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Abstract
Introducción: Compressive spectral imaging (CSI) cap-
tures spectral information at various spatial locations 
of a spectral image with few compressed projections. 
Traditionally, the original scene is recovered by assuming 
sparsity in some known representation basis. In contrast, 
the matrix completion techniques (MC) rely on a low-rank 
structure that avoids using any known representation 
basis. The coded aperture snapshot spectral imager (CAS-
SI) is a CSI optical architecture that modulates light by 
using a coded aperture with a pattern that determines the 
quality of reconstruction. The objective of this paper is to 
design optimal coded aperture patterns when MC is used 
to recover a spectral scene from CASSI measurements. 
Metodología: The patterns are attained by maximizing the 
distance between the translucent elements, which become 
more precise measurements given the MC constraints. 
Resultados: Simulations from different databases show an 
average improvement of 1 to 9 dBs when the designed 
patterns are used compared to the conventional random 
and complementary patterns. Discusión y conclusiones: 
The proposed approach solves an integer optimization 
problem with a complexity that is commonly NP-hard 
but that can be reduced with proper relaxation. Finally, 
an effective alternative method using coded aperture 
patterns for MC to solve the inverse compressive spectral 
imaging problem is presented. for MC to solve the inverse 
compressive spectral imaging problem is presented.

Keywords 
matrix completion; spectral imaging; optimization prob-
lems; compressive sensing; coded apertures

Resumen
Introducción: La adquisición compresiva de imágenes es-
pectrales (CSI) captura información espectral en varios 
puntos espaciales de una escena con pocas proyecciones 
comprimidas. La escena original es tradicionalmente recu-
perada asumiendo baja densidad en alguna base de repre-
sentación conocida. En contraste, la teoría de estimación 
de elementos de matrices incompletas (MC) asume una 
estructura de bajo rango que evita conocer una base de 
representación. El sistema óptico de adquisición de imá-
genes espectrales de única captura (CASSI) modula la luz 
usando una apertura codificada cuyo patrón determina la 
calidad de la reconstrucción. Por ello, este trabajo propone 
diseñar patrones óptimos para usar MC en la recuperación 
de una escena a partir de medidas comprimidas. Meto-
dología: Los patrones diseñados maximizan la distancia 
entre los elementos translúcidos para generar medidas 
más adecuadas según las restricciones de MC. Resultados: 
Simulaciones con diferentes escenas muestran una mejora 
promedio entre 1-9 dBs cuando los patrones diseñados 
son usados comparado con los patrones aleatorios y com-
plementarios tradicionales. Discusión y conclusiones: El 
enfoque propuesto implica resolver un problema de opti-
mización con enteros cuya complejidad es NP-complejo, 
pero que puede ser relajada y reducida. Finalmente, se 
propuso una alternativa efectiva para resolver el problema 
inverso de imágenes espectrales usando patrones diseñados 
y la técnica MC. 

Palabras clave 
teoría de estimación de elementos de matrices incom-
pletas; imágenes espectrales; problema de optimización; 
muestreo comprimido; aperturas codificadas
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Introduction
Spectral imaging (SI) techniques capture spectral information at each spatial 
location of a scene to identify the composition and structure of a target [1]; for 
instance, in remote sensing to analyze land properties, in artwork to preserve 
paintings, and in biomedical imaging to detect anomalies and diseases [2]-[4].

Traditional SI sensors scan a number of regions that grow linearly in propor-
tion to the desired spatial and spectral resolution [5]. In contrast, compressive 
spectral imaging (CSI) captures the spatio-spectral information with few 2-di-
mensional (2D) random and multiplexed projections [6]. 

The coded aperture snapshot spectral imager (CASSI) is a CSI optical archi-
tecture that utilizes binary random coded apertures and a dispersive element to 
attain compressed measurements of a scene [7], [8]. A binary coded aperture is 
an optical element with opaque and translucent elements that block/unblock the 
light passing through. The quality of the CASSI measurements is determined by 
the coded aperture patterns; well coded apertures provide good measurements [9]. 

A 3-dimensional (3D) data cube is commonly recovered from coded projec-
tions by solving a compressive-sensing-based minimization algorithm, which 
assumes that the scene is highly compressible when represented in some known 
orthonormal basis [10]-[12]. The matrix completion (MC) framework introduced 
in [13], [14] does not require prior knowledge since it relies on a low-rank matrix 
structure to recover the scene from a small subset of accurately observed entries 
[15], [16]. For this, MC demands that the number of measurements is enough 
and uniformly distributed such that, at least one entry in every row and column 
of the matrix can be observed with high probability [14]. 

This paper uses MC in the reconstruction process since the high correlation 
exhibited by natural spectral scenes indicates an underlying low-rank structure 
[17], [18] and thus avoids the prior knowledge of the representation basis 
required by the traditional CSI approach. For this, we design optimal coded 
aperture patterns that provide CASSI measurements benefiting the MC con-
straints to obtain high-quality reconstructions. The optimal patterns are those 
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that reduce the multiplexing phenomena mixing spectral information of differ-
ent spatial locations occurring in CASSI. This multiplexing can be reduced by 
maximizing the distance between the translucent elements in the coded aperture 
pattern, maintaining a high compression ratio, and guaranteeing a uniform 
distribution, such that the known values in the incomplete matrix will be uni-
formly distributed. 

