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Abstract 

Thanks to parallel processing, it is possible not only to 
reduce code runtime but also energy consumption once 
the workload has been adequately distributed among the 
available cores. The current availability of heterogeneous 
architectures including GPU and CPU cores with different 
power-performance characteristics and mechanisms for 
dynamic voltage and frequency scaling does, in fact, 
pose a new challenge for developing efficient parallel 
codes that take into account both the achieved speedup 
and the energy consumed. This paper analyses the 
energy consumption and runtime behavior of a parallel 
master-worker evolutionary algorithm according to the 
workload distribution between GPU and CPU cores and 
their operation frequencies. It also proposes a model that 
has been fitted using multiple linear regression and which 
enables a workload distribution that considers both 
runtime and energy consumption by means of a cost 
function that suitably weights both objectives. Since 
many useful bioinformatics and data mining applications 
are tackled by programs with a similar profile to that of 
the parallel master-worker procedure considered here, 
the proposed energy-aware approach could be applied in 
many different situations. 

Keywords: Energy-aware workload distribution; 
heterogeneous parallel architectures; master-worker parallel 
evolutionary algorithms 

1. Introduction 

The availability of heterogeneous architectures enables 
codes to take advantage of different levels of parallelism 
to improve efficiency in terms of speedup. More 
specifically, in current heterogeneous architectures, 
graphic processing units (GPU) usually provide massive 
data-level parallelism (DLP) together with thread-level 
parallelism (TLP), which can also be used with multicore 
microprocessors that include superscalar cores (or CPU 
cores) implementing instruction-level parallelism (ILP). 
Nevertheless, in addition to enabling performance 
efficient parallel codes to be executed, heterogeneous 
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architectures including GPU and CPU cores could also constitute an efficient 
approach for saving energy, once various challenges arising from CPU-GPU 
heterogeneous computing have been overcome. In fact, papers such as [1] consider 
the efficient cooperation of CPU and GPU to be an important requirement for 
achieving exascale performance. More specifically, in the future realm of exascale 
platforms, power and energy efficiency are central issues as indicated in [2] which 
cites a 2010 report by the US Department of Energy (DOE) which estimates that the 
annual power cost of operating an exascale system implemented with current 
technology to be about 2.5 billion dollars per year.  
 
The current trend for tackling energy efficiency problems while preserving the 
improvement in performance is represented by nodes which include various 
superscalar multicore microprocessors (CPU cores) and GPUs (although other 
accelerators such as FPGAs, vector units, etc. are also possible). Some of the 
issues listed in [1] to be considered when developing performance-energy efficient 
codes for heterogeneous CPU-GPU systems are the size of CPU and GPU 
memories, CPU-GPU memory-bandwidth limitations, load balancing between the 
GPU and CPU cores, the overlapping of data transfer with CPU and GPU 
computation, and the characteristics relating to the amount of parallelism and branch 
divergence of the application in question.  
 
Many of these issues have been previously analyzed for different applications. In this 
paper, we provide an insight into the development of a high-performing, energy-
efficient workload distribution of parallel master-worker evolutionary algorithms in 
platforms where GPU and CPU cores are considered equal for sharing the 
application workload. In the type of evolutionary procedure considered here, the 
majority of the workload corresponds to the fitness evaluation of the solutions that 
constitute the population evolved through generations (iterations) of the algorithm. 
The way that solutions are allocated to GPU and CPU cores will therefore determine 
the efficiency in performance and energy behavior of the parallel algorithm once a 
suitable workload distribution among the available cores has been attained. 
 
Following on from this introduction, Section 2 describes a cost function that takes 
into account the two goals of runtime and energy consumption to direct the search 
for efficient workload distributions; Section 3 explores our target application, i.e. 
parallel master-worker evolutionary algorithms, details our experimentation, and 
analyzes the results obtained; Section 4 describes the main contributions in this area 
and references the most relevant papers; and Section 5, outlines our conclusions. 

