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ABSTRACT

The new LN-MoM-CA-CFAR detector is introduced, exhibiting a reduced deviation of the 
operational false alarm probability from the value conceived in the design. The solution 
solves a fundamental problem of CFAR processors that has been ignored in most pro-
posals. Indeed, most of the previously proposed schemes deal with sudden changes in 
the clutter level, whereas the new solution has an improved performance against slow 
statistical changes that occur in the background signal. It has been proven that these 
slow changes have a remarkable influence on the selection of the CFAR adjustment 
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factor, and consequently in maintaining the false alarm probability. The authors took 
advantage of the high precision achieved by the MoM (Method of Moments) in the es-
timation of the Log-Normal (LN) shape parameter, and the wide application of this dis-
tribution to radar clutter modeling, to create an architecture that offers precise results 
and it’s computationally inexpensive at the same time. After an intensive processing, 
involving 100 million Log-Normal samples, a scheme, which operates with excellent 
stability reaching a deviation of only 0,2884 % for the probability of false alarm of 0,01, 
was created, improving the classical CA-CFAR detector through the continuous correc-
tion of its scale factor.

Keywords: Method of moments, CFAR detectors, false alarm probability, Log-Normal distri-
bution, radar clutter.

RESUMEN

Se presenta el nuevo detector LN-MoM-CA-CFAR que tiene una desviación reducida en la 
tasa de probabilidad de falsa alarma operacional con respecto al valor concebido de diseño. 
La solución corrige un problema fundamental de los procesadores CFAR que ha sido ignora-
do en múltiples desarrollos. En efecto, la mayoría de los esquemas previamente propuestos 
tratan con los cambios bruscos del nivel del clutter mientras que la presente solución corrige 
los cambios lentos estadísticos de la señal de fondo. Se ha demostrado que estos tienen 
una influencia marcada en la selección del factor de ajuste multiplicativo CFAR, y consecuen-
temente en el mantenimiento de la probabilidad de falsa alarma. Los autores aprovecharon 
la alta precisión que se alcanza en la estimación del parámetro de forma Log-Normal con el 
MoM, y la amplia aplicación de esta distribución en la modelación del clutter, para crear una 
arquitectura que ofrece resultados precisos y con bajo costo computacional. Luego de un 
procesamiento intensivo de 100 millones de muestras Log-Normal, se creó un esquema que, 
mejorando el desempeño del clásico CA-CFAR a través de la corrección continua de su fac-
tor de ajuste, opera con una excelente estabilidad alcanzando una desviación de solamente 
0,2884 % para la probabilidad de falsa alarma de 0,01.

Palabras clave: método de los momentos, detectores CFAR, probabilidad de falsa alarma, 
distribución Log-Normal, clutter de radar.

INTRODUCTION

A radar is a device that emits electromag-
netic waves and gathers the resulting echo 
caused by objectives in the proximity [1]. The 
mission of the radar is to detect nearby tar-

gets of interest and to discard those that do 
not relate to a particular application. There-
fore, some objectives (such as clouds) can 
be considered as targets for certain appli-
cations (meteorology) and as an interfering 
signal (warfare) for others [2].
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Echo signals produced at the ground 
surface, sea surface or weather volumes 
(clouds, fog, rain) are assumed as interfe-
rence and called clutter, in most radar appli-
cations [3]. The magnitude of the clutter 
signal cannot be deducted by purely deter-
ministic mechanisms. Hence, its modeling 
falls in the field of statistics.

The false alarm probability (Pf ) is one of 
the radar fundamental parameters because 
it defines the frequency of occurrence of 
type 1 errors. A type 1 error takes place when 
a clutter signal is mistakenly classified as a 
target [4].

Although decreasing the Pf  is benefi-
cial; generally, it has the undesirable effect 
of disturbing the probability of detection 
(PD), which is another essential parameter. 
To resolve this ‘balance’ relation, the Ney-
man-Pearson criterion is applied, which sta-
tes that a certain level of Pf must be guaran-
teed first as an essential requirement. Only 
afterward, actions can be taken to improve 
the PD by modifying other variables. Therefo-
re, radar detectors or processors must have 
the CFAR (Constant False Alarm Rate) pro-
perty, because they must ensure a constant 
Pf is maintained the entire period of opera-
tion [5]. The idea behind the CFAR detection 
is to adapt the Neyman-Pearson detector to 
a signal with a variable mean. 

