1,…n))/min(fj,l, (j=1,..,p, l=1,.., ω(j)))
tMIN=min(Ci (i=1,…n))/max(fj,l, (j=1,..,p, l=1,.., ω(j)))

(5)

25

Escobar et al.

The parameter tMAX is the time required by the task with the heaviest workload when
it is executed in a processor running at the lowest frequency. In the same way, tMIN is
the lowest running time for the lightest task. It is also possible to estimate the energy
consumption parameters, EMAX and EMIN as follows:

EMAX= β ×n×max(Ci (i=1,…n))×[max(Vj,l, (j=1,..,p, l=1,.., ω(j)))]2
EMIN= β × n×min(Ci (i=1,…n))×[min(Vj,l, (j=1,..,p, l=1,.., ω(j)))]2

(6)

It is possible to take advantage of previous power and energy models through
dynamic voltage and frequency scaling (DVFS) techniques and many papers
proposing energy-aware scheduling are based on the availability of DVFS [3].
Nevertheless, processors usually implement energy management policies defined by
the vendors that are not available at the user level, and alternative approaches to fit
models to the experimental measures using a suitable regression method [4]. This is
the approach followed in this paper.

3. Results on master-worker parallel applications

The experimental work described in this section has been conducted in a cluster
node including two Intel Xeon E5-2620 v4 HT processors with eight cores per socket
(therefore running up to 32 threads per node). The node also includes an NVIDIA
Tesla K40m at 755 MHz with 12 GB of global memory, 288 GBytes/s of maximum
memory bandwidth, and 2880 CUDA cores distributed into 15 SMXs (Stream
Multiprocessors). In the following subsections, we shall describe the application
executed in our experiments and the issues relating to the energy consumption
measures, and analyze the experimental results.

3.1. Characteristics of the target application

The results of this paper can be applied to parallel programs whose dependence
graphs include tasks T1, T2, ….., TN that can be executed in parallel after task T0.
Once the tasks have been executed and then synchronized, task T0 is executed
again to generate another set of parallel tasks T1, T2,…, TN, and so on. The runtime
of task T0 is also negligible in terms of the runtime of each parallel task T1,..,TN.
Many useful parallel applications follow this dependence graph. In this paper, we
have considered a multi-objective evolutionary algorithm that has been parallelized
according to a master-worker paradigm. In each generation, the fitness of individuals
in the population must be evaluated in terms of a certain performance procedure that
might require costly computation. More specifically, the evolutionary multi-objective
procedure analyzed here is applied to solve a feature selection problem in a BCI
application [4]. The population individuals correspond to different sets of features
that define the components of the patterns to be classified. These sets of features
must be evaluated by the accuracy of the classifier once it has been adjusted using
the training patterns characterized by the selected features. The iterations required
to train the classifier usually require a high amount of computing time. For example,
in the runtimes for the steps of our multi-objective feature selection procedure

analyzed with gprof [5], the fitness evaluation needs between 99.93% (with 120

individuals in the population) and 98.60% of the runtime (with 15,000 individuals). As
fitness evaluation is completely independent for each individual in the population, a
master-worker approach represents a very suitable alternative to efficiently
parallelize this type of problem. Considering these characteristics, an energy-aware
procedure to allocate the fitness evaluation tasks also affords an energy-efficient
master-worker evolutionary algorithm because even when there is a very large
number of individuals in the population, the percentage of runtime devoted to
evaluating population fitness would be higher than 95%. Although it appears to be a
very specific situation, many real applications tackled by evolutionary metaheuristics
and executed in parallel on platforms including GPU and CPU cores match this
profile.

26

Escobar et al.