2. A cost function for power and performance aware scheduling 

The problem to hand is to find an efficient workload distribution among the available 
processors which is efficient both in terms of the speedup achieved and energy 
consumption. In order to reach this goal, the required scheduling procedure should 
be able to locate tasks on the available processors according to predictions about 
their computational cost and the corresponding energy consumption. The scheduling 
procedure therefore requires certain information about the performance and energy 
consumption characteristics of the processors and the other elements in the system 

where the tasks are executed. In Equation 1, the functions t*(𝐶𝑖 , 𝑓𝑗,𝑘(𝑖, 𝑗 = 1, . . 𝑝), (𝑘 =

1, . . , 𝐹𝐿)) and E*(𝐶𝑖 , 𝑓𝑗,𝑘(𝑖, 𝑗 = 1, . . 𝑝), (𝑘 = 1, . . , 𝐹𝐿)), respectively, correspond to 

models for the running time and energy consumption in terms of the workloads (in 

cycles) of the different p tasks, 𝐶𝑖 (𝑖, 𝑗 = 1, . . 𝑝), and the operating frequencies 
𝑓𝑗,𝑘 (𝑗 = 1, . . 𝑝), (𝑘 = 1, . . , 𝐹𝐿) of the p processors where the corresponding tasks 

have been allocated by the scheduling procedure.       
 

∆𝑡 =
𝑡∗(𝐶𝑖 , 𝑓𝑗,𝑘(𝑖, 𝑗 = 1, . . 𝑝), (𝑘 = 1, . . , 𝐹𝐿)) − 𝑡𝑀𝐼𝑁

𝑡𝑀𝐴𝑋 − 𝑡𝑀𝐼𝑁
 

∆𝐸 =
𝐸∗(𝐶𝑖 , 𝑓𝑗,𝑘(𝑖, 𝑗 = 1, . . 𝑝), (𝑘 = 1, . . , 𝐹𝐿)) − 𝐸𝑀𝐼𝑁

𝐸𝑀𝐴𝑋 − 𝐸𝑀𝐼𝑁
 

(1) 
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In order to select a processor and the corresponding frequency for a given task, the 
scheduling algorithm could use a cost function which takes into account both the 
energy and runtime objectives through Δt and ΔE in Equation 1. In our case, we 
propose the cost function Δ=aΔt+bΔE with 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, and a+b=1. This cost 
function promotes allocations with low values of Δt and ΔE, and lower values for one 
factor whenever the other factor grows. Depending on the relative values of a and b, 
it is possible to place more importance on either lower runtime or lower energy 
consumption. It is therefore necessary to define the time and energy models, t* and 
E*, and the values of tMAX, tMIN, EMAX, and EMIN used in Equation 1. It is not easy to 
determine models that provide accurate enough time and energy predictions to 
enable efficient task scheduling procedures to be designed. In his article 
[O’Brien2017], the author presents a detailed survey of the different energy and 
power predictive models. Such models can be classified according to their level of 
abstraction, their accuracy, whether they predict power and/or energy, and their 
portability. The level of abstraction specifies whether all the components in a node 
are modelled independently or the corresponding dependences among them are 
modelled by considering either linear or non-linear dependences. An energy 
consumption prediction model could forecast instantaneous or average power and 
could take into account the dynamic power component, or both dynamic and static 
components. The energy model, meanwhile, can either be predicted from time and 
power models or from a specific energy model.                         
 
For example, one possible energy consumption model E* could be derived from the 
power consumption equations corresponding to CMOS circuits that include the terms 
associated to capacitive, short-circuit and leakage power. It is common to assume 
that the capacitive term is the most significant and so power consumption in a 
processor can be approximated as: 
                                   

𝑃𝑜𝑤 = 𝛽 × 𝑓 × 𝑉2 (2) 

 
where parameter β represents the product of the number of transistors switching in 
the processor per clock cycle and the total capacitance load, f is the clock frequency 
of the processor, and V is the supply voltage. The energy Ei consumed by a given 
task i that requires Ci clock cycles in a processor with a supply voltage Vi can 
therefore be estimated from (2) by 
 

𝐸𝑖 = 𝛽 × 𝑓 × 𝑉𝑖
2 ×

𝐶𝑖
𝑓⁄ = 𝛽 × 𝑉𝑖

2 × 𝐶𝑖 
(3) 

 
Whenever a processor is idle, there is also a so-called indirect energy consumption 
that for a given processor k can be estimated by 
 

𝐸𝑘
𝑖𝑑𝑙𝑒 = 𝛽 × 𝑓 × 𝑉𝑖𝑑𝑙𝑒

2 × 𝑡𝑘 (4) 

 
where Vidle is the supply voltage of the processor in its idle state, and tk is the amount 
of time in which processor k has been in this state. The tasks are located on the 
processors included in a heterogeneous platform with p processors, Pj (j=1,..,p). 
Each processor Pj can operate at different voltage supply levels, Vj,l (l=1,..,ω(j)), 
corresponding to different clock frequencies fj,l, (l=1,.., ω(j)). 
 