The classical radar detector, known as CA-
CFAR (Cell Averaging CFAR), uses a sliding 
window with multiple slots that it’s passed 
through the whole coverage area. Thus, each 
resolution cell has a chance to occupy the 
central position of the window. The processor 
evaluates the cell in this position deciding on 
the presence or absence of a target. The infor-

mation in the neighboring cells is used to cal-
culate the average of the clutter, which is then 
multiplied by a scale or adjustment factor (T), 
resulting in the establishment of a detection 
threshold. If the magnitude of the sample in 
the central slot is greater than the threshold, a 
target is considered to be present [6].

1. MOTIVATION AND OBJECTIVE

While the CA-CFAR guarantees a constant Pf  
for several radar scenarios, the occurrence 
of multiple close targets, and the appearan-
ce of sudden changes in the clutter level, dis-
turb the mechanism of average calculation, 
provoking deviations from the design Pf [6]. 
To prevent malfunctions against these criti-
cal situations, multiple alternative detectors 
have been created, being all variations from 
the original CA-CFAR [7]-[10].

Nevertheless, most authors ignore the 
effect of clutter slow statistical changes in 
the maintaining of the Pf. Their designs lack 
an adaptive correction of the multiplicative  
factor and focus exclusively on changing the 
mechanism for calculating the average.

In contradiction, a lot of papers have veri-
fied the need to modify the shape parameter 
of the distributions used as clutter models for 
achieving a quality fit with empirical data [11]-
[14]. The variation in the distribution needs to 
be translated into a correction of the CFAR  fac-
tor for guaranteeing the stability of the system. 
Indeed, in [15] it was demonstrated, by perfor-
ming simulations with computer-generated 
data, that a processor with a constant T value 
was unable to maintain its design Pf when it 
was tested with clutter having a shape para-
meter that changed over time.



30

cell averaging cfar detector with scale factor correction through the method of moments 
for the log-normal distribution

José Raúl Machado Fernández, Jesús C. Bacallao Vidal

To solve the above-described problem, the 
authors aimed at creating an improved CFAR 
detector, able to correct its T factor according 
to the clutter statistical variations. For this 
purpose, they selected the Log-Normal (LN) 
distribution as a model for clutter and the 
CA-CFAR detector as a reference implemen-
tation where the improved solution will be 
introduced. The Method of Moments (MoM) 
was the mathematical tool used in the esti-
mation of the LN shape parameter. There-
fore, the new scheme was baptized as the 
LN-MoM-CA-CFAR processor.

2. MATERIALS AND METHODS

This section presents the structure of the 
LN-MoM-CA-CFAR scheme and explains its 
internal blocks. Particular attention is given 
to the description of the LN statistical mo-

del, the derivation of MoM expressions and 
the selection of the range of possible values 
for the shape parameter. Subsequently, the 
experiments required to test the scheme in 
MATLAB are described.

2.1. The LN-MoM-CA-CFAR scheme

The LN-MoM-CA-CFAR scheme was cons-
tructed by adding four blocks to the classi-
cal CA-CFAR as shown in Fig. 1. Samples of 
radar readings are fed simultaneously to the 
input of the CA-CFAR and the block for cal-
culating the average. Afterwards, the varian-
ce is calculated using, as it was also done 
for the mean, 3000 statistically independent 
samples. This amount of samples was se-
lected after consulting procedures followed 
by other authors [16]-[18].

Samples from
Radar Readings

64 samples CA-CFAR
T Decision

•	 Target
•	 Clutter

CALCULATION
OF MEAN

CALCULATION
OF VARIANCE

ESTIMATION
BY MoM

TRANSFOR-
MATION

3000 samples 3000 samples Find σ σ      10-2          T
σ      10-3 

σ      10-4 

Fig. 1 Structure of the LN-MoM-CA-CFAR scheme
Source: The authors.
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The CA-CFAR detector uses only the last 
65 cells of the 3000 fed to the “Calculation 
of Mean” block. The cell at the center of 
the last 65 is interpreted as the CUT (Cell 
Under Test), while the rest are placed in the 
sliding window. Then the average of the cells 
in the window is multiplied by the scale factor 
(T), which results in the detection threshold. 
If the magnitude of the CUT is superior to the 
threshold, then this cell is classified as a target.

