
Rossainz-López et al.

ANN. MULT. GPU PROG.

Implementation of the Pipeline

Parallel Programming Technique

as an HLPC: Usage, Usefulness

and Performance

Mario Rossainz-López1*, Manuel I. Capel2,

Odon D. Carrasco-Limón1, Fernando

Hernández-Polo1, Bárbara E. Sánchez-Rinza1

Abstract

This article presents the pipeline
communication/interaction pattern for concurrent, parallel
and distributed systems as a high-level parallel
composition (HLPC) and discusses its usefulness for
deriving parallel versions of sequential algorithms. In
particular, we provide examples of the parallel solution
for the following problems: adding numbers, sorting
numbers and solving a system of linear equations. An
approach based on structured parallelism and the parallel
object concept is used to solve these problems. In its
generic pattern, the pipeline pattern is shown as an
HLPC that deploys three types of parallel objects (a
manager, various stages and a collector) which are
interconnected to form the pipeline processing structure.
We also use a method to systematically create the HLPC
pipeline and solve this type of problem. Each pipeline
instance must be able to handle predefined
synchronization restrictions between processes
(maximum parallelism, mutual exclusion and
synchronization of the producer-consumer type, the use
of synchronous, asynchronous and future asynchronous
communication, etc.). Finally, the article presents the
performance of pipeline HLPC-based implementations of
parallel algorithms for solving the problems raised in the
paper by using exclusive CPUs.

Keywords: HLPC Pipeline, Structured Parallelism, Parallel
Objects, Pipeline, Functional Decomposition, Object-oriented
Programming

1. Introduction

Among the plethora of object-oriented systems,
concurrent object-based programming frameworks are
currently only known by the scientific community involved
in studying parallelism. There are, however, also
notations that allow complete expressions of the behavior
of parallel programs intended for specific OO structured
parallel programming environments [1] to be written. One
first approach that attempts to tackle the problem of

*Correspondence:

rossainz@cs.buap.mx
1
Benemérita Autonomous

University of Puebla. Avda. San

Claudio and 14 South, San

Manuel. 72000, Puebla,

Puebla, Mexico.

2
Department of Software

Engineering, College of

Computing and

Telecommunications. ETSIIT

Daniel Saucedo Aranda s/n,

18071 Granada, Spain.

Annals of Multicore and GPU Programming, vol. 4 (1). ISSN: 2341-3158. 9

mailto:rossainz@cs.buap.mx

Rossainz-López et al.

algorithm and program parallelization consists in trying to automatically produce a
parallel version of a sequential code with the help of a specific parallelizing
environment. A promising alternative approach is the one adopted in this research
and this entails following the general structured parallelism method based on a
predefined construction known as a high-level parallel composition.

Parallel applications generally follow predetermined execution patterns which are
seldom arbitrary or unstructured in their logic [2]. Parallel high-level compositions
(HLPC, or CPAN in Spanish) are well-defined and logically well-structured, parallel
communication patterns which, once their components and communication scheme
have been selected, can be integrated as additional programming constructs to an
object-oriented programming language and made available as high-level
abstractions in user applications.

The structured parallel programming approach is based on the use of
communication/interaction patterns (pipelines, farms, trees, etc.) between the
processes and these are usually defined during the design phase of a user
application. By abstracting the interaction pattern between concurrent processes, our
approach enables applications to be designed in terms of HLPCs which are capable
of implementing such patterns. Encapsulation of an HLPC must follow the modularity
principle so that the objects and their parallel behavior can be effectively reused to
solve problems when the software is implemented. When this is achieved, we can
say that a generic parallel pattern has been created to represent process interaction
in programs and user applications where it is deployed, independently of the
functionality of such processes. This proposal also concurs with the structured
parallel programming approach that we have considered and which enriches the
modeling capacity of traditional parallel environments by generating libraries of
program skeletons [3] that represent specific communication patterns between
concurrent processes. Accordingly, rather than programming an application from
scratch, we can simply identify the HLPCs which implement suitable communication
patterns and use these with the sequential code which has been individually
programmed by the application processes. We have identified several parallel
patterns of use for implementing significant interconnections and which are reusable
in multiple applications and parallel algorithms. The set of patterns found has
resulted in a wide library of communication patterns between concurrent processes
such as the HLPCs detailed in [4, 5].