The platform considered here includes two different kinds of processors among
which the individuals in the population evolved by the evolutionary algorithm are
distributed to compute their corresponding fitness. Thus, the workload scheduling is
reduced to determine the rate x of individuals allocated to the GPU cores and the
rate 1-x of those allocated to the CPU cores. The following equation shows a model
for the runtime

𝑡 = 𝑔𝑒𝑛(𝑁𝑡𝑚𝑎𝑠𝑡𝑒𝑟 + max (⌈
𝑥𝑁

𝑃𝐺𝑃𝑈
⌉ 𝑡𝐺𝑃𝑈 , ⌈

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌉ 𝑡𝐶𝑃𝑈))

(7)

where gen is the number of generations, N is the number of individuals in the
population, and PGPU and PCPU are the GPU and CPU cores in the platform,
respectively. The xN individuals allocated to the GPU cores are evenly distributed
among the GPU cores, and the (1-x)N individuals are equally distributed among the
CPU cores. The parameter tmaster corresponds to the time required by one of the
cores to process the master task T0 for a given iteration, while parameters tGPU and
tCPU are, respectively, the time required by the GPU cores and the CPU cores to
evaluate one individual. The parameters tmaster, tGPU and tCPU can also be expressed
as a function of the corresponding workload and the frequency of the corresponding
processor as tmaster=Wmaster/FCPU, tCPU=WCPU/FCPU, and tGPU=WGPU/FGPU, where FCPU
and FGPU are the frequencies of the CPU and GPU cores, respectively, and Wmaster

,

WCPU, and WGPU are, respectively, estimations of the cycles of the workloads of T0,
the evaluation of an individual in the CPU, and the evaluation of an individual in the
GPU. In this way, the execution time can be modeled in the following way:

𝑡 = 𝑔𝑒𝑛(𝑁
𝑊𝑚𝑎𝑠𝑡𝑒𝑟

𝐹𝐶𝑃𝑈
+ max (⌈

𝑥𝑁

𝑃𝐺𝑃𝑈
⌉

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
, ⌈

(1−𝑥)𝑁

𝑃𝐶𝑃𝑈
⌉

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
)) (8)

Various considerations should be made in terms of the model in Equation 10. We
assume that the times tGPU and tCPU required by the GPU cores and CPU cores,
respectively, to evaluate one individual are the same for all the individuals in the
GPU cores (tGPU) or in the CPU cores (tCPU). This situation can also be considered
very unusual although it is possible to find useful applications that behave in the
same way. The electroencephalogram (EEG) feature selection for BCI considered
here can be suitably modelled accordingly as each individual has been assessed
over a fixed number of iterations of the k-means algorithm to qualify the usefulness
of the set of selected features that each individual in the population codifies. The
data parallelism provided by the GPU therefore provides similar acceleration to the
k-means algorithm for all the individuals in the population as demonstrated in some
of our previous papers [6].

It is possible to fit two linear regressions by considering the values of the load
distribution x that verifies

⌈
𝑥𝑁

𝑃𝐺𝑃𝑈
⌉

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
< ⌈

(1−𝑥)𝑁

𝑃𝐶𝑃𝑈
⌉

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
 and ⌈ 𝑥𝑁

𝑃𝐺𝑃𝑈
⌉

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
> ⌈

(1−𝑥)𝑁

𝑃𝐶𝑃𝑈
⌉

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈

We shall now describe an approximate energy consumption model. First, given a
GPU including PGPU cores running at frequency FGPU, the energy consumed by the
evaluation of xN individuals distributed among the PGPU cores can be expressed as
the product of the instantaneous power and the runtimes of the cores and their
energy consumption while they are idle. In this way, the energy consumed by the
GPU in each generation (gen) can be given as:

𝐸𝐺𝑃𝑈 = 𝑃𝑜𝑤𝐺𝑃𝑈 ⌊
𝑥𝑁

𝑃𝐺𝑃𝑈
⌋ 𝑡𝐺𝑃𝑈 +

𝑃𝑜𝑤𝐺𝑃𝑈

𝑃𝐺𝑃𝑈
(𝑥𝑁 − ⌊

𝑥𝑁

𝑃𝐺𝑃𝑈
⌋ 𝑃𝐺𝑃𝑈) 𝑡𝐺𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈

= 𝑃𝑜𝑤𝐺𝑃𝑈

𝑥𝑁

𝑃𝐺𝑃𝑈
𝑡𝐺𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈

27

Escobar et al.

