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Abstract 

This article presents the pipeline 
communication/interaction pattern for concurrent, parallel 
and distributed systems as a high-level parallel 
composition (HLPC) and discusses its usefulness for 
deriving parallel versions of sequential algorithms. In 
particular, we provide examples of the parallel solution 
for the following problems: adding numbers, sorting 
numbers and solving a system of linear equations. An 
approach based on structured parallelism and the parallel 
object concept is used to solve these problems. In its 
generic pattern, the pipeline pattern is shown as an 
HLPC that deploys three types of parallel objects (a 
manager, various stages and a collector) which are 
interconnected to form the pipeline processing structure. 
We also use a method to systematically create the HLPC 
pipeline and solve this type of problem. Each pipeline 
instance must be able to handle predefined 
synchronization restrictions between processes 
(maximum parallelism, mutual exclusion and 
synchronization of the producer-consumer type, the use 
of synchronous, asynchronous and future asynchronous 
communication, etc.). Finally, the article presents the 
performance of pipeline HLPC-based implementations of 
parallel algorithms for solving the problems raised in the 
paper by using exclusive CPUs. 

Keywords: HLPC Pipeline, Structured Parallelism, Parallel 
Objects, Pipeline, Functional Decomposition, Object-oriented 
Programming 

1. Introduction 

Among the plethora of object-oriented systems, 
concurrent object-based programming frameworks are 
currently only known by the scientific community involved 
in studying parallelism. There are, however, also 
notations that allow complete expressions of the behavior 
of parallel programs intended for specific OO structured 
parallel programming environments [1] to be written. One 
first approach that attempts to tackle the problem of 
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algorithm and program parallelization consists in trying to automatically produce a 
parallel version of a sequential code with the help of a specific parallelizing 
environment. A promising alternative approach is the one adopted in this research 
and this entails following the general structured parallelism method based on a 
predefined construction known as a high-level parallel composition.  

Parallel applications generally follow predetermined execution patterns which are 
seldom arbitrary or unstructured in their logic [2]. Parallel high-level compositions 
(HLPC, or CPAN in Spanish) are well-defined and logically well-structured, parallel 
communication patterns which, once their components and communication scheme 
have been selected, can be integrated as additional programming constructs to an 
object-oriented programming language and made available as high-level 
abstractions in user applications.  

The structured parallel programming approach is based on the use of 
communication/interaction patterns (pipelines, farms, trees, etc.) between the 
processes and these are usually defined during the design phase of a user 
application. By abstracting the interaction pattern between concurrent processes, our 
approach enables applications to be designed in terms of HLPCs which are capable 
of implementing such patterns. Encapsulation of an HLPC must follow the modularity 
principle so that the objects and their parallel behavior can be effectively reused to 
solve problems when the software is implemented. When this is achieved, we can 
say that a generic parallel pattern has been created to represent process interaction 
in programs and user applications where it is deployed, independently of the 
functionality of such processes. This proposal also concurs with the structured 
parallel programming approach that we have considered and which enriches the 
modeling capacity of traditional parallel environments by generating libraries of 
program skeletons [3] that represent specific communication patterns between 
concurrent processes. Accordingly, rather than programming an application from 
scratch, we can simply identify the HLPCs which implement suitable communication 
patterns and use these with the sequential code which has been individually 
programmed by the application processes. We have identified several parallel 
patterns of use for implementing significant interconnections and which are reusable 
in multiple applications and parallel algorithms. The set of patterns found has 
resulted in a wide library of communication patterns between concurrent processes 
such as the HLPCs detailed in [4, 5].  

During our research, we implemented the pipeline pattern as a generic HLPC. 
Thanks to the object-oriented programming paradigm, we have parallelly 
implemented three applications (number addition, number sorting and solving a 
system of linear equations) by using three different HLPC-based strategies of 
parallel implementation from the corresponding sequential algorithms. In this way, 
the software requirements are those that direct the actual semantics of the instance 
of the HLPC pipeline to be deployed in the user application. Finally, we analyze the 
performance of the presented applications with Amdahl’s Law Speed-up in terms of 
the implementation of the HLPC pipeline instance and the number of reserved 
processors in a parallel computer.    