During our research, we implemented the pipeline pattern as a generic HLPC.
Thanks to the object-oriented programming paradigm, we have parallelly
implemented three applications (number addition, number sorting and solving a
system of linear equations) by using three different HLPC-based strategies of
parallel implementation from the corresponding sequential algorithms. In this way,
the software requirements are those that direct the actual semantics of the instance
of the HLPC pipeline to be deployed in the user application. Finally, we analyze the
performance of the presented applications with Amdahl’s Law Speed-up in terms of
the implementation of the HLPC pipeline instance and the number of reserved
processors in a parallel computer.

2. The Pipeline Technique

This parallel processing technique is applicable to a wide range of problems that are
naturally partially sequential, i.e. we can use this technique to solve a problem by
splitting it into a series of successive tasks so that data flow in the direction given by
the process interconnection structure. Each task can therefore be completed
sequentially [6]. In a pipeline, each task is executed by a processor or process as
shown in Figure 1. Each process or processor that comprises a pipeline is usually
called a stage [7].

10

Rossainz-López et al.

Figure 1. Pipeline structure

Each pipeline stage helps solve the problem as a whole and passes necessary

information on to the next stage in the sequence. This type of parallelism is seen as
a form of functional decomposition or segmented computing since the problem is
divided into separate functions that can be executed individually and independently.
This technique assumes that the application functions are executed in succession [6,
7]. An algorithm that solves a certain problem can be formulated as a pipeline if it
can be divided into a series of functions that could be executed by the pipeline
stages. The general functionality of any pipeline stage (understood as an operation
of the program) is shown by the following algorithm:

Algorithm StagePipe. Code to be run at any pipeline stage

 {

ENTRY: int j; // current stage index or identifier

 // Stage 0 receives a set of items

 EXIT: returns the set of items processed by stage j of

the pipeline

For i = 1 until m do

 {

receives (item, j-1);

process (item, j);

 send (item, processed, j + 1);

 }

 }

Each pipeline stage must compute a set of items that, in order to be processed,

require the information produced by the previous pipeline stage. Once the item has
been processed, it must be sent to the next pipeline stage. For reasons of simplicity,
the algorithm assumes that each stage computes "m" items at the same time and
that each item is at a different stage of the pipeline. The exceptions to this are the
first stage of the pipeline where nothing is received from a previous stage and the
final stage where nothing is sent to a subsequent stage. One example of a
sequential program that can be formulated as a pipeline is a simple cycle or loop in
which all the elements of an array are added into an accumulated sum [8].

for i = 0 until (n-1) do

{

sum = sum + a[i];

}

This cycle can be viewed separately, instruction by instruction, as the following
code shows:

sum = sum + a[0];

sum = sum + a[1];

sum = sum + a[2];

sum = sum + a[3];

sum = sum + a[4];

One solution using the pipeline might be to assign each sentence to a different
stage as shown in Figure 2 and to apply the previous Stage pipeline algorithm [8].

11

Rossainz-López et al.

Figure 2 also shows how each stage receives the cumulative sum as its input Sin
and an element a[] as its input a to produce the new accumulated sum which is then
sent through its output Sout. Therefore, stage i performs the operation Sout = Sin +
a [i].

Figure 2. Representation of a loop using a pipeline

Instead of simple operations, however, a series of functions could be assigned to

the pipeline stages by applying a functional decomposition strategy [7, 8]. Let us
suppose, for example, that we want to sort a set of unsorted data in descending
order but we have no sorting algorithm to hand to obtain an array with the data
placed from lowest to highest in ascending order. If this sorting algorithm is used, it
is necessary to invert the sequence of the data and then sort them. With the pipeline,
however, this can be carried out by programming an additional pipeline with an
assigned function to invert the output sequence of the first pipeline and then carry
out the required processing (Figure 3).