where PowGPU is the instantaneous power consumed when all the PGPU processors
of the GPU are evaluating individuals and EidleGPU is the energy consumed by the idle
cores. Similarly, for each generation, the energy consumed by the PCPU cores of the
CPU at frequency FGPU can be modeled as:

𝐸𝐶𝑃𝑈 = 𝑃𝑜𝑤𝐶𝑃𝑈 ⌊
(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌋ 𝑡𝐶𝑃𝑈 +

𝑃𝑜𝑤𝐶𝑃𝑈

𝑃𝐶𝑃𝑈
((1 − 𝑥)𝑁 − ⌊

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌋ 𝑃𝐶𝑃𝑈) 𝑡𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐶𝑃𝑈

= 𝑃𝑜𝑤𝐶𝑃𝑈

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
𝑡𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐶𝑃𝑈

where PowCPU is the instantaneous power consumed when all the PCPU CPU cores
are evaluating individuals, and EidleCPU is the energy consumed by the idle cores.
Taking into account the previous expressions, the energy consumed across the
generations executed by the algorithm can be given as

𝐸 = 𝑔𝑒𝑛 (𝑃𝑜𝑤𝐺𝑃𝑈

𝑥𝑁

𝑃𝐺𝑃𝑈
𝑡𝐺𝑃𝑈 + 𝑃𝑜𝑤𝐶𝑃𝑈

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
𝑡𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈

+ 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈 + ∈𝑒𝑛𝑒𝑟𝑔𝑦)

= 𝑔𝑒𝑛 (𝑃𝑜𝑤𝐺𝑃𝑈

𝑥𝑁

𝑃𝐺𝑃𝑈
(
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
) + 𝑃𝑜𝑤𝐶𝑃𝑈

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
(
𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
)

+ 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈 + ∈𝑒𝑛𝑒𝑟𝑔𝑦)

(9)

The first and second terms in (11) correspond to the energy consumed by the GPU
cores and the CPU cores, respectively, when they execute their respective load
rates x and 1-x, and the third and fourth terms to the energy consumed by the GPU
and CPU idle cores. The fifth term in (11), ϵenergy, corresponds to the energy
consumed by task T0 and the other platform elements (memory, buses, I/O, uncore
elements in the microprocessors, etc.). Models for EidleGPU and EidleCPU can also be
obtained in terms of platform parameters and workload distribution as follows and
the energy consumed by the idle GPU cores is given by

𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈 = 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐺𝑃𝑈 (1 −
𝑥𝑁

𝑃𝐺𝑃𝑈
+ ⌊

𝑥𝑁

𝑃𝐺𝑃𝑈
⌋) (

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
)

(10)

and the energy consumed by the idle CPU cores by

𝐸𝑖𝑑𝑙𝑒𝐶𝑃𝑈 = 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐶𝑃𝑈 ((1 −
(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
+ ⌊

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌋) (

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
))

(11)

Model parameters for time and energy consumption in (8) to (11) could be obtained
from regressions on the experiments performed with different distribution rates x and
1-x, and number of individuals N, and generations gen, given the characteristics of
the GPU-CPU platform in terms of the number of processors, PCPU and PGPU, and
their operating frequencies FGPU and FCPU. By fitting (8) with the experimental time
measurements, it would be possible to determine the parameters Wmaster, WGPU, and
WCPU. Once these values have been substituted in (9)-(11), the experimental energy
consumption values can be used to determine PowGPU, PowCPU, PowidleGPU and
PowidleCPU, and the shape of ϵenergy after fitting the model for energy consumption
(11). It is then possible to build the cost function for population conditions,
generations, frequencies, etc. that have not been previously executed by
determining the relative deviations given in Equation 1, and to estimate the best
value for x for a given population (number N of individuals) and operating
frequencies to execute the application on a given platform (number of GPU and CPU

28

Escobar et al.

cores and the remaining parameters). This approach for static workload scheduling
is experimentally analyzed in Section 3.3.