The parameters tMAX and tMIN in Equation 1 can be estimated from the maxima and 
minima values for the clock cycles Ci required to complete the estimated workloads 
of the different tasks (i=1,…n) and the frequencies of the available processors, fj,l, 
(j=1,..,p, l=1,.., ω(j)) as follows: 
  

tMAX=max(Ci (i=1,…n))/min(fj,l, (j=1,..,p, l=1,.., ω(j))) 
tMIN=min(Ci (i=1,…n))/max(fj,l, (j=1,..,p, l=1,.., ω(j))) 

(5) 
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The parameter tMAX is the time required by the task with the heaviest workload when 
it is executed in a processor running at the lowest frequency. In the same way, tMIN is 
the lowest running time for the lightest task. It is also possible to estimate the energy 
consumption parameters, EMAX and EMIN as follows: 
 

EMAX= β ×n×max(Ci (i=1,…n))×[max(Vj,l, (j=1,..,p, l=1,.., ω(j)))]2 
EMIN= β × n×min(Ci (i=1,…n))×[min(Vj,l, (j=1,..,p, l=1,.., ω(j)))]2 

(6) 

 
It is possible to take advantage of previous power and energy models through 
dynamic voltage and frequency scaling (DVFS) techniques and many papers 
proposing energy-aware scheduling are based on the availability of DVFS [3]. 
Nevertheless, processors usually implement energy management policies defined by 
the vendors that are not available at the user level, and alternative approaches to fit 
models to the experimental measures using a suitable regression method [4]. This is 
the approach followed in this paper. 

3. Results on master-worker parallel applications 

The experimental work described in this section has been conducted in a cluster 
node including two Intel Xeon E5-2620 v4 HT processors with eight cores per socket 
(therefore running up to 32 threads per node). The node also includes an NVIDIA 
Tesla K40m at 755 MHz with 12 GB of global memory, 288 GBytes/s of maximum 
memory bandwidth, and 2880 CUDA cores distributed into 15 SMXs (Stream 
Multiprocessors). In the following subsections, we shall describe the application 
executed in our experiments and the issues relating to the energy consumption 
measures, and analyze the experimental results. 

3.1. Characteristics of the target application 

The results of this paper can be applied to parallel programs whose dependence 
graphs include tasks T1, T2, ….., TN that can be executed in parallel after task T0. 
Once the tasks have been executed and then synchronized, task T0 is executed 
again to generate another set of parallel tasks T1, T2,…, TN, and so on. The runtime 
of task T0 is also negligible in terms of the runtime of each parallel task T1,..,TN. 
Many useful parallel applications follow this dependence graph. In this paper, we 
have considered a multi-objective evolutionary algorithm that has been parallelized 
according to a master-worker paradigm. In each generation, the fitness of individuals 
in the population must be evaluated in terms of a certain performance procedure that 
might require costly computation. More specifically, the evolutionary multi-objective 
procedure analyzed here is applied to solve a feature selection problem in a BCI 
application [4]. The population individuals correspond to different sets of features 
that define the components of the patterns to be classified. These sets of features 
must be evaluated by the accuracy of the classifier once it has been adjusted using 
the training patterns characterized by the selected features. The iterations required 
to train the classifier usually require a high amount of computing time. For example, 
in the runtimes for the steps of our multi-objective feature selection procedure 

analyzed with gprof [5], the fitness evaluation needs between 99.93% (with 120 

individuals in the population) and 98.60% of the runtime (with 15,000 individuals). As 
fitness evaluation is completely independent for each individual in the population, a 
master-worker approach represents a very suitable alternative to efficiently 
parallelize this type of problem. Considering these characteristics, an energy-aware 
procedure to allocate the fitness evaluation tasks also affords an energy-efficient 
master-worker evolutionary algorithm because even when there is a very large 
number of individuals in the population, the percentage of runtime devoted to 
evaluating population fitness would be higher than 95%. Although it appears to be a 
very specific situation, many real applications tackled by evolutionary metaheuristics 
and executed in parallel on platforms including GPU and CPU cores match this 
profile. 
 

26



Escobar et al. 