Figure 3. Pipeline with functional decomposition

The elements in the previous figure can be interpreted as follows:

 x represents the initial data set that we assume will be in disarray;

 f (x) represents the function "orders" that receives as input the set of data
to be sorted and provides as output the order in ascending order of the
data set received;

 y represents the output of the function f (x), i.e. the ordered data;

 g (y) represents the "inverted" function that receives the result of the
function "orders" to output the set of previously ordered data but inverted
in sequence in descending order;

 Assuming that the input data in this example are integers, the sequence
of results in the pipeline is shown in Figure 4.

Figure 4. Sequence of results in a pipeline with functional decomposition

12

Rossainz-López et al.

If a problem can be divided into a series of sequential tasks, the pipeline
approach can therefore yield an increase in execution processing speed according
to the following three calculation types proposed in [8]:

1. TYPE A: when more than one instance of the problem solution can be

run in parallel. Figure 5 depicts a space-time diagram that shows a
possible use of the pipeline for speeding up this type of calculation. The
diagram assumes that all processes have the same execution time to
complete their task. Each time period is called a pipeline cycle. Each
instance of the solution to this problem therefore requires 6 sequential
processes (P0 to P5) to generate a ladder effect, each of which
completes an instance of the problem in every pipeline cycle. With p-
processes (stages) of the pipeline and m-instances of the problem, the
number of pipeline cycles required to execute the m-instances is m + p-1
cycles.

Figure 5. Space-Time diagram of a pipeline

2. TYPE B: when a series of data can be processed and each is used in
multiple operations. This appears in arithmetic calculations where a
series of data is processed in sequence, such as multiplying elements in
a matrix. In this calculation, the individual elements enter the pipeline as
a sequential series of numbers. This type of calculation is illustrated in
Figure 6, and as an example, there are 10 processes (stages) of the
pipeline and 10 elements d0 to d9 that need to be processed.

Figure 6. Pipeline for arithmetic calculations

3. TYPE C: when the information required by the next process in the
pipeline to start its calculation is passed before the current process has
completed all of its internal operations, and so it cannot produce the
results and pass them on. This type of calculation is used in parallel
programs where there is only one instance of the solution to the problem
to be calculated, but each process (stage) can pass information to the
next which can then complete its assigned task. Figure 7 shows the

13

Rossainz-López et al.

space-time diagrams when information is passed in the pipeline before
execution of any of the processes shown has been completed.

Figure 7. Processing of the pipeline where the information passes from one stage

to another before execution of any of the stages has been completed

3. High-level Parallel Compositions (HLPC)

An HLPC comprises three types of parallel objects: firstly, a manager object that
represents the HLPC to make an encapsulated abstraction to hide its internal
structure; secondly, stage objects for client/server interface encapsulation; and
thirdly a collector object to receive the results from the stages. The manager-object
controls the references of the other objects in the HLPC and coordinates their
execution which is carried out in parallel. Stage objects are responsible for
encapsulating a client-server type interface that is established between the manager
and a group of passive objects (called slaves) containing the algorithm that solves
the sequential problem. The Collector object parallelizes the input of results from the
stages and stores them. Manager, Collector and Stages are parallel objects (POR)
with their own execution capacity [9].

Applications programmed according to the parallel object (PO) model can exploit
both inter-object parallelism and intra-object or internal parallelism. An application
based on the PO paradigm has a similar structure to that of Smalltalk objects
although it also includes a previously established scheduling policy that specifies the
synchronization of operations of one or more objects that can be invoked in parallel
[9, 10]. In the PO paradigm, parallel objects support multiple inheritance and this
enables a completely new PO specification to be derived.