More specifically, we consider a linear regression model that according to Equations
9-11 presents the following terms:

𝐸 = 𝐴0 + 𝐴1 × (
𝑥𝑁

𝑃𝐺𝑃𝑈
) + 𝐴2 × ⌊

𝑥𝑁

𝑃𝐺𝑃𝑈
⌋ + 𝐴3 × ⌊

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌋ + 𝜖𝑒𝑛𝑒𝑟𝑔𝑦

(12)

where the coefficients A0 – A3 can be related with the parameters of the model in (9)-
(11) as:

𝐴0 = 𝑔𝑒𝑛 × (𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐺𝑃𝑈 ×
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
+ 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐶𝑃𝑈 ×

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
× (1 −

𝑁

𝑃𝐶𝑃𝑈
) + 𝑃𝑜𝑤𝐶𝑃𝑈

×
𝑁

𝑃𝐶𝑃𝑈
×

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
)

𝐴1 = 𝑔𝑒𝑛 × (((𝑃𝑜𝑤𝐺𝑃𝑈 − 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐺𝑃𝑈) ×
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
)

− ((𝑃𝑜𝑤𝐶𝑃𝑈 − 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐶𝑃𝑈) ×
𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
×

𝑃𝐺𝑃𝑈

𝑃𝐶𝑃𝑈
))

𝐴2 = 𝑔𝑒𝑛 × 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐺𝑃𝑈 ×
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈

𝐴3 = 𝑔𝑒𝑛 × 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐶𝑃𝑈 ×
𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈

3.2. Energy measures

Instantaneous power and energy consumption can be evaluated by the performance
monitoring counters provided by the corresponding processor. For example, [7]
describes the extension of the Performance API (PAPI) library to measure power
and energy based on these counters. In this paper, however, the node’s
instantaneous power and energy consumption have been measured with a
wattmeter that we have developed based on an Arduino Mega card and this is
shown in Figure 1. It provides four real-time measurements per second for each of
the four nodes of our platform corresponding to the instantaneous power (in Watts)
and the cumulated consumed energy (in Wxh) of the entire node. The
measurements are obtained thanks to sensors that provide the amount of electric
current in the wire connecting the node to the electricity grid. By measuring energy
consumption at these points, not only is it possible to obtain the energy consumption
of the active components but also the losses arising from power supply conversions.
In this way, the conclusions attained from these consumption measurements for the
entire node are relevant as they clearly demonstrate whether a proposed strategy
devised to improve energy efficiency is effective and useful.

29

Escobar et al.

Figure 1. Arduino-based wattmeter used to measure power and energy (left) and
circuit scheme of the current sensor (right)

The current sensor is the YHDC-SCTD010T-5A and its circuit scheme is also shown
in Figure 1. It can provide up to 5A, with a proportional output of between 0 and 5V
and an accuracy of +2%. The Arduino board includes a 10-bit A/D converter and
uses its internal voltage reference of 2.56V (only available in Arduino Mega boards)
in order to take full advantage of its dynamic range. Although this approach limits the
maximum value of the input to 2.56V, it is possible to measure up to 588W in the
experiments. As the nodes consume less power, this bound does not represent a
real limitation. The Arduino Mega board is connected by USB to one of the cluster
nodes in order to transmit the data to the system through the corresponding serial
port and obtain power. In the case of a Linux computer, the interface /dev/ttyACM0 is
created to send and receive data. In our first version of the wattmeter, the Arduino
board takes four measurements per second per sensor and transmits the data for
instantaneous power (in W) and consumed energy (in Wxh) for each sensor through
the port. The energy consumption values can be set to zero at any time so that
energy consumption for a given period of time can be easily estimated. The program
executed by the Arduino Mega board is written in Python.