The main advantage of using the LN dis-
tribution as preferential clutter model is the 
straightforward derivation of the parameters 
by the Method of Moments. Most distribu-
tions related to radar clutter (such as Weibull 
or K) allow a quick estimation by the MoM, 
but the accuracy of the result is limited. 
However, the MoM concurs with the expres-
sion of ML (Maximum Likelihood) for the LN 
distribution, thanks to its close relationship 
with the Normal or Gaussian distribution. So, 
the estimation of the LN parameters can be 
made in a quickly and accurately way [19].

In Fig. 1, the “Calculation of Mean” block 
estimated the mean of the natural logarithm 
of the samples. The same goes for the block 
“Calculation of variance”. These are the re-
quirements for LN MoM formula which is gi-
ven in Equations (4) and (5).

Once estimated LN shape parameter (σ), 
it is necessary to translate it into a viable 
correction of the T value. As the selection of 
T depends on the wanted false alarm rate, the 
authors selected three classical Pf values to 
design the solution: Pf = 10-2, Pf = 10-3 and Pf = 
10-4. These figures are a common choice in ra-
dar related investigations and were previously 
used in [20], [21]. The designer may choose 
any of these Pfs according to its requirements.

2.2. The Log-Normal statistical      
distribution and the mom

The LN statistical distribution has had an 
extensive application in radars issues. It is 
widely used for both sea [12], [13], [16], [22] 
and ground clutter [23]-[25]. Even if the mo-
del prevails sometimes for a complete set of 
low grazing angle measurements [16], [26], 
its best fit generally appears for sub-sets 
with HH polarization [27], when measuring 
the spatial data spatial distribution [25], and 
for cells containing big targets reflections 
[16], [28].

In [29], [30] the following expression was 
used for the LN PDF (Probability Density 
Function):

(1)

Where μ and σ are the scale and shape pa-
rameters respectively, and x represents the 
clutter amplitude measurements. The CDF 
(Cumulative Density Function) [31] and the 
expression for the algebraic moments [31] 
are given below:

(2)

(3)
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Where erf(.) is the error function, μ is the lo-
garithmic average and σ2 is the variance of  
ln x2.

The MoM derivation for the LN case, ad-
dressed in [19], allows estimating the para-
meters of the distribution with the following 
expressions:

(4)

(5)

Where N is the total amount of samples, i is 
the number of the current sample, which goes 
from 1 to N, and xi is the i–th sample of the set.

While the LN distribution allows any confi-
guration of its parameters from a mathemati-
cal point of view, not all combinations reflect 
real situations. After a review of the related 
literature, the authors decided that the σ in-
terval between 0,025 and 1,25 covers most of 
the operating conditions [24], [27], [32], [33].

2.3. Design of the experiments

The mathematical foundations of the propo-
sed scheme were given previously, together 
with the leading precedents of the literature. 
The following experiments were carried out 
by the authors to build and test the LN-MoM-
CA-CFAR processor.

2.3.1. Building the transformation 
block

Firstly, the authors implemented the sche-
me from Fig. 1 in MATLAB. The main block 
of the design is "Transformation" which 
cannot be obtained by any of the previously 
described methods. Therefore, the authors 
dedicated the first experiment to obtain the 
relationship between the LN σ and the CA-
CFAR T, for a CA-CFAR having 64 cells in the 
reference window.

The methodology followed was similar to 
that described in [20], [21]. An amount of 40 
σ values, uniformly distributed in the range 
between 0,025 and 1,25, were chosen and a 
group of one million LN samples was gene-
rated for each σ value. Fig. 2 shows the struc-
ture of the created set of samples, which will 
be referred from now on as Set A.

40 groups of samples

σ1 σ2 σ3 σ38 σ39 σ40...1 000 000
samples

Fig. 2 Structure of the Set A that contains 40 million 
Log-Normal Samples

Source: The authors.