The following properties of an HLPC were studied in detail in [11]: synchronous,
asynchronous and future asynchronous communication between the parallel HLPC
objects; internal parallelism of objects, which includes the availability of
synchronization mechanisms; parallel mechanism type includes maximum
parallelism, mutual-exclusion intended constructs, and producer-consumer
concurrency; generic type control features; transparency in the distribution of parallel
applications; and programmability-portability-performance of code and applications.

In the HLPC version of the PO programming model, the following basic classes
are needed to define the manager, collector, stages objects of an HLPC: an instance
of a specific class derived from the ComponentManager class (called manager) to
represent an HLPC within an application programmed according to the PO model;
instances (called stages) of a specific class derived from the ComponentStage class
which are interconnected to implement a series of stages and each stage directs the
parallel execution of a slave object which is controlled by the stage itself.

14

Rossainz-López et al.

It is also necessary to mention that the creation of stages, collectors and their
subsequent interaction is handled transparently to the application user code by the
manager. When users want to use an HLPC within an application, not only must they
create an instance of a particular manager class, i.e. one that implements the
parallel behavior required by the application and to initialize it with the appropriate
reference to the stage objects, which in turn control the slave objects, but also
declare the name of the requested method (see Figure 8, [11] for more details).
From the point of view of reusing the parallel behavior already defined in an HLPC,
the most relevant class to instantiate will therefore be that of the manager.

Figure 8. Internal structure of a High-level Parallel Composition or HLPC

3.1. The HLPC Pipeline

The parallel pipeline processing technique is presented as a high-level parallel
composition for solving a wide variety of problems from a number of different areas
that can already be solved by partially sequential algorithms. In this way, the HLPC
pipeline guarantees code parallelization of the resulting algorithm while taking
advantage of existing sequential algorithms by using the HLPC processing pattern.

Figure 9. The Pipeline as an HLPC

15

Rossainz-López et al.

The Stage_i and Manager Objects in Figure 9 are instances of specific classes
which inherit the characteristics of ComponentManager and ComponentStage
baseline classes, respectively. These classes redefine the abstract methods of their
superclasses. The Collector object is the only one that will be an instance of the
ComponentCollector singleton class. Once the objects have been created and
properly connected according to the Pipeline parallel pattern, an HLPC is obtained
as an instance of a specific type of parallel pattern after allocating objects associated
with the slave stages. The HLPC pipeline is described by the PipeManager class,
which inherits from the ComponentManager class and implements a pipeline
communication pattern where its stages are instances of the PipeStage class and
inherits from the ComponentStage class. Any PipeManager object can only interact
with the first stage, some stages or all stages of the pipeline at the time of
initialization according to the pipeline model that we want to implement as an HLPC.

During the execution of a service invocation, the first stage is the only one
commanded to create and start the next stage, and so forth. Each PipeStage object
creates the following stage of the pipeline during its initialization phase. During the
execution phase, an object stage only directly interacts with the next one on the
pipeline or with the Collector (or both). Finally, the last stage sends the result to the
Collector object (instance of the ComponentCollector class) and the reference is
usually transmitted dynamically through the stages although this will depend on the
pipeline model that we want to implement as an HLPC.

3.2. Usage methodology of the HLPC Pipeline

1. The slave objects, which are executed by the stages and represent instances
of the functionality required from the HLPC pipeline, are created.

2. The sequential algorithm that solves the initial problem is implemented and
its replicas (or instances) become methods associated to the slave objects.

3. A list of associations (e.g. slave object, associated method) are created.
4. An instance of the PipeManager class is created to represent the HLPC

pipeline manager being constructed. It is then initialized with the list of
associations from the previous step. At this moment, the necessary internal
stages of the PipeManager HLPC are automatically created as instances of
the PipeStage class and each obtains an association.

5. The initial data to be processed are specified by creating data types and
user-defined data as objects, whereas the input data set represents the
problem to solve.