2. The Pipeline Technique 

This parallel processing technique is applicable to a wide range of problems that are 
naturally partially sequential, i.e. we can use this technique to solve a problem by 
splitting it into a series of successive tasks so that data flow in the direction given by 
the process interconnection structure. Each task can therefore be completed 
sequentially [6]. In a pipeline, each task is executed by a processor or process as 
shown in Figure 1. Each process or processor that comprises a pipeline is usually 
called a stage [7]. 
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Figure 1.  Pipeline structure 

 
Each pipeline stage helps solve the problem as a whole and passes necessary 

information on to the next stage in the sequence. This type of parallelism is seen as 
a form of functional decomposition or segmented computing since the problem is 
divided into separate functions that can be executed individually and independently. 
This technique assumes that the application functions are executed in succession [6, 
7]. An algorithm that solves a certain problem can be formulated as a pipeline if it 
can be divided into a series of functions that could be executed by the pipeline 
stages. The general functionality of any pipeline stage (understood as an operation 
of the program) is shown by the following algorithm: 

 
Algorithm StagePipe. Code to be run at any pipeline stage 

         { 

ENTRY:  int    j; // current stage index or identifier 

            // Stage 0 receives a set of items 

 EXIT: returns the set of items processed by stage j of 

the pipeline 

For i = 1 until m do 

             { 

receives (item, j-1); 

process (item, j); 

 send (item, processed, j + 1); 

              } 

       } 

 
Each pipeline stage must compute a set of items that, in order to be processed, 

require the information produced by the previous pipeline stage. Once the item has 
been processed, it must be sent to the next pipeline stage. For reasons of simplicity, 
the algorithm assumes that each stage computes "m" items at the same time and 
that each item is at a different stage of the pipeline. The exceptions to this are the 
first stage of the pipeline where nothing is received from a previous stage and the 
final stage where nothing is sent to a subsequent stage. One example of a 
sequential program that can be formulated as a pipeline is a simple cycle or loop in 
which all the elements of an array are added into an accumulated sum [8]. 

 
for i = 0 until (n-1) do  

{ 

sum = sum + a[i]; 

} 

 

This cycle can be viewed separately, instruction by instruction, as the following 
code shows:  

sum = sum + a[0]; 

sum = sum + a[1]; 

sum = sum + a[2]; 

sum = sum + a[3]; 

sum = sum + a[4]; 

 

One solution using the pipeline might be to assign each sentence to a different 
stage as shown in Figure 2 and to apply the previous Stage pipeline algorithm [8]. 
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Figure 2 also shows how each stage receives the cumulative sum as its input Sin 
and an element a[] as its input a to produce the new accumulated sum which is then 
sent through its output Sout. Therefore, stage i performs the operation Sout = Sin + 
a [i]. 

 

 
 

Figure 2.  Representation of a loop using a pipeline 

 
Instead of simple operations, however, a series of functions could be assigned to 

the pipeline stages by applying a functional decomposition strategy [7, 8]. Let us 
suppose, for example, that we want to sort a set of unsorted data in descending 
order but we have no sorting algorithm to hand to obtain an array with the data 
placed from lowest to highest in ascending order. If this sorting algorithm is used, it 
is necessary to invert the sequence of the data and then sort them. With the pipeline, 
however, this can be carried out by programming an additional pipeline with an 
assigned function to invert the output sequence of the first pipeline and then carry 
out the required processing (Figure 3). 

 

 

 
 

Figure 3.  Pipeline with functional decomposition 

 
 
The elements in the previous figure can be interpreted as follows: 

 x represents the initial data set that we assume will be in disarray; 

 f (x) represents the function "orders" that receives as input the set of data 
to be sorted and provides as output the order in ascending order of the 
data set received; 

 y represents the output of the function f (x), i.e. the ordered data; 

 g (y) represents the "inverted" function that receives the result of the 
function "orders" to output the set of previously ordered data but inverted 
in sequence in descending order; 

 Assuming that the input data in this example are integers, the sequence 
of results in the pipeline is shown in Figure 4. 

