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Probabilistic semihyperrings

Semihiperanillos probabilisticos

Bijan Davvaz'?

Abstract. In this paper, we study the concept of fuzzy T-sub-semihyperrings
of a semihyperring. We define a probabilistic version of semihyperrings using
random sets. We show that fuzzy sub-semihyperrings defined by triangular
norms are consequences of probabilistic semihyperrings under certain condi-
tions.
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Resumen. En este trabajo, estudiamos el concepto de T-sub-semihiperanillo
difuso de un semihiperanillo. Definimos una versién probabilistica de semi-
hiperanillos usando conjuntos aleatorios. Se muestra que los sub-semihiperanillos
difusos definidos por normas triangulares son consecuencias de los semihiperanil-
los probabilisticos bajo ciertas condiciones.
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1. Semihyperrings and fuzzy sets

A semiring is a system consisting of a non-empty set S together with two
binary operations on S called addition and multiplication (denoted in the usual
manner) such that (1) S together with the addition is a (commutative) monoid
with identity element 0; (2) S together with the multiplication is a semigroup;
B)a-(b+c)=a-b+a-cand (a+b)-c=a-c+b-c forall ab,cecS;(4)
The element 0 € S is an absorbing element, i.e., z-0=0-z =0 for all x € S.
In the following table we present some examples of semirings which occur in
combinatorics [4].

S addition multiplication | zero element
R + . 0
RT max + 0
RJr ( a™ + bm)l m 0
[a, b] max min a
R U {400} and or 0
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Semihyperrings are a generalization of semirings. The concept of semihyper-
rings is studied by Vougiouklis [12], Davvaz [3], Ameri and Hedayati [1], and
many others. In what follows, we summarize some basic definitions about
algebraic hyperstructures and semihyperrings.

A mapping o : H x H — p*(H), where p*(H) denotes the family of all
non-empty subsets of H, is called a hyperoperation on H. The couple (H, o) is
called a hypergroupoid. In the above definition, if A and B are two non-empty
subsets of H and = € H, then we denote

AoB= U aob, Acx=Ao{z} and zoB={z}oB.
acA
beB
A hypergroupoid (H,o) is called a semihypergroup if for every z,y,z € H,
xzo(yoz)=(xoy)oz that is

U rou = U vVOoZz.

ucyoz veEToYy

Definition 1.1. A semihyperring is an algebraic hypersructure (R, +, -) which
satisfies the following axioms:

(1) (R,+) is a commutative semihypergroup with a zero element 0 satisfying
x+0=0+x={x},ie, (i) Forallz,y,z € R,z + (y+2) = (xr+y)+ 2,
(ii) For all z,y € R,z +y = y + «, (iii) There exists 0 € R such that
z+0=0+42={z} for all z € R;

(2) (R,-) is a semihypergroup;

(3) The multiplication - is distributive with respect to the hyperoperation +,
that is, - (y+2) =z -y+z-zand (x4+y) -z =x-2+y -z for all
x,y,2 € R;

(4) The element 0 € R is an absorbing element, i.e., z-0=0-z = 0 for all
xr € R.

A semihyperring R is called commutative if (R,-) is a commutative semi-
hypergroup. A non-empty subset A of a semihyperring (R, +,-) is called a
subsemihyperring of Rif forallz,y € A, x+y C A and z-y C A. A non-empty
subset I of a semihyperring (R, +,-) is called a left (resp. right) hyperideal of
(R,+, ) ifforall z,y e [, x+y CTandr-a CTforallz € [ and r € R
(resp. x-r C I). A non-empty subset I of R is called a hyperideal of R if it
is both left and right hyperideal of R, that is, x +y C I, for all z,y € I and
x-ryr-x CI, forallxz € I and r € R.

Example 1.2. Let (S,+,-,0) be a semiring. We define

z®y = (z,y), the ideal generated by z,y,
rTOY=x-Yy.

Then, (S, ®,®,0) is a semihyperring.
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Example 1.3. Let R = {0,a,b,c} be a set with two hyperoperations & and
©® as follows:

@10 a b c ©10 a b c
010 a b c 010 0 0 0
ala a {0,a,b} {0,a,c} a|0 0 0 0
b|b {0,a,0} {0,6} {0,b,c} b0 0 0 {0,a}
c¢|c {0,a,c} {0,b,¢} {0,c} c|0 0 {0,a} {0,b}

Then, (R, ®,®) is a semihyperring [6].