6. Application execution is requested to find a solution to the problem.

Parallel execution is achieved by transparently using synchronous,
asynchronous and future asynchronous communication for the user's main
program. The HLPC pipeline then creates its Collector object, which is passed
as a reference to every stage connected with the Collector object, together with
a copy of the data set to be processed. The initial stage works with these data
and they are processed by the slave object associated to each stage. The result
is then passed on to the next stage which is then created and initialized by the
previous stage. In the same way, the second stage processes the data received
when its slave object method is executed and the new result is sent to the next
stage, and so on. Finally, the obtained results are received by the Collector
object which then compiles, processes and sends them to the PipeManager
object which, in turn, sends the solution outside the HLPC.

7. Finally, the final results are shown to the user.

4. Usage and usefulness of the HLPC Pipeline

A possible HLPC pipeline for solving a variety of problems using this parallel
processing pattern is shown below.

16

Rossainz-López et al.

4.1. Adding numbers

Let us now consider the problem of adding a series of numbers. A solution can be
designed by using the HLPC pipeline so that each stage-object adds the number
input from its previous stage to an internally accumulated sum before being sent to
the next stage. In order to do so, we will consider a producer-consumer
communication type, as suggested in [12]. The input data, i.e. the numbers to be
added, are sent by the HLPC pipeline manager object in parallel to the stages (one
number to each stage) as shown in Figure 10. Every stage then executes the
solution-algorithm which is contained in the slave object associated to each stage.
The final result of this calculation is sent by the final stage to the collector object,
which in turn sends it to the manager which returns the final result to the user.
Execution of this HLPC pipeline can clearly be classified as a TYPE A pipeline
calculation (see Section 2), i.e. each stage of the HLPC pipeline carries out similar
actions in each pipeline’s cycle.

Figure 10. Addition using the HLPC pipeline

4.2. Sorting numbers

In the operation of a parallel sorting algorithm based on the pipeline parallel
processing pattern, three phases can be distinguished as indicated in [12, 13]:

• Initial data loading: all the data are delivered to each process associated with
two of the pipeline stages. In this phase, the processes are usually running
the same code as in the second phase, the only difference being that the
processes must be properly initialized in order to receive the first data coming
from the previous stage or the data initially loaded into the program.

• Processing the data stream with maximum efficiency: processes behave
cyclically during execution. They input and process data from the previous
stage and the result is sent to the next stage. Each process must be
synchronized with the previous and following stage so that new data are not
sent until all the current data have been processed. The final pipeline process
behaves differently to the processes of previous stages since it must execute
a routine or exit code and send results.

• Downloading: in the final stage of the pipeline, processes send the results of
the data that were last processed in the pipeline. The final stage processes
will no longer receive data from the input stream and must detect the state of
termination. In order for the processes to transmit the data stored in their
stages before they finish, a special value is usually introduced at the end of
the input sequence used to download the pipeline.

The implementation of the parallel sorting algorithm consists of a process pipeline

that is fed with an unsorted sequence of integers by a routine or input code. As a
result, the pipeline sort algorithm obtains the sorted integer sequence in ascending
order. The number of values of the input sequence cannot be greater than the

17

Rossainz-López et al.

number of pipeline stages since each pipeline process can only store one integer,
which will be the largest one received so far from the previous stage. At the end of
the computation, each stage therefore stores one number of the input sequence in
ascending order [12,13]. This represents the parallel sorting algorithm that has been
implemented as an HLPC pipeline and is shown in Figure 11.

Figure 10. Sorting numbers using the HLPC pipeline

The previous implementation of the pipeline as an HLPC can be classified as a

TYPE B pipeline calculation (see Section 2), i.e. the series of numbers to be sorted
are processed in sequence. In this calculation, each number enters the HLPC
pipeline as a sequential series of numbers.

4.3. Solving a system of linear equations

In this case, the HLPC implementation of the solution can be considered as a TYPE
C pipeline calculation (see Section 2) since the stages that comprise the HLPC
pipeline continue to work even after information is passed to the next stage. The
objective in this case is to solve a system of linear equations such as the following
one:

The method used to solve this system of linear equations and find the values of
X0, X1, X2,. . ., Xn-1, is a simple backward substitution which is repeated until the
unknowns of the original system of equations have been determined, as detailed in
[12,13]. We first find the value of X0 of the last equation of the system:

X0 = b0/a0,0

18

Rossainz-López et al.

