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A multiscale formulation for FEM and IgA

Formulación multiescala para el método de los elementos finitos con
análisis isogeométrico

Jaime David Mora Paz1,a, Juan Miguel Mantilla González1,b,
Victor Calo2,c

Abstract. A numerical method is formulated based on Finite Elements, Iso-
geometric Analysis and a Multiscale technique. Isogeometric Analysis, which
uses B-Splines and NURBS as basis functions, is applied to evaluate its per-
formance. The analyzed PDE is Poisson’s Equation. The method starts with
a coarse mesh which is refined to obtain each scale, considering every current
scale mesh’s element as a subdomain to the following scale. Local problems
of each subdomain are solved independently, and the system is executed iter-
atively. Isogeometric analysis shows to have a better performance regarding
approximation error and convergence in the iterative method that was derived
here, which favorably influences computational cost.

Keywords: multiscale, isogeometric analysis, finite elements, Poisson, B-
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Resumen. En este art́ıculo se formula un método numérico basado en ele-
mentos finitos, análisis isogeométrico y técnica multiescala. El análisis iso-
geométrico utilizando B-splines y NURBS como funciones base se aplica para
evaluar su funcionamiento. La ecuación diferencial parcial analizada es la de
Poisson. El método inicia con una malla burda la cual es refinada para obtener
cada escala, considerando cada elemento de la malla como un subdominio de
la escala posterior. Los problemas locales de cada subdominio se resuelven
independientemente y el sistema de forma iterativa. El análisis isogeométrico
muestra un buen comportamiento en lo que respecta a errores de aproximación
y convergencia del método iterativo que fue derivado, lo cual favorece el costo
computacional.
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1. Introduction

As a part of the development of the finite element method (FEM), some years
ago it was noticeable the convenience of getting a closer integration between
this technique and computer aided design (CAD) [5]. As a result of such need
Isogeometric Anlysis (IgA) appeared, which uses the mathematical principles of
FEM and employs CAD functions to represent geometric entities, like NURBS
[10]. This recent method has very attractive properties regarding continuity
and refinement [5]. Regarding computational resources, several approaches
have been proposed, such as the multiscale finite elements [6]. In this work,
the formulation to be obtained is related to the theory behind the variational
multiscale method, which splits the solution and its vectorial space in a coarse
component and a fine component, and yields a solution from an interaction of
both of them [7].

The Variational Multiscale Method (VMS), named by Hughes [7], succeeds
in finding a theoretical reason to add a stabilizing term to the variational for-
mulation of boundary value problems typically treated with numerical methods
other than finite elements. This term has the purpose of stabilize the solution
or capturing some features of the solution that cannot be represented with the
shape functions used in the classic Galerkin scheme [7].

The cited author splits the exact solution of a boundary value problem into
two parts: the resolvable scales and unresolvable scales. The former are the
ones that may be captured by a finite dimensional space, as those employed by
residual-based numerical methods (like FEM); the latter are those which, with
the typical formulation of finite elements, cannot be captured and finally are
not observed in the numerical solution. This notion of ’scales’ is the one to be
considered when working with VMS.

According to the character of the differential operator of the boundary value
problem, that is, whether it consists of a diffusive or a convective operator,
the unresolvable scales contribute not only the effect of the fine features to
the numerical solution, but it may imply the stability of the computational
technique used on the resolvable scales. As a proof of such circumstance the
classical Galerkin scheme is considered and the fact that this method offers
spurious or non-stable solutions in fluid mechanics problems and, in general,
in any problem of transport equations, where a convective operator is always
involved, which, according to analyses made by several authors, due to not
having the property of being self-adjoint, the operator nature leads the Galerkin
method not to capturre an important part of the solution [5].

Hughes later showed that the derivation of VMS is the theoretical basis
necessary for the explanation of how some stabilized methods worked, like the
SUPG (Streamline Upwind Petrov-Galerkin), which were previously developed
to enhance the solution of fluid problems, but without actually having a full
understanding on how they were able to stabilize the numerical output [3, 7].

The scale separation proposed and derived on those works, has been taken as
the basis to propose scale separation in other contexts, such as the discontinuous
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Galerkin method, or other related techniques, where there are resolvable and
unresolvable scales for the so named numerical fluxes and traces. According
to the reviewed publications, it is possible to formulate a method which first
treats every scale independently, somehow taking into account the other scales’
effect, and later sum them up to get a global approximation [4, 9].