Zadeh [14] introduced the concept of a fuzzy set. Let X be a non-empty
set. A map p: X — [0,1] is called a fuzzy subset of X. Let p and v be two
fuzzy subsets of X. Then, uNv and pUv are defined as follows: (uNv)(z) =
min{u(z),v(x)} and (p U v)(z) = max{u(z),v(z)}, for all x € X. Rosenfeld
[9] applied this concept to the theory of groups. If S is a semigroup and pu
be a fuzzy subset of S, then p is called a fuzzy subsemigroup if it satisfies
min{p(z), u(y)} < p(zy) for all z,y € S. Since then many papers concerning
various fuzzy algebraic structures have appeared in literature. A fuzzy ideal
of a semiring (5, +,-,0) is a fuzzy subset p satisfying the following conditions:
min{u(z), p(y)} < p(z +y) and min{u(z), u(y)} < p(zy), for all z,y € S. In
what follows let R denote a semihyperring (R, +, -,0).

Definition 1.4. A fuzzy subset u of a semihyperring R is called a fuzzy sub-
semihyperring if

(1) min{p(z), p(y)} < infoeopy{n(2)},

(2) min{u(2), p(y)} < infzery{n(2)},

for all x,y € R.

2. Triangular norms

In mathematics, a t-norm (or, triangular norm) is a kind of binary operation
used in the framework of probabilistic metric spaces and in multi-valued logic,
specifically in fuzzy logic. A t-norm generalizes intersection in a lattice and
conjunction in logic. The name triangular norm refers to the fact that in
the framework of probabilistic metric spaces t-norms are used to generalize
triangle inequality of ordinary metric spaces. The concept of a triangular norm
was introduced by Menger [8] in order to generalize the triangular inequality
of a metric. The current notion of a t-norm and its dual operation is due to
Schweizer and Sklar [10]. Anthony and Sherwood [2] redefined a fuzzy subgroup
of a group by using the notion of t-norm.

A t-norm is a mapping T : [0,1] x [0,1] — [0, 1] satisfying, for all z,y,z €
0,1],
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(1) T(x,1) ==,

(2) T(z,y) =T(y,2),

(3) T(x,T(y,2)) =T(T(x,y),2)),

(4) T(z,y) < T(z,2) whenever y < z.

These four axioms are independent in the sense that none of them can be
deduced from the other three. Let T be a t-norm on [0,1]. The following are
the four basic t-norms Ths,Tp, T, and Tp given by, respectively:

Ty (z,y) = min(z, y), (minimum)

Tp(z,y) =2z -y, (product)

Tr(z,y) = max(z +y —1,0), (Lukasiewicz t-norm)
_fo it (z,5) € [0,1)? |

Tp(x,y) = { min(z,y) otherwise. (drastic product)

Let T7 and 15 be two t-norms. 75 is said to be dominate T} and write T < 15
if for all a,b,¢,d € [0,1],

Ty (T2 (av C)a T (b’ d)) <Ty (Tl ((l, b)> Ty (Cv d))

and T7 is said weaker then Ts or T5 is stronger then T7 and write T7 < T if for all
x,y € [0,1], T1(x,y) < To(x,y). Since a triangular norm T is a generalization
of the minimum function, Anthony and Sherwood in [2] replaced the axiom
min{u(x), u(y)} < p(zy) occurring in the definition of a fuzzy subgroup by the

inequality T'(u(x), u(y)) < p(zy).

3. Fuzzy T-sub-semihyperrings

Let It = {z € [0,1] | T(x,x) = x}, i.e., the set of all T-idempotent elements
of [0, 1].

Definition 3.1. Let T be a t-norm. A fuzzy subset pu of semihyperring R is a
T-sub-semihyperring of R if the following axioms hold.

(1) Im(p) C Ir,
(2) T(u(), j(y)) < infecory {u(2)), for all 2,y € B,
(3) T(u(z), p(y)) < inf.ecz.y{p(2)}, for all z,y € R.

Theorem 3.2. Let T be a t-norm and p be a fuzzy subset of R such that
Im(p) C Iy and b =sup Im(u). Then, the following conditions are equivalent.