The platform considered here includes two different kinds of processors among 
which the individuals in the population evolved by the evolutionary algorithm are 
distributed to compute their corresponding fitness. Thus, the workload scheduling is 
reduced to determine the rate x of individuals allocated to the GPU cores and the 
rate 1-x of those allocated to the CPU cores. The following equation shows a model 
for the runtime  
 

𝑡 = 𝑔𝑒𝑛(𝑁𝑡𝑚𝑎𝑠𝑡𝑒𝑟 + max (⌈
𝑥𝑁

𝑃𝐺𝑃𝑈
⌉ 𝑡𝐺𝑃𝑈 , ⌈

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌉ 𝑡𝐶𝑃𝑈)) 

(7) 

 
where gen is the number of generations, N is the number of individuals in the 
population, and PGPU and PCPU are the GPU and CPU cores in the platform, 
respectively. The xN individuals allocated to the GPU cores are evenly distributed 
among the GPU cores, and the (1-x)N individuals are equally distributed among the 
CPU cores. The parameter tmaster corresponds to the time required by one of the 
cores to process the master task T0 for a given iteration, while parameters tGPU and 
tCPU are, respectively, the time required by the GPU cores and the CPU cores to 
evaluate one individual. The parameters tmaster, tGPU and tCPU can also be expressed 
as a function of the corresponding workload and the frequency of the corresponding 
processor as tmaster=Wmaster/FCPU,  tCPU=WCPU/FCPU, and tGPU=WGPU/FGPU, where FCPU 
and FGPU are the frequencies of the CPU and GPU cores, respectively, and Wmaster

, 

WCPU, and WGPU are, respectively, estimations of the cycles of the workloads of T0, 
the evaluation of an individual in the CPU, and the evaluation of an individual in the 
GPU. In this way, the execution time can be modeled in the following way: 
 

𝑡 = 𝑔𝑒𝑛(𝑁
𝑊𝑚𝑎𝑠𝑡𝑒𝑟

𝐹𝐶𝑃𝑈
+ max (⌈

𝑥𝑁

𝑃𝐺𝑃𝑈
⌉

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
, ⌈

(1−𝑥)𝑁

𝑃𝐶𝑃𝑈
⌉

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
))                       (8) 

Various considerations should be made in terms of the model in Equation 10. We 
assume that the times tGPU and tCPU required by the GPU cores and CPU cores, 
respectively, to evaluate one individual are the same for all the individuals in the 
GPU cores (tGPU) or in the CPU cores (tCPU). This situation can also be considered 
very unusual although it is possible to find useful applications that behave in the 
same way.  The electroencephalogram (EEG) feature selection for BCI considered 
here can be suitably modelled accordingly as each individual has been assessed 
over a fixed number of iterations of the k-means algorithm to qualify the usefulness 
of the set of selected features that each individual in the population codifies. The 
data parallelism provided by the GPU therefore provides similar acceleration to the 
k-means algorithm for all the individuals in the population as demonstrated in some 
of our previous papers [6]. 
 
It is possible to fit two linear regressions by considering the values of the load 
distribution x that verifies 
 

⌈
𝑥𝑁

𝑃𝐺𝑃𝑈
⌉

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
<  ⌈

(1−𝑥)𝑁

𝑃𝐶𝑃𝑈
⌉

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
   and   ⌈ 𝑥𝑁

𝑃𝐺𝑃𝑈
⌉

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
>  ⌈

(1−𝑥)𝑁

𝑃𝐶𝑃𝑈
⌉

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
   

We shall now describe an approximate energy consumption model. First, given a 
GPU including PGPU cores running at frequency FGPU, the energy consumed by the 
evaluation of xN individuals distributed among the PGPU cores can be expressed as 
the product of the instantaneous power and the runtimes of the cores and their 
energy consumption while they are idle. In this way, the energy consumed by the 
GPU in each generation (gen) can be given as: 
 

𝐸𝐺𝑃𝑈 = 𝑃𝑜𝑤𝐺𝑃𝑈 ⌊
𝑥𝑁

𝑃𝐺𝑃𝑈
⌋ 𝑡𝐺𝑃𝑈 +

𝑃𝑜𝑤𝐺𝑃𝑈

𝑃𝐺𝑃𝑈
(𝑥𝑁 − ⌊

𝑥𝑁

𝑃𝐺𝑃𝑈
⌋ 𝑃𝐺𝑃𝑈) 𝑡𝐺𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈

= 𝑃𝑜𝑤𝐺𝑃𝑈

𝑥𝑁

𝑃𝐺𝑃𝑈
𝑡𝐺𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈 
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where PowGPU is the instantaneous power consumed when all the PGPU processors 
of the GPU are evaluating individuals and EidleGPU is the energy consumed by the idle 
cores. Similarly, for each generation, the energy consumed by the PCPU cores of the 
CPU at frequency FGPU can be modeled as: 
 