In this paper, the starting point to state a new numerical method which
combines finite elements and multiscale schemes is the definition of a specific
boundary value problem of basic applied mechanics, just like some other nu-
merical techniques are first analyzed [11]. After that, the used notation and
important definitions are presented, and finally a two-dimensional problem is
resolved as an example; the obtained results are analyzed and the technique
performance is assessed.

2. Boundary value problem

The chosen boundary value problem to be analyzed is Poisson’s Equation for
a scalar field φ, which is stated in its strong form as follows:

Let Ω be an open domain in Rd (being d equals to 1, 2 or 3), whose boundary
is denoted as Γ, see Figure 1). Find φ = φ(x) : Rd → R such that

Lφ = f in Ω ⊂ Rd (1)

φ = g on Γg ⊂ Γ = ∂Ω

−∂nφ = −∇φ · n = h on Γh ⊂ Γ = ∂Ω.

where differential operator L = −κ∆ is dependent on the diffusivity field
κ = κ(x) and the laplaciann operator ∆, the portion of the boundary with
a Dirichlet type boundary condition is Γg and the one with a Neumann type
boundary condition is Γh, so that Γ = Γg ∪Γh, and n is the unit vector normal
to Γ (outwards).

Figure 1: Domain of the boundary value problem

The corresponding weak form is stated as:
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Find φ = φ(x) : Rd → R such that

0 = (∇w, κ∇φ)Ω − (w, f)Ω + (w, h)Γh
− (w, κ∂nφ)Γg

(2)

where w is an arbitrary scalar function (test function), which weights the resid-
ual of the strong equation over the whole domain; bilinear form (·, ·)� represents
the integral of the product of two functions over certain subset of Rd specified
as �. For instance, for two functions a(x) and b(x), the bilinear form is defined

(a, b)� =

∫
�
abd�. (3)

Usually the integration space � used in this kind of formulations, is the support
of an element or a subdomain Ω (the length, the area or the volume, according
to the number of space dimensions), or its boundary Γ (endpoints, or the
delimiting line or surface).

2.1. Scale Separation

The exact solution φ belongs to a infinite dimensional vector space V , that
contains all the defined functions in the problem domain Ω. The space elements
are the so-called trial functions [8]. The solution may be divided into a finite
number of parts, which are going to be named scales, whose overall sum is
equal to the full exact solution, which is the global solution. The definition
above can be expressed thus:

φ = φ0 + φ1 + . . .+ φS , (4)

wherein there are S + 1 scales. Similarly, each of these parts corresponds to a
different subspace that spans just one part of the full space, that is, its vector
basis is containing just some of the elements contained in the global solution
space. Accordingly the space which includes the global solution is the result of
the sum of all scale subspaces into which the global one has been divided.

V = V0 + V1 + . . .+ VS , (5)

such that φs ∈ Vs for s = 0, 1, . . . , S.
In order to set the first term of (2) into a symmetric bilinear form (i.e. an

inner product, whose two arguments are w and φ), it is necessary to define w
as a function belonging to the same space as φ, that is, the solution space V
[1, 12]. The definition of a in inner product is important so as to be able to get
a symmetric system of equations after discretization and variational methods
have been applied in certain fashion to be shown below.

Once this is done, it is possible to separate scales in test functions w too
like it was done with φ.

w = w0 + w1 + . . .+ wS . (6)

Bolet́ın de Matemáticas 24(1) 101-115 (2017)



A multiscale formulation for FEM and IgA 105

2.2. Scale separation in the discrete problem

The approximate solution proposed in this paper, as well as in the analytical
case, is assumed to have several scales, and thus there are finite dimensional
spaces to which every solution scale belongs.

The concept of scale, as it was mentioned above, is specifically related to the
mesh size with which the boundary value problem domain has been discretized.
Scale 0 consists of the coarsest mesh, and as the scale number increases, so does
the refinement level. The finest scale is the S-th one, yielding a total number
of finite dimensional scales S + 1.

An important aspect of the herein described solution, is the decomposition
of the current domain into subdomains at the next scale. This procedure means
that every element at scale s is considered to be a subdomain for scale s + 1.
Thus every subdomain may have its own inner mesh, independent of rest of the
subdomains, but the solution on this portion of the global domain has to be
coupled to the others’ by means of certain numerical approach. The depiction
of this method is shown in Figure 2, where additionally there is displayed the
sum of all of the solution scales (s = 0, 1, 2) to find the global solution, and it
is compared to the exact solution.