The value obtained for X0 is substituted in the following equation of the system,
to obtain X1:

X1 = (b1 –a1,0X0)/a1,1

The values obtained from X1 and X0 are replaced in the third equation of the

system, in ascending order, to obtain X2:

X2 = (b2 – a2,0X0 – a2,1X1)/a2,2

This is repeated until all the unknown variables have been found. This method of
solving a system of linear equations can therefore be implemented using the HLPC
pipeline shown in Figure 12.

Figure 12. Solving a system of linear equations using the HLPC pipeline

The first stage of the HLPC pipeline calculates and obtains X0, and then sends

the result to the second stage which calculates and obtains X1 by using X0 in its
calculations. The final stage sends the values of X0 and X1 to the next stage, which
calculates X2 using the values of X0 and X1, and so on. The slave objects are
associated with the routine that finds the value of Xi from the values of X1, X2,
X3….Xi-1 received from the previous stages in order to perform the calculations.

5. Performance of the HLPC Pipeline

The performance analysis of adding numbers, sorting numbers and solving a
system of linear equations implemented by the HLPC pipeline was conducted on a
parallel computer with 64 processors, 8GB of main memory, high-speed buses with
a generic, distributed-shared-memory architecture. Performance of the parallel
algorithms implemented using the HLPC pipeline (which deployed the three types of
pipeline-based calculations as discussed in Section 2) was measured according to
the following execution restrictions:

• For the number addition problem, the same sequential algorithm is used in

each of the slave objects associated with the pipeline stages by
implementing a TYPE A pipeline calculation as described in Section 4.1.
In this case, 50,000 integer numbers (randomly obtained in a range from 0
to 50,000) were input into the pipeline.

• For the sorting number problem, the same sequential routine was used to
compare values in each of the slave objects associated with all the
pipeline stages (except the first and last ones) as discussed in Section
4.2. The series of calculations performed in the pipeline for HLPC
implementation of the solution corresponds to a TYPE B pipeline
calculation. For this study sub-case, 50,000 integers were randomly
generated and sorted.

19

Rossainz-López et al.

• For the problem of the system of linear equations, we worked with a
system of 50,000 linear equations. Each equation contained 1 to 50,000
terms, which involved generating random integers to assign the
coefficients ai and the independent terms bi, in a range from 1 to 50,000.
In the same way as in the previously solved examples, the same routine
was used for each of the slave objects associated with the pipeline stages
to find the values of the unknown variables Xi of the system and so a
TYPE C pipeline calculation was implemented with the HLPC pipeline.
These parallel program execution conditions enable us to assume a load
which is sufficient for the processors and to show the improvement in
HLPC pipeline performance in solving the problems discussed in this
paper. For every problem, the entire computation was carried out with 2,
4, 8, 16 and 32 exclusive processors and the results are shown in Tables
1, 2 and 3 and in the graph in Figure 13.

Table 1. HLPC pipeline performance in adding 50,000 integers

Table 2. HLPC pipeline performance in sorting 50,000 integers

Table 3. HLPC pipeline performance in solving a system of linear equations

20

Rossainz-López et al.