 

 

 
 

Figure 4.  Sequence of results in a pipeline with functional decomposition 
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If a problem can be divided into a series of sequential tasks, the pipeline 
approach can therefore yield an increase in execution processing speed according 
to the following three calculation types proposed in [8]:  

 
1. TYPE A: when more than one instance of the problem solution can be 

run in parallel. Figure 5 depicts a space-time diagram that shows a 
possible use of the pipeline for speeding up this type of calculation. The 
diagram assumes that all processes have the same execution time to 
complete their task. Each time period is called a pipeline cycle. Each 
instance of the solution to this problem therefore requires 6 sequential 
processes (P0 to P5) to generate a ladder effect, each of which 
completes an instance of the problem in every pipeline cycle. With p-
processes (stages) of the pipeline and m-instances of the problem, the 
number of pipeline cycles required to execute the m-instances is m + p-1 
cycles. 

 

 
 

Figure 5.  Space-Time diagram of a pipeline 

 

2.  TYPE B: when a series of data can be processed and each is used in 
multiple operations. This appears in arithmetic calculations where a 
series of data is processed in sequence, such as multiplying elements in 
a matrix. In this calculation, the individual elements enter the pipeline as 
a sequential series of numbers. This type of calculation is illustrated in 
Figure 6, and as an example, there are 10 processes (stages) of the 
pipeline and 10 elements d0 to d9 that need to be processed. 

 

 

 
 

Figure 6.  Pipeline for arithmetic calculations 

 

3. TYPE C: when the information required by the next process in the 
pipeline to start its calculation is passed before the current process has 
completed all of its internal operations, and so it cannot produce the 
results and pass them on. This type of calculation is used in parallel 
programs where there is only one instance of the solution to the problem 
to be calculated, but each process (stage) can pass information to the 
next which can then complete its assigned task. Figure 7 shows the 
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space-time diagrams when information is passed in the pipeline before 
execution of any of the processes shown has been completed. 

 

 

 
 

Figure 7.  Processing of the pipeline where the information passes from one stage 

to another before execution of any of the stages has been completed 

 

3. High-level Parallel Compositions (HLPC) 

An HLPC comprises three types of parallel objects: firstly, a manager object that 
represents the HLPC to make an encapsulated abstraction to hide its internal 
structure; secondly, stage objects for client/server interface encapsulation; and 
thirdly a collector object to receive the results from the stages. The manager-object 
controls the references of the other objects in the HLPC and coordinates their 
execution which is carried out in parallel. Stage objects are responsible for 
encapsulating a client-server type interface that is established between the manager 
and a group of passive objects (called slaves) containing the algorithm that solves 
the sequential problem. The Collector object parallelizes the input of results from the 
stages and stores them. Manager, Collector and Stages are parallel objects (POR) 
with their own execution capacity [9].  

Applications programmed according to the parallel object (PO) model can exploit 
both inter-object parallelism and intra-object or internal parallelism. An application 
based on the PO paradigm has a similar structure to that of Smalltalk objects 
although it also includes a previously established scheduling policy that specifies the 
synchronization of operations of one or more objects that can be invoked in parallel 
[9, 10]. In the PO paradigm, parallel objects support multiple inheritance and this 
enables a completely new PO specification to be derived.  

The following properties of an HLPC were studied in detail in [11]: synchronous, 
asynchronous and future asynchronous communication between the parallel HLPC 
objects; internal parallelism of objects, which includes the availability of 
synchronization mechanisms; parallel mechanism type includes maximum 
parallelism, mutual-exclusion intended constructs, and producer-consumer 
concurrency; generic type control features; transparency in the distribution of parallel 
applications; and programmability-portability-performance of code and applications.  

In the HLPC version of the PO programming model, the following basic classes 
are needed to define the manager, collector, stages objects of an HLPC: an instance 
of a specific class derived from the ComponentManager class (called manager) to 
represent an HLPC within an application programmed according to the PO model; 
instances (called stages) of a specific class derived from the ComponentStage class 
which are interconnected to implement a series of stages and each stage directs the 
parallel execution of a slave object which is controlled by the stage itself. 
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It is also necessary to mention that the creation of stages, collectors and their 
subsequent interaction is handled transparently to the application user code by the 
manager. When users want to use an HLPC within an application, not only must they 
create an instance of a particular manager class, i.e. one that implements the 
parallel behavior required by the application and to initialize it with the appropriate 
reference to the stage objects, which in turn control the slave objects, but also 
declare the name of the requested method (see Figure 8, [11] for more details). 
From the point of view of reusing the parallel behavior already defined in an HLPC, 
the most relevant class to instantiate will therefore be that of the manager. 