After generating the data, the first group from 
Set A was processed by a CA-CFAR opera-
ting with a low T value (for example T=0,90). 
Then, the Pf  was measured. As the initial T 
value was low, the resulting Pf  was quite high 
(for example 0,1). At this point, one iteration 
was completed.

In the next iteration, T was raised thereby 
producing a lower Pf . Many others iterations 
were executed until the exact values of T for 
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were found for Pf =10-2, Pf =10-3 and Pf =10-4 
with a 1 % deviation. At this point, the pro-
cess ended for the first group of samples.  

A similar experiment was performed on 
the remaining 39 groups, yielding a total of 
120 T values as a result of the test. With 
these values, a curve fitting procedure was 
carried out obtaining three mathematical 
expressions through which the optimal Ts 
can be easily obtained for any σ, and any of 
the three addressed Pfs. These three expres-
sions were placed in the “Transformation” 
block from Fig. 1.

2.3.2. Mistakes committed by            
the method of moments

It was necessary to quantify the error commi-
tted by the "Estimation by MoM" block from 
Fig. 1 to derive the overall accuracy of the 
scheme. For this purpose, the authors prepa-
red a Set B composed of 20 000 groups of 3 
000 samples each; see Fig. 3. As it was done 
for Set A, the σ of each group was increased 
uniformly in the established interval.

20 groups of samples

σ1 σ2 σ3 σ19998 σ19999 σ2000...3 000
samples

Fig. 3 Structure of Set B that contains 60 million 
Log-Normal Samples

Source: The authors.

Each group from Set B was processed with 
the MoM according to expressions (4) and (5). 
The incurred error was quantified and arranged 
into histograms for its better characterization.

2.3.3. Influence of the mom error over 
the selection of T

The influence of the MoM error in the CA-
CFAR multiplier (T) selection was studied 
next. Set B itself was used in the trials.

The test was divided into two parts. In the 
first one, samples were evaluated with a CA-
CFAR with a priori knowledge of the σ of each 
group. In the second, the procedure was re-
peated using the MoM σ estimation instead 
of the original σ. The difference between the 
two obtained T revealed the committed error.

2.3.4. Influence of T selection on the 
false alarm rate

After knowing the mistake made in T selec-
tion, a final experiment was conducted to 
find the deviation of the operational Pf  from 
the design value. As it was expected, a hi-
gher error in the selection of T resulted in an 
increased deviation of the Pf .

However, the error does not spread with 
an easy to deduce mechanism, as the deci-
sion taken by the detector is always drastic. 
Regardless of the margin by which the deci-
sion was made, the result remains the same 
as the detector always chooses between 1 
and 0, (i.e between target and clutter). There 
are no intermediate levels.

For this test, a variation of Set B, named 
Set C, was used. Set C originates from sepa-
rating the 20 000 groups from Set A into 20 
sections of 1000 groups each. The purpose 
of these sections is to lighten the processing 
load, and they didn’t introduce any changes 
in the data.



34

cell averaging cfar detector with scale factor correction through the method of moments 
for the log-normal distribution

José Raúl Machado Fernández, Jesús C. Bacallao Vidal

Each section from Set C was processed 
with a CA-CFAR whose T was defined accor-
ding to estimates made by the MoM for each 
of the considered Pf s. The difference be-
tween the expected and the achieved Pf  re-
vealed the deviation introduced by the MoM 
and the global precision with which operates 
the LN-MoM-CA-CFAR solution.

3. RESULTS AND DISCUSSION

This section will first show how the “Transfor-
mation” block from Fig. 1 was constructed. 
The construction of the block is, in fact, the 
most significant contribution of the research 
as it was the main obstacle in the creation 
of the LN-MoM-CA-CFAR detector. Secondly, 
the section will provide evidence of the pro-
per functioning of the new scheme, descri-
bing the error introduced by its components 
and the reduced deviation that it achieves for 
the operational Pf .

3.1. Influence of  T selection on the 
false alarm rate

By performing Monte Carlo simulations with 
the 40 millions of samples contained in Set 
A, a total of 120 T values were obtained for 
the three addressed Pf s. Fig. 4 plots the T va-
lues, revealing the remarkable influence of σ 
over T in the σ>0,8 region.