𝐸𝐶𝑃𝑈 = 𝑃𝑜𝑤𝐶𝑃𝑈 ⌊
(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌋ 𝑡𝐶𝑃𝑈 +

𝑃𝑜𝑤𝐶𝑃𝑈

𝑃𝐶𝑃𝑈
((1 − 𝑥)𝑁 − ⌊

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌋ 𝑃𝐶𝑃𝑈) 𝑡𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐶𝑃𝑈

= 𝑃𝑜𝑤𝐶𝑃𝑈

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
𝑡𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐶𝑃𝑈 

 
where PowCPU is the instantaneous power consumed when all the PCPU CPU cores 
are evaluating individuals, and EidleCPU is the energy consumed by the idle cores. 
Taking into account the previous expressions, the energy consumed across the 
generations executed by the algorithm can be given as 
 

𝐸 =   𝑔𝑒𝑛 (𝑃𝑜𝑤𝐺𝑃𝑈

𝑥𝑁

𝑃𝐺𝑃𝑈
𝑡𝐺𝑃𝑈 +  𝑃𝑜𝑤𝐶𝑃𝑈

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
𝑡𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈

+ 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈 +  ∈𝑒𝑛𝑒𝑟𝑔𝑦)

= 𝑔𝑒𝑛 (𝑃𝑜𝑤𝐺𝑃𝑈

𝑥𝑁

𝑃𝐺𝑃𝑈
(
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
) +  𝑃𝑜𝑤𝐶𝑃𝑈

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
(
𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
)

+ 𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈 +  ∈𝑒𝑛𝑒𝑟𝑔𝑦) 

(9) 

 
The first and second terms in (11) correspond to the energy consumed by the GPU 
cores and the CPU cores, respectively, when they execute their respective load 
rates x and 1-x, and the third and fourth terms to the energy consumed by the GPU 
and CPU idle cores. The fifth term in (11), ϵenergy, corresponds to the energy 
consumed by task T0 and the other platform elements (memory, buses, I/O, uncore 
elements in the microprocessors, etc.). Models for EidleGPU and EidleCPU can also be 
obtained in terms of platform parameters and workload distribution as follows and 
the energy consumed by the idle GPU cores is given by 
 

𝐸𝑖𝑑𝑙𝑒𝐺𝑃𝑈 = 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐺𝑃𝑈 (1 −
𝑥𝑁

𝑃𝐺𝑃𝑈
+ ⌊

𝑥𝑁

𝑃𝐺𝑃𝑈
⌋) (

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
) 

(10) 

 
and the energy consumed by the idle CPU cores by  
 

𝐸𝑖𝑑𝑙𝑒𝐶𝑃𝑈 = 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐶𝑃𝑈 ((1 −
(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
+ ⌊

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌋) (

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
)) 

(11) 

 
Model parameters for time and energy consumption in (8) to (11) could be obtained 
from regressions on the experiments performed with different distribution rates x and 
1-x, and number of individuals N, and generations gen, given the characteristics of 
the GPU-CPU platform in terms of the number of processors, PCPU and PGPU, and 
their operating frequencies FGPU and FCPU. By fitting (8) with the experimental time 
measurements, it would be possible to determine the parameters Wmaster, WGPU, and 
WCPU. Once these values have been substituted in (9)-(11), the experimental energy 
consumption values can be used to determine PowGPU, PowCPU, PowidleGPU and 
PowidleCPU, and the shape of ϵenergy after fitting the model for energy consumption 
(11). It is then possible to build the cost function for population conditions, 
generations, frequencies, etc. that have not been previously executed by 
determining the relative deviations given in Equation 1, and to estimate the best 
value for x for a given population (number N of individuals) and operating 
frequencies to execute the application on a given platform (number of GPU and CPU 
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cores and the remaining parameters). This approach for static workload scheduling 
is experimentally analyzed in Section 3.3. 
 
More specifically, we consider a linear regression model that according to Equations 
9-11 presents the following terms: 
 

𝐸 = 𝐴0 +  𝐴1 × (
𝑥𝑁

𝑃𝐺𝑃𝑈
) + 𝐴2 × ⌊

𝑥𝑁

𝑃𝐺𝑃𝑈
⌋ + 𝐴3 × ⌊

(1 − 𝑥)𝑁

𝑃𝐶𝑃𝑈
⌋ + 𝜖𝑒𝑛𝑒𝑟𝑔𝑦  

(12) 

 
where the coefficients A0 – A3 can be related with the parameters of the model in (9)-
(11) as: 
 