(1) w is a T-sub-semihyperring of R,

(2) u=tla,b] is a sub-semihyperring of R whenever a € I and 0 < a < b.
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Proof. (1=2): Suppose that a € It and 0 < a < b. If 2,y € pu~![a,b],
then infocor, {1(z)} > T(u(e), u(y) = Ta,a) = a and infocey{u(2)} =
T(u(z), u(y)) > T(a,a) = a. Thus, we obtain z +y C p~a,b] and z -y C
p~Ya,b]. Therefore, u~[a, b] is a sub-semihyperring of R.

(2=1): Let z,y € R. Since Im(u) C Iy, it follows that u(x) and u(y) are
in It. We have

T(T (), p(y), T(p(z), (y))) = T(T(p(x), T((y), (), 1(y))
=T(T( (), T(p(), 1(y))), 1(y))
=T(T(u(x), p(x)), T(u(y), 1(y)))
=T (p(x), u(y)),

and so T(u(x),u(y)) € Ir. Assume that a = T(u(x),u(y)). If a = 0,
then T(u(x), u(y)) = 0 < infoeqpy{p(2)}. So, let 0 < a = T(u(x), u(y)) <
min{u(x), u(y)} < p(xr) < b. Hence, z,y € p~t[a,b], which implies z +y C
p~ta,b]. Therefore T(u(x)

x),1(y)) < infrepyy{p(2)}. Similarly, we obtain
T(u(x), p(y)) < infeqy {p(2)}-

OEs

Corollary 3.3. Let A be a non-empty subset of R. Then, the character-
istic function xa is a T-sub-semihyperring of R if and only if A is a sub-
semihyperring of R.

Corollary 3.4. Let T be a t-norm and {p; };cr be a family of T -sub-semihyper-
rings of R. Then () w; is a T-sub-semihyperring of R.

i€l
Definition 3.5. Let R, R’ be two semihyperrings and p, v be T-sub-semihyper-

rings of R, R, respectively. The product of yu, v is defined to be the fuzzy subset
pxvof Rx R with (ux A (z,y) =T(u(x), A(z)), for all (x,y) € Rx R'.

Lemma 3.6. By the above definition, uxv is a T-sub-semihyperring of Rx R'.

Proof. Suppose that (z1,22), (y1,y2) € Rx R'. For every (21, 22) € (21, 22) +
(y1,y2) we have

(nx A)(ar,a2) =T (p(ar), Maz)
> T(T(p(x1), w(y1)), T(A(z2), A(y2))
= T(T(T(/f"(xl)v /’L(yl))v A .132), )‘(y2)))
=T(T(Mw2), T(p(1), (y1)), My2)))
= T(T(T(A x2)7 :U'(xl))a ﬂ(yl), )‘(yZ)))
= T(My2), T((y1), T(M(x2), p(21)))
= T(T(p(w1), M2)), T'(pu(y1), My2))
=T((p x N)(z1,22), (1 X A) (Y1, 92))-

Taking the infimum over all (21, 22) € (21, 22) + (y1,y2) we have

{(nx N)(21,22)} = T((1 x A) (@1, 22), (1 X A) (Y1, 42))-

inf
(21,22)€(z1,22)+(Y1,Y2)
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Similarly, we obtain

{(n X A)(z1,22)} = T((1 x N (21, 22), (1 X A) (Y1, 92))-

inf
(21,22)€(21,22) (y1,Y2)

4. Probabilistic fuzzy semihyperrings

If 11 is a fuzzy subset of R, then for any ¢ € [0, 1], the set uy = {x € R| u(x) >t}
is called a level subset of p.

Theorem 4.1. Let R be a semihyperring and p o fuzzy subset of R. Then p
is a fuzzy sub-semihyperring of R if and only if for any t € [0,1], u; (when it
is non-empty), is a sub-semihyperring of R.

Proof. In Theorem 3.2, take T' = min. O

In the theory of probability we start by (Q, A, P), with Q set of elementary
events and A, o-algebra of subsets of w called events. A probability on A is
defined as a countable additive and positive function P such that P(2) = 1.

The following definition is an extract from [11, 13].

Given a universe of discourse U, for each arbitrary u € U, let

w={A|ueAand ACU}.
For each A in the power set of U, let
A={u | ue A}

An ordered pair (p(U),B) is said to be an hyper-measurable structure on U if
B is a o-field in p(U) and satisfies the following condition:

UCB.

Definition 4.2. Given a probability space (2, A, P) and hyper-measurable
structure (p(U),B) on U, a random set on U is defined to be a mapping r :
Q — p(U) that is A — B measurable, that is,

VO eB, r 1(C)={w|weQand r(w) € C} € A.