Figure 2: Global and scale solutions of a multiscale FEM one-dimensional
problem

From the perspective of vector spaces, the discontinuity between any adjacent
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subdomains at the fine scales lead to a numerical solution space V h
s (s > 0)

which is not contained in the space of the exact solution V . The numerical
solution space of each scale is composed by multiple spaces whose support
matches one subdomain. This means that such a space V h

s is given by:

V h
s = V h,1

s ⊕ V h,2
s ⊕ . . .⊕ V h,nel,s−1

s , (7)

where nels−1 is the number of subdomains at scale s.
According to section 2.1 the space whose support comprise some subdomain,

may comprise a finite dimensional subset of the first Sobolev space (H1(Ω)).
Symbolically, the space associated to every subdomain E at scale s corresponds
to:

V h,E
s ⊂ H1(ΩE

s−1). (8)

As a result of combining (7) and (8) it yields as follows:

V h
s ⊂

nel
s−1⊕

E=1

H1(ΩE
s−1) 6= H1(Ω). (9)

3. Definitions and notation

3.1. Indices

From this point on a notation convention is being held with the purpose of pre-
vent ambiguities when handling the indices on the variables and symbols that
denote some parameter of the problem. In all cases the subindex is representing
the number of scale at which the concerning variable is defined, while the su-
perindex corresponds to the rest of parameters that requires index specification
(i.e. nodes, control points, elements, subdomains, etc.).

3.2. Main Notation

The definition of variables and the basic notation for the present formulation
are next presented.

• Polynomial degree for the parametric coordinates ξ and η: p and q, re-
spectively

• Number of elements at scale s: nels

• Ath basis function at scale s: NA
s (x)

• Nodal values of control variables: dAs

• Domain of element e at scale s: Ωe
s (see Fig. (3.2 and Fig. (3.2)
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• Set of element domains at scale s: Ω̃s =

nel
s⋃

e=1

Ωe
s

• Set of boundaries at scale s: Γs =

nel
s⋃

e=1

∂Ωe
s

• Set of interfacial boundaries at scale s:

– For s = 0: Γ′0 = Γ0\Γ (see Fig. (3.2))

– For s > 0: Γ′s = Γj\Γ\

(
s−1⋃
r=0

Γ′r

)
(see Fig. (3.2))

Figure 3: Scheme of mesh and its related notation: (a) coarse scale, (b) fine
scales

• Set of interfacial boundaries in subdomain E at scale s: Γ′Es =nel,E
s⋃
e=1

∂Ωe
s

 ∩ Γ′s

• Local Neumann boundary of subdomain E at scale s: ΓE
h,s = ∂ΩE

s ∩ Γh

• Local Dirichlet boundary of subdomain E at scale s: ΓE
g,s = ∂ΩE

s ∩ Γg

• Local set of interfaces of a subdomain E at scale s: ΓE,int
s = (Γ′s\Γ) ∩

∂ΩE
s = ∂ΩE

s \
(

ΓE
h,s ∪ ΓE

g,s

)
• Global approximate solution:

φh(x) =

S∑
r=0

φhr (x) (10)
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• Approximate solution of the coarse scale:

φh0 (x) =

nnp
0∑

A=1

NA
0 (x)dA0 (11)

• Approximate solution of scale s (s > 0):

φhs (x) =

nel
s−1∑

E=1

nnp,E
s∑
A=1

NA
0 (x)dAs

E

(12)

Here, E represents the support of each element in the immediately pre-
vious scale (s− 1), that is, according to the scale separation, each of the
nels−1 existing subdomains at scale s. Every E has an associated number
of elements (nsd,Es ) and a number of nodes or control points nnp,Es (for
s = 0 as there is one subdomain only, which covers the whole domain, the
notation reduces to nnp0 ), over which there are defined the correspond-
ing basis functions (NA

s (x)) and the nodal values or the control variables
(dAs ).