𝐴0 = 𝑔𝑒𝑛 × (𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐺𝑃𝑈 ×
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
+ 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐶𝑃𝑈 ×

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
× (1 −

𝑁

𝑃𝐶𝑃𝑈
) + 𝑃𝑜𝑤𝐶𝑃𝑈

×
𝑁

𝑃𝐶𝑃𝑈
×

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
) 

𝐴1 =  𝑔𝑒𝑛 × (((𝑃𝑜𝑤𝐺𝑃𝑈 − 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐺𝑃𝑈) ×
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
)

− ((𝑃𝑜𝑤𝐶𝑃𝑈 − 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐶𝑃𝑈) ×
𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
×

𝑃𝐺𝑃𝑈

𝑃𝐶𝑃𝑈
)) 

𝐴2 =  𝑔𝑒𝑛 × 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐺𝑃𝑈 ×
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
 

𝐴3 =  𝑔𝑒𝑛 × 𝑃𝑜𝑤𝑖𝑑𝑙𝑒𝐶𝑃𝑈 ×
𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
 

3.2. Energy measures 

Instantaneous power and energy consumption can be evaluated by the performance 
monitoring counters provided by the corresponding processor. For example, [7] 
describes the extension of the Performance API (PAPI) library to measure power 
and energy based on these counters. In this paper, however, the node’s 
instantaneous power and energy consumption have been measured with a 
wattmeter that we have developed based on an Arduino Mega card and this is 
shown in Figure 1. It provides four real-time measurements per second for each of 
the four nodes of our platform corresponding to the instantaneous power (in Watts) 
and the cumulated consumed energy (in Wxh) of the entire node. The 
measurements are obtained thanks to sensors that provide the amount of electric 
current in the wire connecting the node to the electricity grid. By measuring energy 
consumption at these points, not only is it possible to obtain the energy consumption 
of the active components but also the losses arising from power supply conversions. 
In this way, the conclusions attained from these consumption measurements for the 
entire node are relevant as they clearly demonstrate whether a proposed strategy 
devised to improve energy efficiency is effective and useful. 
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Figure 1.  Arduino-based wattmeter used to measure power and energy (left) and 
circuit scheme of the current sensor (right) 
 
The current sensor is the YHDC-SCTD010T-5A and its circuit scheme is also shown 
in Figure 1. It can provide up to 5A, with a proportional output of between 0 and 5V 
and an accuracy of +2%. The Arduino board includes a 10-bit A/D converter and 
uses its internal voltage reference of 2.56V (only available in Arduino Mega boards) 
in order to take full advantage of its dynamic range. Although this approach limits the 
maximum value of the input to 2.56V, it is possible to measure up to 588W in the 
experiments. As the nodes consume less power, this bound does not represent a 
real limitation. The Arduino Mega board is connected by USB to one of the cluster 
nodes in order to transmit the data to the system through the corresponding serial 
port and obtain power. In the case of a Linux computer, the interface /dev/ttyACM0 is 
created to send and receive data. In our first version of the wattmeter, the Arduino 
board takes four measurements per second per sensor and transmits the data for 
instantaneous power (in W) and consumed energy (in Wxh) for each sensor through 
the port. The energy consumption values can be set to zero at any time so that 
energy consumption for a given period of time can be easily estimated. The program 
executed by the Arduino Mega board is written in Python. 
 
In terms of the operating mode control, the standard Advanced Configuration and 
Power Interface (ACPI) [8] includes mechanisms to manage and save energy, 
adequately controls BIOS operation, and provides information about the 
configuration and control of the processor states in terms of energy consumption 
(C0, C1, C2, C3,.., Cn) and performance (P0, P1,…, Pn). In the same way, the Linux 
kernel implements the infrastructure cpufreq [9] that allows the operating system 
(either automatically through the events generated by the ACPI or through user 
program calls) to change the operating frequency of the processor for energy saving. 
The so-called governors [10] are included in the cpufreq to implement specific 
policies to control the processor clock. The interface to use these services at the 
user level can be found in cpufreq.h [11]. 