The cause of the observed tendency lies in 
the appearance of heavy tails for the higher 
figures of σ. A heavy tail produces sporadic 
high magnitude samples that disturb the 
most the lower Pf s.

To build the "Transformation" block, ma-
thematical expressions that provide T va-
lues for any occurrence of σ in the 0,025 – 1, 
25 region are required. These expressions 
will avoid the storage of the values plotted 
in Fig. 4 and will also provide a soft approxi-
mation to any σ within the interval.

Fig. 4 Optimal  values for multiple statistical conditions of Log-Normal distributed clutter
Source: The authors.
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After trying different alternatives, the au-
thors concluded that the polynomial fits dis-
played the best resemblance with the data. 
Fig. 5 shows, the polynomials fit of first, se-
cond and third order for the Pf =10-4 case. The 
linear approximation was obviously inappro-

priate since it exhibited no resemblance with 
the data. The quadratic fit was a little closer, 
but there were several areas where the de-
parture was significant. Instead, the cubic 
polynomial followed the behavior of the data 
very closely.

Linear Quadratic

Cubic
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Fig. 5 Low order polynomial fits for data from Fig. 4 corresponding to  Pf = 10-4

Source: The authors.

In short, fits from second to eighth order 
were considered, being the incurred mis-
take made showed in Table 1. Note that 
a constant improvement in accuracy is 

achieved up until the fourth order, where 
the RMSE (Root Mean Square Error) and 
SSE (Sum of Squared Error) reach a satu-
ration point.

Table 1. Results of the polynomial fit

Polynomial 
Degree

RMS for
Pf=10-2    

SSE for 
Pf=10-2    

RMS for
Pf=10-3     

SSE for  
Pf=10-3   

RMS for  
Pf=10-4   

SSE for
Pf=10-4     

2 0,5783 2,755 0,8484 4,0392 1,286 6,12
3 0,1826 2,6679 0,2679 3,9124 0,4058 5,928
4 0,1748 2,2741 0,2552 3,3364 0,3872 5,055

Continúa
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Polynomial 
Degree

RMS for
Pf=10-2    

SSE for 
Pf=10-2    

RMS for
Pf=10-3     

SSE for  
Pf=10-3   

RMS for  
Pf=10-4   

SSE for
Pf=10-4     

5 0,1733 2,2703 0,2547 3,3307 0,3852 5,046
6 0,1751 2,2545 0,2570 3,3060 0,3896 5,009
7 0,1743 2,152 0,2558 3,1623 0,3869 4,791
8 0,1709 2,0595 0,2497 3,0205 0,3781 4,576

Source: The authors.

Consequently, the authors selected the four-
th-order polynomial fit for the expressions 
that composed the "Transformation" block 
from Fig. 1. Therefore, the CA-CFAR optimal 
Ts can be obtained through (6), (7) and (8), 
corresponding to the Pf s of 10-4, 10-3 and 10-2 
respectively.

T = 13,91σ4  – 0,624σ3 + 8,729σ2 + 3,608σ + 0,994    

                  (6)

T = 2,56σ4 + 2,407σ3 + 5,247σ2 + 2,839σ + 1,018

(7) 

T = – 0,1728σ4 + 0,8586σ3 + 2,558σ2 + 2,236σ + 1,007                  

 (8)

Alternatively, it was found that the fit for 
rational expressions, such as (9), also achie-
ved a good approximation with the data.

(9)

However, the RMSE of the rational fit was 
slightly higher compared to the fourth order 
polynomial RMSE. Thus, the latter was pre-
ferred.

3.2. Error in the Ln shape parameter       
estimation

When the σ of the clutter is known a prio-
ri, the optimal T can be chosen to operate 
with the desired Pf using expressions (6), 
(7) and (8). However, in a real operating en-
vironment, σ is unknown, and the proposed 
scheme performs its estimation through the 
MoM. The resulting estimate will be slightly 
deviate from the real value because a finite 
set of samples was used in the process.

Fig. 6 shows the error committed by the 
LN-MoM-CA-CFAR in the estimation of σ af-
ter evaluating Set A for  Pf = 10-4. The results 
are appropriate since they are equally distri-
buted in positive and negative magnitudes. 
This is easily visible in Fig. 7 that plots a his-
togram of the errors.