 

 

 
 

Figure 8.  Internal structure of a High-level Parallel Composition or HLPC 

 

3.1. The HLPC Pipeline 

The parallel pipeline processing technique is presented as a high-level parallel 
composition for solving a wide variety of problems from a number of different areas 
that can already be solved by partially sequential algorithms. In this way, the HLPC 
pipeline guarantees code parallelization of the resulting algorithm while taking 
advantage of existing sequential algorithms by using the HLPC processing pattern. 

 

 

 
 

Figure 9.  The Pipeline as an HLPC 
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The Stage_i and Manager Objects in Figure 9 are instances of specific classes 
which inherit the characteristics of ComponentManager and ComponentStage 
baseline classes, respectively. These classes redefine the abstract methods of their 
superclasses. The Collector object is the only one that will be an instance of the 
ComponentCollector singleton class. Once the objects have been created and 
properly connected according to the Pipeline parallel pattern, an HLPC is obtained 
as an instance of a specific type of parallel pattern after allocating objects associated 
with the slave stages. The HLPC pipeline is described by the PipeManager class, 
which inherits from the ComponentManager class and implements a pipeline 
communication pattern where its stages are instances of the PipeStage class and 
inherits from the ComponentStage class. Any PipeManager object can only interact 
with the first stage, some stages or all stages of the pipeline at the time of 
initialization according to the pipeline model that we want to implement as an HLPC.
   

During the execution of a service invocation, the first stage is the only one 
commanded to create and start the next stage, and so forth. Each PipeStage object 
creates the following stage of the pipeline during its initialization phase. During the 
execution phase, an object stage only directly interacts with the next one on the 
pipeline or with the Collector (or both). Finally, the last stage sends the result to the 
Collector object (instance of the ComponentCollector class) and the reference is 
usually transmitted dynamically through the stages although this will depend on the 
pipeline model that we want to implement as an HLPC. 

3.2. Usage methodology of the HLPC Pipeline 

 

1. The slave objects, which are executed by the stages and represent instances 
of the functionality required from the HLPC pipeline, are created. 

2. The sequential algorithm that solves the initial problem is implemented and 
its replicas (or instances) become methods associated to the slave objects. 

3. A list of associations (e.g. slave object, associated method) are created. 
4. An instance of the PipeManager class is created to represent the HLPC 

pipeline manager being constructed. It is then initialized with the list of 
associations from the previous step. At this moment, the necessary internal 
stages of the PipeManager HLPC are automatically created as instances of 
the PipeStage class and each obtains an association.  

5. The initial data to be processed are specified by creating data types and 
user-defined data as objects, whereas the input data set represents the 
problem to solve. 

6. Application execution is requested to find a solution to the problem.  
 

Parallel execution is achieved by transparently using synchronous, 
asynchronous and future asynchronous communication for the user's main 
program. The HLPC pipeline then creates its Collector object, which is passed 
as a reference to every stage connected with the Collector object, together with 
a copy of the data set to be processed. The initial stage works with these data 
and they are processed by the slave object associated to each stage. The result 
is then passed on to the next stage which is then created and initialized by the 
previous stage. In the same way, the second stage processes the data received 
when its slave object method is executed and the new result is sent to the next 
stage, and so on. Finally, the obtained results are received by the Collector 
object which then compiles, processes and sends them to the PipeManager 
object which, in turn, sends the solution outside the HLPC. 
 