3.3. Results analysis 

We have implemented an OpenCL (version 1.2) code (compiled with GCC 4.8.5) for 
the target multi-objective feature selection problem corresponding to a BCI task [4] 
applied to a dataset containing 178 patterns extracted from the data recorded in the 
BCI Laboratory of the University of Essex. Each pattern is an EEG described by 
3600 features corresponding to 12 features for each of the 20 temporal segments 
and 15 electrodes [4]. 
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Figure 2.  Curves fitted with model (8) for experimental running times with N=240, 
480, 960 and FCPU=1200 (a), 1600 (b), and 2100 MHz (c) 
 

 
 
Figure 3.  Curves fitted with model (9) for experimental consumed energies with 
N=240, 480, 960 and FCPU=1200 (a), 1600 (b) and 2100 MHz (c) 
 
In our experiments, the CPU cores have executed the threads allocated to them at 
1200 MHz, 1600 MHz and 2100 MHz. According to the experimental results 
observed, the ϵenergy term in Equation (9) has been modelled as 
 

𝜖𝑒𝑛𝑒𝑟𝑔𝑦 = 𝜔(𝑥 − 𝑥𝑐) ⌊
𝑥

𝑥𝑐
⌋ 

where ω is a proportionality constant, and xc can be obtained from the crossing point 
of two linear regressions: the first uses experimental results of x values close to 0, 
corresponding to much higher workloads in the CPU cores than in the GPU ones, 
whereas the second linear regression is applied to x values close to 1, and also 
values where the GPU is much more loaded than the CPU. The points on the graphs 
in Figures 2 and 3 provide the time and energy measurements and the curves have 
been   fitted using our models and linear regression (Equations 7 to 12). In every 
case, the regression is statistically significant and the R2-statistics is higher than 
0.945. As Figures 2 and 3 show, the accuracy of the fitted curves is acceptable. In 
particular, the minima of the curves correspond to those experimentally observed. 
 
The parameters of our models described in Equations 8 and 9 can also be obtained 
from the experimental results obtained in the case of N=240, gen=50, and the three 
considered values of FCPU. These values allow our models to be specified for our 

(a) (b)

(c)

(a) (b)

(c)
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platform and application by fitting the curves of the models for the corresponding N 
values (in our experiments 480 and 960 individuals). Table 1 provides the mean 
relative errors for the time and error predictions made using the parameters of 
Equations 8 and 9 obtained from N=240. 
 

 Energy prediction 
mean relative error 

Time prediction 
mean relative error 

240 indiv. 1.2 GHz 

480 indiv. 1.2 GHz 0.166+0.035 0.031+0.026 
960 indiv. 1.2 GHz 0.223+0.042 0.015+0.011 

240 indiv. 1.6 GHz 

480 indiv. 1.6 GHz 0.171+0.035 0.023+0.019 
960 indiv. 1.6 GHz 0.246+0.049 0.014+0.11 

240 indiv. 2.1 GHz 

960 indiv. 1.6 GHz 0.108+0.012 0.020+0.015 
960 indiv. 2.1 GHz 0.179+0.013 0.016+0.013 

 

Table1. Mean relative error of energy and time prediction from the parameters obtained with 
the models for N=240 individuals 

 
 
Figure 4.  Curves fitted for experimental consumed energies with Model 9 and 
N=960. The black squares represent the experimental results 
 
The experimental results obtained for the ondemand option of CPUfreq governors 
[10] are quite similar to those obtained when FCPU=2100 MHz in both runtime and 
energy consumed. Figure 4 shows the corresponding fitted curves of energy 
consumed and the experimental results obtained with the ondemand option for 
N=960. As can be seen, the values obtained by using ondemand are best when x ≤ 
0.5, corresponding to situations where the CPU workload is larger than the GPU 
workload. This is correct as the CPUfreq governors only control the states of the 
CPU cores. 
 
Figure 5 shows some curves corresponding to the temporal evolution of the 
instantaneous power. The curves in Figure 5a illustrate the evolution for different 
operation frequencies in the CPU cores with equal distribution of individuals among 
GPU and CPU cores (x=0.5) while Figure 5b gives the different distribution curves of 
individuals at the same operating frequency in the CPU cores (FCPU=2100 MHz). 
Figure 5a clearly shows that the instantaneous power values are higher for the larger 
operating frequencies. Instantaneous power values for 1200 and 1600 MHz are in 
fact closer to each other than they are for 1600 and 2100 MHz. Figure 5b shows that 
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the instantaneous power values also change with the rate of individuals allocated to 
the CPU cores. The curve with the lowest instantaneous power values corresponds 
to the situation where all the individuals are allocated to the GPU. Regarding the 
other two curves, the one with larger power values corresponds to x=0.5. Although 
only half of the population is allocated to the CPU cores, this behavior could be 
explained by the power consumed by the elements of the node required to 
communicate the CPU core where the master thread is running and the GPU. 
 