In terms of the operating mode control, the standard Advanced Configuration and
Power Interface (ACPI) [8] includes mechanisms to manage and save energy,
adequately controls BIOS operation, and provides information about the
configuration and control of the processor states in terms of energy consumption
(C0, C1, C2, C3,.., Cn) and performance (P0, P1,…, Pn). In the same way, the Linux
kernel implements the infrastructure cpufreq [9] that allows the operating system
(either automatically through the events generated by the ACPI or through user
program calls) to change the operating frequency of the processor for energy saving.
The so-called governors [10] are included in the cpufreq to implement specific
policies to control the processor clock. The interface to use these services at the
user level can be found in cpufreq.h [11].

3.3. Results analysis

We have implemented an OpenCL (version 1.2) code (compiled with GCC 4.8.5) for
the target multi-objective feature selection problem corresponding to a BCI task [4]
applied to a dataset containing 178 patterns extracted from the data recorded in the
BCI Laboratory of the University of Essex. Each pattern is an EEG described by
3600 features corresponding to 12 features for each of the 20 temporal segments
and 15 electrodes [4].

30

Escobar et al.

Figure 2. Curves fitted with model (8) for experimental running times with N=240,
480, 960 and FCPU=1200 (a), 1600 (b), and 2100 MHz (c)

Figure 3. Curves fitted with model (9) for experimental consumed energies with
N=240, 480, 960 and FCPU=1200 (a), 1600 (b) and 2100 MHz (c)

In our experiments, the CPU cores have executed the threads allocated to them at
1200 MHz, 1600 MHz and 2100 MHz. According to the experimental results
observed, the ϵenergy term in Equation (9) has been modelled as

𝜖𝑒𝑛𝑒𝑟𝑔𝑦 = 𝜔(𝑥 − 𝑥𝑐) ⌊
𝑥

𝑥𝑐
⌋

where ω is a proportionality constant, and xc can be obtained from the crossing point
of two linear regressions: the first uses experimental results of x values close to 0,
corresponding to much higher workloads in the CPU cores than in the GPU ones,
whereas the second linear regression is applied to x values close to 1, and also
values where the GPU is much more loaded than the CPU. The points on the graphs
in Figures 2 and 3 provide the time and energy measurements and the curves have
been fitted using our models and linear regression (Equations 7 to 12). In every
case, the regression is statistically significant and the R2-statistics is higher than
0.945. As Figures 2 and 3 show, the accuracy of the fitted curves is acceptable. In
particular, the minima of the curves correspond to those experimentally observed.

The parameters of our models described in Equations 8 and 9 can also be obtained
from the experimental results obtained in the case of N=240, gen=50, and the three
considered values of FCPU. These values allow our models to be specified for our

(a) (b)

(c)

(a) (b)

(c)

31

Escobar et al.

platform and application by fitting the curves of the models for the corresponding N
values (in our experiments 480 and 960 individuals). Table 1 provides the mean
relative errors for the time and error predictions made using the parameters of
Equations 8 and 9 obtained from N=240.

 Energy prediction
mean relative error

Time prediction
mean relative error

240 indiv. 1.2 GHz

480 indiv. 1.2 GHz 0.166+0.035 0.031+0.026
960 indiv. 1.2 GHz 0.223+0.042 0.015+0.011

240 indiv. 1.6 GHz

480 indiv. 1.6 GHz 0.171+0.035 0.023+0.019
960 indiv. 1.6 GHz 0.246+0.049 0.014+0.11

240 indiv. 2.1 GHz

960 indiv. 1.6 GHz 0.108+0.012 0.020+0.015
960 indiv. 2.1 GHz 0.179+0.013 0.016+0.013