7. Finally, the final results are shown to the user. 
 

4. Usage and usefulness of the HLPC Pipeline 

A possible HLPC pipeline for solving a variety of problems using this parallel 
processing pattern is shown below. 
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4.1. Adding numbers 

Let us now consider the problem of adding a series of numbers. A solution can be 
designed by using the HLPC pipeline so that each stage-object adds the number 
input from its previous stage to an internally accumulated sum before being sent to 
the next stage. In order to do so, we will consider a producer-consumer 
communication type, as suggested in [12]. The input data, i.e. the numbers to be 
added, are sent by the HLPC pipeline manager object in parallel to the stages (one 
number to each stage) as shown in Figure 10. Every stage then executes the 
solution-algorithm which is contained in the slave object associated to each stage. 
The final result of this calculation is sent by the final stage to the collector object, 
which in turn sends it to the manager which returns the final result to the user. 
Execution of this HLPC pipeline can clearly be classified as a TYPE A pipeline 
calculation (see Section 2), i.e. each stage of the HLPC pipeline carries out similar 
actions in each pipeline’s cycle. 

 

 
 

Figure 10.  Addition using the HLPC pipeline 

4.2. Sorting numbers 

In the operation of a parallel sorting algorithm based on the pipeline parallel 
processing pattern, three phases can be distinguished as indicated in [12, 13]: 
 

• Initial data loading: all the data are delivered to each process associated with 
two of the pipeline stages. In this phase, the processes are usually running 
the same code as in the second phase, the only difference being that the 
processes must be properly initialized in order to receive the first data coming 
from the previous stage or the data initially loaded into the program. 

• Processing the data stream with maximum efficiency: processes behave 
cyclically during execution. They input and process data from the previous 
stage and the result is sent to the next stage. Each process must be 
synchronized with the previous and following stage so that new data are not 
sent until all the current data have been processed. The final pipeline process 
behaves differently to the processes of previous stages since it must execute 
a routine or exit code and send results. 

• Downloading: in the final stage of the pipeline, processes send the results of 
the data that were last processed in the pipeline. The final stage processes 
will no longer receive data from the input stream and must detect the state of 
termination. In order for the processes to transmit the data stored in their 
stages before they finish, a special value is usually introduced at the end of 
the input sequence used to download the pipeline. 

 
The implementation of the parallel sorting algorithm consists of a process pipeline 

that is fed with an unsorted sequence of integers by a routine or input code. As a 
result, the pipeline sort algorithm obtains the sorted integer sequence in ascending 
order. The number of values of the input sequence cannot be greater than the 
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number of pipeline stages since each pipeline process can only store one integer, 
which will be the largest one received so far from the previous stage. At the end of 
the computation, each stage therefore stores one number of the input sequence in 
ascending order [12,13]. This represents the parallel sorting algorithm that has been 
implemented as an HLPC pipeline and is shown in Figure 11. 

 

 

 
 

Figure 10.  Sorting numbers using the HLPC pipeline 

 
The previous implementation of the pipeline as an HLPC can be classified as a 

TYPE B pipeline calculation (see Section 2), i.e. the series of numbers to be sorted 
are processed in sequence. In this calculation, each number enters the HLPC 
pipeline as a sequential series of numbers. 

4.3. Solving a system of linear equations 

In this case, the HLPC implementation of the solution can be considered as a TYPE 
C pipeline calculation (see Section 2) since the stages that comprise the HLPC 
pipeline continue to work even after information is passed to the next stage. The 
objective in this case is to solve a system of linear equations such as the following 
one: 

 

 

The method used to solve this system of linear equations and find the values of 
X0, X1, X2,. . ., Xn-1, is a simple backward substitution which is repeated until the 
unknowns of the original system of equations have been determined, as detailed in 
[12,13]. We first find the value of X0 of the last equation of the system: 

 

X0 = b0/a0,0 
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The value obtained for X0 is substituted in the following equation of the system, 
to obtain X1: 

X1 = (b1 –a1,0X0)/a1,1 
 
The values obtained from X1 and X0 are replaced in the third equation of the 

system, in ascending order, to obtain X2: 

X2 = (b2 – a2,0X0 – a2,1X1)/a2,2 
 

This is repeated until all the unknown variables have been found. This method of 
solving a system of linear equations can therefore be implemented using the HLPC 
pipeline shown in Figure 12. 