 
Figure 5.  Temporal evolution of the instantaneous power: (a) for x=0.5 and different 
values of frequency in the CPU cores; and (b) for a frequency of 2100 MHz in the 
CPU cores and different values of x (rate of workload allocated to the GPU) and 
N=960 
 
Figure 6 shows the shape of the cost function Δ=aΔt+bΔE for N=240 individuals and 
1600 MHz, and different values for parameters a and b. Depending on these values, 
the minimum of the cost function corresponds to a minimum in the energy 
consumption (x=0.75), in the running time (x=0.60), or represents a trade-off 
between time and energy. 
 

(a)

(b)
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Figure 6.  Cost function for different values of parameters a and b, for N=240 and 
FCPU=1600 MHz. 

4. Related work 

A large number of energy-aware scheduling procedures have already been 
proposed. Although the majority of these require programmer-exposed DVFS 
strategies for runtime power management, it is not possible to take into account 
energy consumption and time optimization principles in platforms that do not allow 
the user to access and control the DVFS alternatives online (or this alternative is so 
costly and should be avoided). A black-box scheduling approach is therefore 
proposed in [12] based on an offline power model and an online workload modeling. 
Other approaches build power and energy consumption models either by running 
micro-benchmarks [13] or by evaluating the energy consumption of the platform 
components [14]. In their paper [15], the authors define energy-aware strategies in 
codes for sparse linear systems after analyzing and modelling the different power-
saving modes of CPU cores. Along the same lines, [16] proposes energy 
consumption characterization by applying multiple linear regression models. 
 
As energy consumption and runtime are competing objectives, a multi-objective 
(more specifically a bi-objective) approach is required to tackle the development of 
an energy-aware scheduling problem. By way of future work, the paper [17] 
proposes the use of multi-objective evolutionary algorithms to learn about the trade-
offs evaluated by the two-level schedulers described in the paper. Since a 
scheduling algorithm built on a Pareto-based multi-objective evolutionary algorithm 
would require a long computing time together with a strategy to select from the 
different alternatives in the Pareto front, a better alternative is to use a cost function 
that weights the energy and time objectives as proposed in [18] using a weighted 
energy-delay product corresponding to the desired tradeoff among those defining the 
alternatives represented by the Pareto front. In this paper, we also follow this 
proposal and we propose a cost function that comprises the two goals of energy 
consumption and runtime although not through an energy-delay product. 
 
The energy efficiency of GPU has attracted interest in recent years and has been 
previously analyzed in various papers [19-21]. In terms of the energy consumption 
efficiency of hybrid CPU-GPU platforms, some relevant results can be found in 
various publications [22, 23]. For example, [22] provides analytical models to provide 
insight into performance gains and energy consumption in different CPU-GPU 
platforms and concludes that greater parallelism allows opportunities for energy 
saving and encourages the development of energy saving parallel applications. The 
proposal in this paper is a workload balancing procedure based on the multi-
objective cost function and built by regression, following the approach described in 
[16]. 
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5. Conclusions 

The problem of scheduling on heterogeneous architectures to minimize both runtime 
and energy consumption has recently attracted interest as energy consumption has 
become one of the major concerns in high-performance computing and data-center 
facility management. In addition to the availability of heterogeneous architectures 
with different energy consumption characteristics, techniques such as dynamic 
voltage and frequency scaling (DVFS) make it possible to devise task scheduling 
procedures which are concerned with minimizing both runtime and energy 
consumption. Nevertheless, DVFS control is not available at the user level and it may 
even be hard to find energy and power prediction models that are accurate enough to 
be used by an efficient scheduling procedure. One alternative approach is to fit black-
box models to the experimental results obtained by the target application in certain 
conditions and to use these to predict application behavior in other experimental 
conditions. 
 
This paper analyzes energy consumption and runtime behaviors in GPU-CPU 
platforms of parallel master-worker evolutionary algorithms applied to a feature 
selection problem for EEG classification in BCI tasks. We have defined models for 
runtime and energy consumption that have been fitted to the experimental results by 
multiple linear regression with values of the R2-statistics which are greater than 
0.945, and statistical significance in every case. These models provide prediction 
errors which are lower than 24.6% for energy consumption and 3.1% for runtime in 
the experimental alternatives we have considered. Since many bioinformatics and 
data mining applications involve classification, clustering, feature selection, and 
optimization that due to their complexity require metaheuristics such as evolutionary 
algorithms, the conclusions of the approach described in this paper may be relevant 
to many different situations. Much work remains to be done, however, in terms of 
improving energy consumption models for other platform applications and elements 
other than the GPU and CPU cores.  
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