Table1. Mean relative error of energy and time prediction from the parameters obtained with
the models for N=240 individuals

Figure 4. Curves fitted for experimental consumed energies with Model 9 and
N=960. The black squares represent the experimental results

The experimental results obtained for the ondemand option of CPUfreq governors
[10] are quite similar to those obtained when FCPU=2100 MHz in both runtime and
energy consumed. Figure 4 shows the corresponding fitted curves of energy
consumed and the experimental results obtained with the ondemand option for
N=960. As can be seen, the values obtained by using ondemand are best when x ≤
0.5, corresponding to situations where the CPU workload is larger than the GPU
workload. This is correct as the CPUfreq governors only control the states of the
CPU cores.

Figure 5 shows some curves corresponding to the temporal evolution of the
instantaneous power. The curves in Figure 5a illustrate the evolution for different
operation frequencies in the CPU cores with equal distribution of individuals among
GPU and CPU cores (x=0.5) while Figure 5b gives the different distribution curves of
individuals at the same operating frequency in the CPU cores (FCPU=2100 MHz).
Figure 5a clearly shows that the instantaneous power values are higher for the larger
operating frequencies. Instantaneous power values for 1200 and 1600 MHz are in
fact closer to each other than they are for 1600 and 2100 MHz. Figure 5b shows that

32

Escobar et al.

the instantaneous power values also change with the rate of individuals allocated to
the CPU cores. The curve with the lowest instantaneous power values corresponds
to the situation where all the individuals are allocated to the GPU. Regarding the
other two curves, the one with larger power values corresponds to x=0.5. Although
only half of the population is allocated to the CPU cores, this behavior could be
explained by the power consumed by the elements of the node required to
communicate the CPU core where the master thread is running and the GPU.

Figure 5. Temporal evolution of the instantaneous power: (a) for x=0.5 and different
values of frequency in the CPU cores; and (b) for a frequency of 2100 MHz in the
CPU cores and different values of x (rate of workload allocated to the GPU) and
N=960

Figure 6 shows the shape of the cost function Δ=aΔt+bΔE for N=240 individuals and
1600 MHz, and different values for parameters a and b. Depending on these values,
the minimum of the cost function corresponds to a minimum in the energy
consumption (x=0.75), in the running time (x=0.60), or represents a trade-off
between time and energy.

(a)

(b)

33

Escobar et al.

Figure 6. Cost function for different values of parameters a and b, for N=240 and
FCPU=1600 MHz.

4. Related work

A large number of energy-aware scheduling procedures have already been
proposed. Although the majority of these require programmer-exposed DVFS
strategies for runtime power management, it is not possible to take into account
energy consumption and time optimization principles in platforms that do not allow
the user to access and control the DVFS alternatives online (or this alternative is so
costly and should be avoided). A black-box scheduling approach is therefore
proposed in [12] based on an offline power model and an online workload modeling.
Other approaches build power and energy consumption models either by running
micro-benchmarks [13] or by evaluating the energy consumption of the platform
components [14]. In their paper [15], the authors define energy-aware strategies in
codes for sparse linear systems after analyzing and modelling the different power-
saving modes of CPU cores. Along the same lines, [16] proposes energy
consumption characterization by applying multiple linear regression models.

As energy consumption and runtime are competing objectives, a multi-objective
(more specifically a bi-objective) approach is required to tackle the development of
an energy-aware scheduling problem. By way of future work, the paper [17]
proposes the use of multi-objective evolutionary algorithms to learn about the trade-
offs evaluated by the two-level schedulers described in the paper. Since a
scheduling algorithm built on a Pareto-based multi-objective evolutionary algorithm
would require a long computing time together with a strategy to select from the
different alternatives in the Pareto front, a better alternative is to use a cost function
that weights the energy and time objectives as proposed in [18] using a weighted
energy-delay product corresponding to the desired tradeoff among those defining the
alternatives represented by the Pareto front. In this paper, we also follow this
proposal and we propose a cost function that comprises the two goals of energy
consumption and runtime although not through an energy-delay product.