 

 
 

Figure 12.  Solving a system of linear equations using the HLPC pipeline 

 
The first stage of the HLPC pipeline calculates and obtains X0, and then sends 

the result to the second stage which calculates and obtains X1 by using X0 in its 
calculations. The final stage sends the values of X0 and X1 to the next stage, which 
calculates X2 using the values of X0 and X1, and so on. The slave objects are 
associated with the routine that finds the value of Xi from the values of X1, X2, 
X3….Xi-1 received from the previous stages in order to perform the calculations. 

5. Performance of the HLPC Pipeline 

The performance analysis of adding numbers, sorting numbers and solving a 
system of linear equations implemented by the HLPC pipeline was conducted on a 
parallel computer with 64 processors, 8GB of main memory, high-speed buses with 
a generic, distributed-shared-memory architecture. Performance of the parallel 
algorithms implemented using the HLPC pipeline (which deployed the three types of 
pipeline-based calculations as discussed in Section 2) was measured according to 
the following execution restrictions:  

 
• For the number addition problem, the same sequential algorithm is used in 

each of the slave objects associated with the pipeline stages by 
implementing a TYPE A pipeline calculation as described in Section 4.1. 
In this case, 50,000 integer numbers (randomly obtained in a range from 0 
to 50,000) were input into the pipeline. 

• For the sorting number problem, the same sequential routine was used to 
compare values in each of the slave objects associated with all the 
pipeline stages (except the first and last ones) as discussed in Section 
4.2. The series of calculations performed in the pipeline for HLPC 
implementation of the solution corresponds to a TYPE B pipeline 
calculation. For this study sub-case, 50,000 integers were randomly 
generated and sorted. 
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• For the problem of the system of linear equations, we worked with a 
system of 50,000 linear equations. Each equation contained 1 to 50,000 
terms, which involved generating random integers to assign the 
coefficients ai and the independent terms bi, in a range from 1 to 50,000. 
In the same way as in the previously solved examples, the same routine 
was used for each of the slave objects associated with the pipeline stages 
to find the values of the unknown variables Xi of the system and so a 
TYPE C pipeline calculation was implemented with the HLPC pipeline. 
These parallel program execution conditions enable us to assume a load 
which is sufficient for the processors and to show the improvement in 
HLPC pipeline performance in solving the problems discussed in this 
paper. For every problem, the entire computation was carried out with 2, 
4, 8, 16 and 32 exclusive processors and the results are shown in Tables 
1, 2 and 3 and in the graph in Figure 13. 

 

 

Table 1. HLPC pipeline performance in adding 50,000 integers 

 
Table 2. HLPC pipeline performance in sorting 50,000 integers 

 

 
Table 3. HLPC pipeline performance in solving a system of linear equations 
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Figure 13.  Scalability of the Speedup found for the HLPC pipeline in solving the 

problems of adding numbers, sorting numbers and the linear equation system 

 

6. Conclusions 

This article introduces a new method for designing software applications which is 
based on the construction of high-level parallel compositions or HLPCs. The method 
can be used for software development on different platforms, one of the most widely 
used being C ++ and POSIX Threads [14] on which the programs that support this 
study were developed. The HLPC pipeline was implemented to provide potential 
users of this service with an ample library of classes based on the parallel object 
programming paradigm. In addition to HLPC pipeline implementation, different 
communication patterns such as farms, trees, etc. were also made available. We 
showed the purpose and use of HLPC pipeline from a practical point of view by 
presenting it as a communication pattern between concurrent processes that can be 
easily used by programmers with little parallel programming experience. The HLPC 
pipeline has been reused in the communication/interaction between the parallel 
processes in three examples (adding numbers, sorting numbers and linear equation 
system) and these have been solved by using three different types of pipeline 
computations. It has been possible to reuse the application software by adopting the 
PO approach and this proved to be useful for defining new specific patterns based 
on previously identified and programmed [15] ones. We were able to obtain efficient 
code from high abstraction level programs simply by programming the sequential 
parts of diverse applications and the results were tested in terms of predicted speed-
up using Amdahl’s Law for a restricted range of 2, 4, 8, 16 and 32 exclusive 
processors for these executions. In the future, we will analyze the suitability of using 
the HLPC pipeline to parallelize different algorithms and application programs. We 
will also investigate its adaptation to a particular case study of application to the 
problem of the automation of DNA annotation sequences in genome construction. 
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