Assuming the existence of a scalar function u supported both on the analyzed
subdomain and on the contiguous one, it may subject of two operators that are
valid only on their interfaces:

• {u} is the average of function u on a specified interface, that is,

{u} :=
1

2
(u+ + u−). (13)

• J∂nuK represents the jump of function derivative ∂nu across a specified
interface, that is,

J∂nuK := (∇u)+ · n+ + (∇u)− · n−. (14)

• JuK represents the jump of function u across a specified interface, that is,

JuK := u+ − u−. (15)

3.3. Trace

The approximate trace of the function (φ̂) must be defined on the set of bound-
aries of each scale s (0 ≤ s ≤ S), and its formula can be derived as follows:

φ̂s := {φhr≥s} −
hs
2α

J∂nφhr≥sK en Γ′s, (16)

where hs is the mesh parameter at scale s. The expression ur≥s and those with
similar subindices state for a sum of the functions over the scales attaining the
condition given there with respect to the current scale s; for instance:

ur≥s :=
∑
r≥s

ur 0 ≤ r, s ≤ S. (17)
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4. Variational formulation

4.1. Global problem

Global problem refers to the statement of the variational problem of the full
domain taking the coarsest basis as the trial functions and test functions. Be-
fore finding the definite formulation including the weak Dirichlet imposition
terms (which come up from applying a technique similar to the one in [2]), it
will be first shown, starting from the strong formulation and using an approach
alike to Galerkin’s, the origin of the different terms in the final expression after
the scale separation.

0 = (wh
o ,Lφh − f)Ω0 (18)

0 =

(
wh

o ,L

(
S∑

r=0

φhr

)
− f

)
Ω0

(19)

0 =

(
wh

o ,

S∑
r=0

Lφhr − f

)
Ω0

(20)

0 = (wh
o ,Lφh0 )Ω0 − (wh

o , f)Ω0

+ (wh
o ,Lφhr>0)Ω0

(21)

0 = (wh
o ,Lφh0 )Ω0

− (wh
o , f)Ω0

+ (L∗wh
o , φ

h
r>0)Ω0

(22)

0 = (∇wh
o , κ∇φh0 )Ω0

+ (wh
o , h)Γh

− (wh
o , f)Ω0

+ (L∗wh
o , φ

h
r>0)Ω0

. (23)

The first three terms are the ones that bring up from the typical scheme by
Galerkin [8]. The last term represents the integral over the domain of the
product of φhr>0 by adjoint operator L∗ applied on the test function, as it
was necessary to avoid the integration of Lφhr>0, due to the discontinuity of
the fine scales across the internal interfaces. In the following equation, the
mentioned term is being subjetct of the substitution of L∗ by L thanks to the
self-adjointness of the operator in Poisson’s equation [7].
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⇒ 0 = (∇wh
0 , κ∇φh0 )Ω0

+ (Lwh
o , φ

h
r>0)Ω0

− (wh
0 , f)Ω0

+ (wh
o , h)Γh

−
(
κ∂nw

h
0 , φ

h − g
)

Γg

−
(
κwh

0 , ∂nφ
h − 2α

h0
(φh − g)

)
Γg

−
(
κJ∂nwh

0 K, φh0 −
(
{φhr≥0} −

h0

2α
J∂nφhr≥0K

))
Γ′0

(24)

0 = (∇wh
0 , κ∇φh0 )Ω0

+ (Lwh
o , φ

h
r>0)Ω0

− (wh
0 , f)Ω0

+ (wh
o , h)Γh

−
(
κ∂nw

h
0 , φ

h
0 − g

)
Γg

−
(
κwh

0 , ∂nφ
h − 2α

h0
(φh − g)

)
Γg

+

(
κJ∂nwh

0 K, {φhr>0} −
h0

2α
J∂nφhr≥0K

)
Γ′0

.

(25)

4.2. Local problem

Local problem refers to the variational problem that is to be solved on every
subdomain at every fine scale. In order to derive such problem, the chosen test
functions are the ones belonging to the current scale space, that is, wh

s for the
scale s. Afterwards, the scale separation is used with the purpose of having
bilinear forms that handle with wh

s and φhs .

⇒ 0 = (∇wh
s , κ∇φhs )ΩE

s−1
+ (wh

s ,Lφhr<s − f)ΩE
s−1

+ (Lwh
s , φ

h
r>s)ΩE

s−1
+ (wh

s , h + κ∂nφ
h
r<s)ΓE

h,s−1

−
(
κ∂nw

h
s , φ

h
s − (g − φhr<s)

)
ΓE
g,s−1

−
(
κwh

s , ∂nφ
h
r≥s −

2α

hs
(φhr≥s − (g − φhr<s))

)
ΓE
g,s−1

−
(
κ∂nw

h
s ,

1

2
JφhsnK · n−

(
{φhr>s} −

hs−1

2α
J∂nφhr≥s−1K

))
ΓE,int
s−1

−
(
κwh

s , ∂nφ
h
r≥s −

α

2hs
Jφhr≥snK · n− hs−1

2hs
J∂nφhr≥s−1K

)
ΓE,int
s−1

+

(
κJ∂nwh

s K, {φhr>s} −
hs
2α

J∂nφhr≥sK
)