The energy efficiency of GPU has attracted interest in recent years and has been
previously analyzed in various papers [19-21]. In terms of the energy consumption
efficiency of hybrid CPU-GPU platforms, some relevant results can be found in
various publications [22, 23]. For example, [22] provides analytical models to provide
insight into performance gains and energy consumption in different CPU-GPU
platforms and concludes that greater parallelism allows opportunities for energy
saving and encourages the development of energy saving parallel applications. The
proposal in this paper is a workload balancing procedure based on the multi-
objective cost function and built by regression, following the approach described in
[16].

34

Escobar et al.

5. Conclusions

The problem of scheduling on heterogeneous architectures to minimize both runtime
and energy consumption has recently attracted interest as energy consumption has
become one of the major concerns in high-performance computing and data-center
facility management. In addition to the availability of heterogeneous architectures
with different energy consumption characteristics, techniques such as dynamic
voltage and frequency scaling (DVFS) make it possible to devise task scheduling
procedures which are concerned with minimizing both runtime and energy
consumption. Nevertheless, DVFS control is not available at the user level and it may
even be hard to find energy and power prediction models that are accurate enough to
be used by an efficient scheduling procedure. One alternative approach is to fit black-
box models to the experimental results obtained by the target application in certain
conditions and to use these to predict application behavior in other experimental
conditions.

This paper analyzes energy consumption and runtime behaviors in GPU-CPU
platforms of parallel master-worker evolutionary algorithms applied to a feature
selection problem for EEG classification in BCI tasks. We have defined models for
runtime and energy consumption that have been fitted to the experimental results by
multiple linear regression with values of the R2-statistics which are greater than
0.945, and statistical significance in every case. These models provide prediction
errors which are lower than 24.6% for energy consumption and 3.1% for runtime in
the experimental alternatives we have considered. Since many bioinformatics and
data mining applications involve classification, clustering, feature selection, and
optimization that due to their complexity require metaheuristics such as evolutionary
algorithms, the conclusions of the approach described in this paper may be relevant
to many different situations. Much work remains to be done, however, in terms of
improving energy consumption models for other platform applications and elements
other than the GPU and CPU cores.

Acknowledgments

This work has been funded by Project TIN2015-67020-P (Spanish “Ministerio
de Economía y Competitividad” and ERDF funds).

References

[1] Mittal, S.; Vetter, J.S.:”A survey of CPU-GPU heterogeneous computing techniques”. ACM Comput. Surv. 47,
4, Article 69, 35 pages. July, 2015. DOI: http://dx.doi.org/10.1145/2788396.

[2] O’Brien, K.; Pietri, I.; Reddy, R; Lastovetsky, A.; Sakellariou, R.:”A survey of power and energy models in
HPC systems and applications”. ACM Comput. Surv. 50, 3, Article 37, 38 pages. July, 2017. DOI:
http://dx.doi.org/10.1145/3078811.

[3] Lee, Y.C.; Zomaya, A.Y.:”Energy conious scheduling for distributed computing systems under different
operationg conditions”. IEEE Trans. On Parallel and Distributed Systems, Vol.22, No.8, pp.1374-1381.
August, 2011.

[4] Ortega, J.; Asensio-Cubero, J.; Gan, J. Q.; Ortiz, A.: “Classification of motor imagery tasks for BCI with
multiresolution analysis and multiobjective feature selection”. BioMedical Engineering OnLine, 2016.

[5] GNU gprof manual: http://sourceware.org/binutils/docs/gprof/index.html

[6] Escobar, J.J.; Ortega, J.; González, J.; Damas, M.; Díaz, A.F.: “Parallel high-dimensional multi-objective
feature selection for EEG classification with dynamic workload balancing on CPU-GPU”. Cluster Computing.
2017;20(3):1881–1897.