Figure 13. Scalability of the Speedup found for the HLPC pipeline in solving the

problems of adding numbers, sorting numbers and the linear equation system

6. Conclusions

This article introduces a new method for designing software applications which is
based on the construction of high-level parallel compositions or HLPCs. The method
can be used for software development on different platforms, one of the most widely
used being C ++ and POSIX Threads [14] on which the programs that support this
study were developed. The HLPC pipeline was implemented to provide potential
users of this service with an ample library of classes based on the parallel object
programming paradigm. In addition to HLPC pipeline implementation, different
communication patterns such as farms, trees, etc. were also made available. We
showed the purpose and use of HLPC pipeline from a practical point of view by
presenting it as a communication pattern between concurrent processes that can be
easily used by programmers with little parallel programming experience. The HLPC
pipeline has been reused in the communication/interaction between the parallel
processes in three examples (adding numbers, sorting numbers and linear equation
system) and these have been solved by using three different types of pipeline
computations. It has been possible to reuse the application software by adopting the
PO approach and this proved to be useful for defining new specific patterns based
on previously identified and programmed [15] ones. We were able to obtain efficient
code from high abstraction level programs simply by programming the sequential
parts of diverse applications and the results were tested in terms of predicted speed-
up using Amdahl’s Law for a restricted range of 2, 4, 8, 16 and 32 exclusive
processors for these executions. In the future, we will analyze the suitability of using
the HLPC pipeline to parallelize different algorithms and application programs. We
will also investigate its adaptation to a particular case study of application to the
problem of the automation of DNA annotation sequences in genome construction.

References

1. Corradi A, Leonardo L, Zambonelli F.: Experiences toward an Object-oriented
Approach to Structured Parallel Programming. DEIS technical report no. DEIS-
LIA-95-007. (1995).

21

Rossainz-López et al.

2. Brinch Hansen: Model Programs for Computational Science: A programming
methodology for multicomputers. Concurrency: Practice and Experience, Vol. 5,
No. 5, Pp. 407-423. (1993).

3. Darlington et al.: Parallel Programming Using Skeleton Functions. Proceedings
PARLE’93, Munich (1993).

4. Rossainz, M., Capel M.: A Parallel Programming Methodology using
Communication Patterns named HLPCS or Composition of Parallel Object.
Proceedings of 20TH European Modeling & Simulation Symposium. Campora S.
Giovanni. Italy (2008).

5. Rossainz, M., Capel M.: Design and implementation of communication patterns
using parallel objects. International Journal of Simulation and Process Modelling.
Volume 12, No.1, Pp: 69-91. ISSN: 1740-2131, (2017).

6. Robbins, K. A., Robbins S.: UNIX Programación Práctica. Guía para la
concurrencia, la comunicación y los multihilos. Prentice Hall. (1999).

7. Roosta, Seyed: Parallel Processing and Parallel Algorithms. Theory and
Computation. Springer (1999).

8. Wilkinson B., Allen M: Parallel Programming. Techniques and Applications Using
Networked Workstations and Parallel Computers”. Prentice-Hall. U.S.A. (1999).

9. Corradi A., Leonardi L.: PO Constraints as tools to synchronize active objects.
Pp: 42-53. Journal Object Oriented Programming 10. (1991).

10. Danelutto, M.; Orlando, S; et al.: Parallel Programming Models Based on
Restricted Computation Structure Approach. Technical Report-Dpt. Informatica.
Universitá de Pisa (1999).

11. Rossainz M., Pineda I., Domínguez P.: Análisis y Definición del Modelo de las
Composiciones Paralelas de Alto Nivel llamadas CPANs. Modelos Matemáticos
y TIC: Teoría y Aplicaciones. Dirección de Fomento Editorial. ISBN 987-607-
487-834-9. Pp. 1-19. México. (2014).

12. Almeida F., Giménez D., Mantas J.M., Vidal A.M.: Introducción a la
Programación Paralela". Paraninfo CENAGE Learning. (2008).

13. Blelloch, Guy E.: Programming Parallel Algorithms. Communications of the ACM,
Vol. 39, No. 3 (1996)

14. Butenhof, D. R. “Programming with POSIX® Threads”. Addison Wesley. 1997.
15. Arjomandi E., O´Farrell W.G., Wilson G. V. “An Object-Oriented Communication

Mechanism for Parallel Systems”. Conference on Object-oriented Technologies.
Toronto, Ontario, Canada, 1996. USENIX http://www.usenix.org.

22

http://www.usenix.org/