Γ′Es

. (26)

4.3. System Solution

In the current case, an easily applicable type of cycle to seek a numerical
solution by means of an iterative strategy can be alike to the multigrid V-cycle,
but inverting the direction of the scale succesion; this means that a cycle will

Bolet́ın de Matemáticas 24(1) 101-115 (2017)



A multiscale formulation for FEM and IgA 111

Figure 4: Schematic solving procedure of an iteration of the proposed multiscale
method, based on a V-cycle

begin at scale 0 and will advance towards the finest scale S and must go back
to the coarsest one, solving scale by scale all of the subdomains’ local problems
at each step of the cycle. This technique is schematically presented in Figure 4.
Additionally, on this figure it is possible to appreciate the management of the
memory data for the current calculations: The sum of the function scales that
are considered fine with respect to the present scale is denoted (φhfine) and this
data is taken from the computer memory in the way displayed in Figure 4.

The criterion of convergence will simply consider the evaluation of the eu-
clidean norm of the difference of the nodal (or control) variable vectors at every
iteration with respect to the previous one. The expression to calculate such a
residual (ρ) is given by:

ρ =

S∑
s=0

nel
s−1∑

E=1

∣∣∣dE,(it)
s − dE,(it−1)

s

∣∣∣
 . (27)

The goal of this iterative solver is that ρ becomes less than a predefined ad-
missible residal ρadm. If this condition is not accomplished within a maximal
number of iterations itmax, then the algorithm will stop running and will pro-
ceed to notify that there was not convergence and print out the last numerical
vectors calculated as the solution.

5. Numerical results

This problem consists of an annular shape domain that sweeps 90◦. The choice
of the boundary conditions and the load function will be properly made having
in mind the desired exact solution, which is meant to be dependent on the
radial coordinate only. The domain geometry and its boundary conditions of
both Dirichlet type and Neumann type are described in Figure 5.
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Figure 5: Example’s two-dimensional boundary value problem

Load field f is stated as a function of radial direction, r. Thus such function is
defined as f(r) = r2 = x2 + y2. A constant diffusivity value is again assumed,
and equals to one. The exact solution to this problem is presented in eq. (28).

φ(r) =
−1

16
r4 + C1 ln

r

ri
+ C2 (28)

C2 = a+
1

16
r4
i

C1 =
b− C2 + 1

16r
4
o

ln ro
ri

.

Constants a and b are the imposed quantities by the Dirichlet boundary con-
ditions for r = ro and r = ri respectively, see Figure 5.

In this example the potential of geometry representation by NURBS is
clearly aprreciated, as it is required only one quadratic element to reproduce
the curved boundary of this domain that in this case consist of circumpherential
sections. The parameters to draw the patch corresponding to this problem are
the ones registered in table 1. The control points are presented on table 2. For
a wide understanding of the concepts used in IgA, the reader is encouraged to
review a quite relevant reference concerning this novel method [5].

Parameter Coordinate ξ Coordinate η

Polynomial degree p = 2 q = 2
Knot vector Ξ = {0, 0, 0, 1, 1, 1} H = {0, 0, 0, 1, 1, 1}

Number of control points n = 3 m = 3

Table 1: Coarse mesh parameters with NURBS for a single two-dimensional
element

In Figure 6 the two-scale and three-scale refined meshes are displayed. This re-
finement consists of turning every element into a subdomain with a 3x2 element
mesh.
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Control point No. x y w

1 1 0 1
2 1.5 0 1
3 2 0 1

4 1 1
√

2/2

5 1.5 1.5
√

2/2

6 2 2
√

2/2
7 0 1 1
8 0 1.5 1
9 0 2 1

Table 2: Control points of the coarse mesh with NURBS for the example
problem
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Figure 6: Problem’s domain represented in one scale (top), two scales (middle)
and three scales (bottom)

The algorithm ran 13 iterations, using a penalty constant of α = 20, and an
admisible residual of ρadm = 10−8.
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Figure 7: Global solution of the example problem with NURBS basis

6. Conclusions

According to the results, the approximation error in IA is generally smaller
than that in FEM. There were few cases where the opposite occurred and the
difference was very small.

The large number of factors that influence the approximation error makes it
difficult to analyze whether the new method can generally behave better than
the traditional one.

It was concluded that the potential of the method is mainly in computa-
tional cost, with the condition that the systems to be compared require a high
level of refinement.
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