[7] Weaver, V.N.; Johnson, M.; Kasichayanula, K.; Ralph, J.; Luszczek, P.; Terpstra, D.; Moore, S.:”Measuring
energy and power with PAPI”. 41st Intl. Conference on Parallel Processing Workshops (ICPPW), pp. 262-268,
2012

[8] Advanced configuration and power interface specification (ACPI): http://www.acpi.info/

[9] CPU frequency scaling: https://wiki.archlinux.org/index.php/CPU_frequency_scaling

[10] CPUFreq Governors: https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

[11] cpufreq.h: https://code.woboq.org/linux/linux/include/linux/cpufreq.h.html

[12] Barik, R..; Farooqui, N.; Lewis, B.T.; Hu, C.; Shpeisman T.: “A black-box approach to energy-aware
scheduling on integrated CPU-GPU systems”. In: CGO’2016:70–81ACM; 2016; Barcelona, Spain.

35

http://dx.doi.org/10.1145/2788396
http://dx.doi.org/10.1145/3078811
http://sourceware.org/binutils/docs/gprof/index.html
http://www.acpi.info/
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://code.woboq.org/linux/linux/include/linux/cpufreq.h.html

Escobar et al.

[13] Hong, S.; Kim, H.:”An Integrated GPU Power and Performance Model”. SIGARCH Computer Architecture
News. 2010;38(3):280–289.

[14] Ge, R.; Feng, X.; Burtscher, M.; Zong, Z.: “PEACH: A Model for Performance and Energy Aware Cooperative
Hybrid Computing”. In: CF’2014:24:1– 24:2ACM; 2014; Cagliari, Italy.

[15] Aliaga, J.I.; Barreda, M.; Dolz, M.F.; Martín, A.F.; Mayo, R.; Quintana-Ortí, E.S.:”Assessing the impact of the
CPU power-saving modes on the task-parallel solution of sparse linear systems”. Cluster Computing, 17, pp.
1335-1348, 2014.

[16] De Sensi, D.:”Predicting performance and power consumption of parallel applications”. In 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP), 2016. DOI:
10.1109/PDP.2016.41.

[17] Dorronsoro, B.; Nesmachnow, S.; Taheri, J.; Zomaya, A.Y.; Talbi, E-G; Bouvry, P.:”A hierarchical approach
for energy-efficient scheduling of large workloads in multicore distributed systems”. Sustainable Computing:
Informatics and Systems, 4, pp.252-261, 2014.

[18] Ge, R.; Feng, X.; Cameron, K.W.:”Improvement of Power-Performance Efficiency for High-End Computing”.
In: IPDPS’2005:233–240IEEE Computer Society; 2005; Denver, Colorado, USA.

[19] Wang, Y.; Ranganathan, N.:”An instruction-level energy estimation and optimization methodology for GPU”.
2011 11th Intl. Conf. on Computer and Information Technology, pp.621-628, 2011.

[20] Cebrián, J.M.; Guerrero, G.D.; García, J.M.:”Energy efficiency analysis of GPUs”. 2012 IEEE 26th Intl.
Parallel and Distributed Processing Symp. Workshops & PhD Forum, pp. 1014-1022, 2012.

[21] Mittal, S.; Vetter, J.S.:”A survey of methods for analyzing and improving GPU energy efficiency”. ACM
Comput. Surv. 47, 2, Article 19, 23 pages. July, 2014. DOI: http://dx.doi.org/10.1145/2636342.

[22] Marowka, A.. “Energy Consumption Modeling for Hybrid Computing”. In: Euro-Par’2012:54–64Springer;
2012; Rhodes Island, Greece.

[23] Allen, T.; Ge, R..: “Characterizing Power and Performance of GPU Memory Access”. In: E2SC’2016:46–
53IEEE Press; 2016; Salt Lake City, Utah, USA.

36

http://dx.doi.org/10.1145/2636342