Definition 4.3. Let R be a semihyperring and (2, A, P) be a probability
space. Let r : @ — p(R) be a random set, where p(R) is the set of all subsets
of R. If for any w € Q, r(w) is a sub-semihyperring of R, then the falling
shadow S of the random set r, i.e., S(z) = P({w|x € r(w)}) is called a m-fuzzy
sub-semihyperring of R.

Based on the concept of a falling shadow, we establish a theoretical approach
of the fuzzy sub-semihyperrings.

Boletin de Matemadticas 23(2) 115-123 (2016)



Probabilistic semihyperrings 121

Theorem 4.4. Let S be a w-fuzzy sub-semihyperring of semihyperring R.
Then, for all x,y € R, we have

(1) infeaty{S(2)} = Te(S(x), S(y)),
(2) infeay{S(2)} = TL(S(2), S(y))-

Proof. (1) We know r(w) is a sub-semihyperring of R. Now, let z,y € r(w),
then x +y C r(w). So, for every z € x + y we have

{wlzerw)} 2{wlzer(w)}n{w yer(w)}.

Then, we obtain

S(z) =Pw|zerw))
> P({wlz € r(w)} n{w| y € r(w)})
> Pw|zerw))+ Plwlyer(w)) —Pw|zer(w)ory e r(w))
> S(z)+ S(y) — 1.

Hence, we have inf,c,4,{S(2)} > Tr(S(z), S(y)).
(2) The proof is similar to (1). O

Theorem 4.5. (1) Let H denote the set of all sub-semihyperrings of a semihy-
perring R. Let H, = {A | A€ H, z € A} for each x € R. Let (H,0) be a mea-
surable space where o is a o-algebra that contains {H,| x € R} and P a prob-
ability measure on (H, o). We define p: H — [0,1] as follows: p(x) = P(H,)
for x € R. Then, p is a fuzzy T -sub-semihyperring of R.

(2) Suppose that there exists A € o such that A is a chain with respect to
the set inclusion relation and P(A) = 1. Then, p is a fuzzy sub-semihyperring
of R.

Proof. (1) If x,y € R, then H, D H, U H, for all z € z + y. Then, we have
u(z) = P(H.) > P(Hy N Hy) > max{P(H,) + P(Hy) — 1,0} = Tp(u(), p(y))-

Therefore, inf,cpiy{p(2)} > Tr(p(z),u(y)). In a similar way, we obtain

infreqy{n(2)} 2 Tr(p(z), u(y)).
(2) Since P is a probability measure and P(A) = 1 we have P(H, N A) =
P(H,) for all x € H. Therefore for every z € z 4+ y we have

w(z)=P(H,) > P(H,NH,) = P(H,NA)N(H,NA).

Since A with the set inclusion forms a chain, it follows that either H, N A C
H,NnAor HNAC H,NA. Therefore, we obtain

p(z) = min{ P(H, N A), P(H, N A)} = min{u(z), u(y)},

and so inf,ezqy{p(2)} > min{p(z), p(y)}. Similarly, we obtain inf, .., {u(2)}
> min{yu(z), u(y)}- O
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Let (92,0, P) = ([0, 1], 0, m), where o is a Borel field on [0, 1] and m the usual
Lebesgue measure. Let u be a fuzzy subset of R and p; = {z € R | p(x) > t}
be a level subset of p. Then,

r:[0,1] = p(R)
b— pue

is a measurable function. This notion was firstly investigated by Goodman in
[5], also see [11, 7].

Theorem 4.6. Let R be a semihyperring and p be a fuzzy subsemihyperring of
R. Then, there exists a probability space (Q, A, P) such that for some A € A,

u(x) = P(A).

Proof. Suppose 2 = H, the set of all sub-semihyperring of R. Consider r :
[0,1] — H given by t — ;. Then, r is a measurable function and so r is a
random set. Let

A={A| AcH, r (A co}

and P = mor~t It is easy to see that (H, A, P) is a probability space. If

we put H, = {A| A € H, = € A}, then for x € R we have u; € H, for all
t € [0, u(z)] and ps € H, for all s € (u(x),1]. So, r~1(H,) = [0, u(x)] and so
H, € A. Now we obtain P(H,) =mo R™Y(H,) =m([0, u(z)]) = u(x). O
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