The average error was 0.006566, and the 
maximum error was 0.048. These are ex-
cellent results because they represent mis-
takes of only 0.5 % and 5 % respectively.
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3.3. Deviation of the adjustment 
factor

The error incurred in the estimation of σ 
affects the choice of the adjustment fac-
tor (T). To determine the deviation of the 
T estimates, experiments were conducted 
with Set B. Fig. 8 shows the deviation of 
the absolute error in the adjustment factor 
for Pf = 10-4. Fig. 9 does the same with the 
percentage of the relative error.

The mean absolute error in the selec-
tion of T for Pf = 10-4 was 0.3946, and the 
maximum deviation was 6.6113. The ave-
rage relative error was 1.9409 %, and the 
maximum relative error was 14.8785 %. 
For Pf =10-3 the figures were 0.1655, 2.4196, 
1.5368 % and 11.8329 %, and for Pf = 10-2: 
0.0523, 0.6190, 1.0345 % and 7.7258 %. To 
summarize, it’s safe to state that the com-
mon mistakes are less than a 2 % and the 
maximum mistakes less than a 15 %.
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Source: The authors.

-0,04 -0,02 0 0,02 0,04 0,06
Magnitude of the Error in the Estimation of the Log-Normal Shape Parameter

4000

3500

3000

2500

2000

1500

1000

500

0

Re
pe

tit
io

n 
Fr

eq
ue

nc
y

Fig. 7 Histogram of the error in the estimation of the Log-Normal shape   parameter (σ)
Source: The authors.



38

cell averaging cfar detector with scale factor correction through the method of moments 
for the log-normal distribution

José Raúl Machado Fernández, Jesús C. Bacallao Vidal

6

4

2

0

-2

-4

-6

-8
0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

Time Series of 20 000 Log-Normal Samples with σ from 0,025 to 1,25 x 104
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Fig. 9 Relative error in the selection of the CA-CFAR adjustment factor (T)
Source: The authors.

3.4. Deviation in the false alarm   
probability

The objective of the new LN-MoM-CA-CFAR 
is to operate with a minimum deviation of 
the Pf from the design value. The previous 
tests characterized the deviation of the in-
ternal components of the solution. The last 
test, whose results are shown ahead, used 

the internal partial results to estimate the 
overall deviation of the Pf .

Fig. 10 summarizes the experiments con-
ducted with Set C. Results are plotted for Pf 
= 10-2, Pf = 10-3 and Pf = 10-4. Each bin des-
cribes the Pf deviation experienced after pro-
cessing 1000 groups of 3000 samples each. 
The bins to the left in each figure represent 
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the lowest values of σ. Consequently, the 
bins to the right display a higher magnitude 
because they represent situations where the 
detector deals with clutter having a very hea-
vy tailed distribution.

For Pf =10-4, the average deviation of the 
operational false alarm probability was 

8.5935 · 10-6, which represented an 8.5935 % 
deviation from the design Pf . For Pf =10-3, 
the average departure was 7.27 · 10-6, for a 
0.7270 %. Lastly, the average deviation was 
2.884 · 10-5 for Pf = 10-2, which represents a 
0.2884 % deviation.
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Fig. 10 Deviation of the False Alarm Probability of sub-sets containing                                                                    
1 000 groups of 3000 samples

Source: The authors.

3.5. Comparing results

The deviation obtained by the LN-MoM-CA-
CFAR processor from the design Pf is very 
low. This can be appreciated if the results are 
compared with a similar implementation. In 
[34] the accuracy of the MoM for the Weibull 
distribution was measured, and an improved 

scheme was proposed using neural networ-
ks. The average deviations achieved were 
4,56 %, 14,92 % and 34,52 % for the Pf s of 10-2, 
10-3 y 10-4 respectively. Note that these va-
lues are much worse than those achieved for 
the Log-Normal case (0,2884 %, 0,7270 %, 
and 8,5935 %).
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Additionally, a neuronal solution similar to 
that proposed in [34] was developed by the 
authors, but no satisfactory results were 
found. Fig. 11 shows how the variation of the 
number of neurons in the hidden layer, main 
design criteria used in [34], fails to provoke 
an error inferior to the one exhibited by the 
MoM in the estimation of σ.

Additional simulations were conducted 
with a CA-CFAR with a scale factor fixed to 
the average clutter behavior (average σ), and 
it was observed that the processor experien-
ced deviations superior to 200 % even when 
the whole interval of possible values of σ 
was not swept. The authors could not find 
any other similar system in the related lite-
rature dealing with the problem of correcting 
the adjustment factor for guaranteeing a re-
duced deviation from the design false alarm 
probability. So, they consider that the current 
proposal is innovative in its field since it sol-
ves a problem often ignored by new CFAR 
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Fig. 11 Comparison between the maximun error of the neural and MoM alternatives
Source: The authors.

schemes, which are usually concentrated 
of modifying the method for estimating the 
average of the background.

Although the presented method is de-
signed for the Log-Normal distribution, the 
applied algorithm may be extended to other 
clutter related models. The MoM achieves 
a very accurate estimation of the shape pa-
rameter for the Log-Normal case. However, 
other distribution may require searching 
other methods.

4. CONCLUSIONS AND FUTURE    
RESEARCH

The new LN-MoM-CA-CFAR radar detector, 
capable of maintaining a reduced deviation 
from the design false alarm probability even 
when facing statistically fluctuating Log-Nor-
mal clutter, was presented. The stability of 
the system is excellent: it’s able to operate 
with a deviation of only 0,2884 % for Pf = 10-2. 
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[2]	 W. L. Melvin and J. A. Scheer. Prin-
ciples of Modern Radar, Vol III Radar 
Applications. New Jersey, United Sta-
tes:  Scitech Publishing, 2014.

[3]	 K. Ward, R.Tough and S.Watts. Sea Clu-
tter Scattering, the K Distribution and 
Radar Performance, (2nd. Ed.). London, 
United Kingdom: The Institution of En-
gineering and Technology, 2013. DOI: 
https://doi.org/10.1049/pbra025e

[4]	 M. I. Skolnik, Radar Handbook (3er. 
Ed.). New York, United States: Mc-
Graw-Hill, 2008.

[5]	 H. Meikle. Modern Radar Systems 
(2nd. Ed.). Boston, United States: Ar-
tech House, 2008.

[6]	 H. Rohling, “Radar CFAR Thresholding 
in Clutter and Multiple Target Situa-
tions,” IEEE Transactions on Aerospa-
ce and Electronic Systems, vol. 19, no. 
4, pp. 608-621, 1983. DOI: https://doi.
org/10.1109/TAES.1983.309350

[7]	 Y. Qin and H. Gong, “A New CFAR 
Detector based on Automatic Cen-
soring Cell Averaging and Cell Ave-
raging,” TELKOMNIKA, vol. 11, no. 6, 
pp. 3298-3303, 2013. DOI: https://doi.
org/10.11591/telkomnika.v11i6.2686

[8]	 A. Kumar Yadav and L. Kant, “Moving 
Target Detection using VI-CFAR Algori-
thm on MATLAB Platform,” International 
Journal of Advanced Research in Com-
puter Science and Software Engineering, 
vol. 3, no. 12, pp. 915-918, 2013.

The solution solves a problem of proven 
influence on the performance of radar pro-
cessors and often ignored in most CFAR 
proposals.

The proposed detector computes the 
mean and the variance of the clutter using 
3000 samples. Then, it uses this two mo-
ments for the estimation of the Log-Normal 
shape parameter through the method of mo-
ments. Finally, a transformation is applied to 
the computation of the CA-CFAR scale fac-
tor. The transformation block constitutes the 
innovative block of the scheme, and it was 
completed with the results of Monte Car-
lo simulations performed over 100 million 
Log-Normal computer generated samples. 

The authors will focus next on developing 
similar solutions for the popular Compound 
Gaussian and Pareto statistical distributions 
that have been related to radar investiga-
tions for land and sea clutter. It is also inte-
resting the adaptation of the scheme to the 
OS-CFAR (Ordered Statistics CFAR) alterna-
tive, which would begin to develop a metho-
dology to design CFAR detectors adapted to 
changes in the clutter.
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