To evaluate the efficiency of the designed coded aperture patterns, they were 
compared to traditional ones, such as randomly generated and complementary 
Boolean coded apertures, which ensure that each spatial location of the scene is 
detected once and only once [8]. Simulations using two different spectral data-
sets show average improvements of 3 to 9 dB in reconstruction PSNR over the 
random coded apertures and 1 to 3 dB over the complementary coded apertures.

1. Materials and methods 

1.1. The coded aperture snapshot spectral imager sensing process
The compressed measurements in CASSI are obtained optically by a coded ap-
erture, a dispersive element, and an FPA detector. Figure 1 shows a schematic 
representation of the main components in CASSI. Given the spectral image source 
density f

0
(x, y, λ), coding is obtained by using a coded aperture T(x, y) that blocks/

unblocks energy in the (x, y) spatial coordinates across the λ wavelengths. The 
resulting coded field f

1
(x, y, λ) is dispersed by the prism S(λ) to separate the light 

into its spectrum components. The compressive measurements are finally attained 
by the integration of the dispersed field over the detector spectral range sensitivity.

Figure 1. Schematic representation of  the CASSI architecture

Source: Authors’ own creation.
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The discretized output at the detector for a single snapshot of a discrete 
spectral data cube F ∈ ℝN × N × L with N ×N pixels of spatial resolution and L 
spectral bands can be modeled as 

Ykj = Fk ( j i)( i)Tk ( j i) +
i=0

L 1

kj , (1)

for k = 0,1, …, N - 1, j = 0,1, …, N + L - 1, where Ykj is the intensity mea-
sured at the (k, j)th position of the detector whose dimensions are N × (N + 
L - 1); Tk(j-i) represents the binary coded aperture, and -kj accounts for noise. 

The CASSI architecture has recently been modified to capture multiple 
snapshots, each applying a different coded aperture pattern T(x, y). Capturing 
multiple snapshots from a scene provides additional information that yields 
improved signal reconstruction [12]. The process of capturing K snapshots can 
be represented in the standard form of an undetermined system of linear equa-
tions as follows

y = H-θ + - = Aθ + -, (2)

Where A = H- ∈ ℝK(N + L-1) N × (N2L) is the CASSI sensing matrix including 
the coded and dispersed effect of the K snapshots, θ is the sparse representation 
of the scene on a representation basis -, and - ∈ ℝK(N + L-1) N represents system 
noise.

1.2. Matrix completion technique 
MC is a methodology to recover a low-rank or approximately low-rank matrix 
from a given subset of its entries. As shown in [13], there exists only one low-
rank matrix fitting the observed entries with high probability if the number of 
measurements are sufficient and uniformly sensed. The MC recovery process 
can be modeled as an optimization problem

                      minimize rank(Ŝ)
                               ŝ
subject to ρΩ (Ŝ) = ρΩ (M)

(3)

Where Ŝ ∈ ℝm×n is the decision variable representing the estimated matrix, 
rank (Ŝ) is the rank of the matrix Ŝ, M contains the observed entries of the 
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unknown matrix with r ≤ min (m, n), Ω ⊂ [m] × [n] is the set containing the 
indices of the observed entries, and PΩ: ℝm×n → ℝm×n is a projection operator 
defined as

P B( )( )
ij
=

Bij ,if i, j( )
0,  otherwise

(4)

The optimization problem in Eq. (3) is NP-hard, and all known algorithms 
require time doubly exponential in the dimension d = max (m, n) of the ma-
trix Ŝ [19]. To solve this problem, two main approaches are presented in the 
literature. The first, based on nuclear norm minimization, was introduced in 
[13] as the tightest convex relaxation of Eq. (3). However, it requires certain 
incoherence conditions and the cardinality |Ω| to be of the order O(dr log d). 
The cost of these algorithms depends on the computational time of singular 
value decomposition, which increases in proportion to the size and rank of the 
underlying matrices. The second approach is based on the minimization of 
the Grassmann Manifold and proposes a reformulation of the problem to make 
it more suitable for solving large-scale problems as follows, 

minimize  ||PΩ(Ŝ)-PΩ(M)||
F

      ŝ
subject to rank (Ŝ) ≤ r,

(5)

Where || ∙ ||
F
 denotes the Frobenius norm, that is, the square root of the ab-

solute squares of the elements of a matrix B ∈ ℝm×n, B
F
= bij

2

j=0

n 1

i=0

m 1 . Algorithms 
in [20]-[22] solve the problem in Eq. (5). In particular, the low-rank matrix 
fitting algorithm (LMaFit) introduced in [23] solves a non-convex formulation of 
the problem in Eq. (5), which factorizes the unknown matrix into the product 
of two matrices S = UV and minimizes the distance between the factorization 
and an auxiliary matrix Z with a projection in Ω that must be equal to that 
of the known entries M. This approach iteratively finds an approximation of S 
by alternating the optimization over variables U and V. The LMaFit problem 
is modeled as

minimize ||UV-Z||F
2

    U,V,Z
subject to PΩ (Z) PΩ (M)

(6)
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Where U ∈ ℝm×r, V ∈ ℝr×n and Z ∈ ℝm×n.The LMaFit software, used in this 
paper to reconstruct the spectral scenes under the MC approach, is distributed 
under the terms of the GNU General Public License and is available online [24].

1.3. Spectral image recovery using MC and CASSI measurements
Unlike the 2D matrices commonly recovered by MC, the spectral scenes in 
this paper contain 3D information; then, the recovery process for HSI scenes 
using MC exploit the independence property of the CASSI system along the 
data cube rows. Figure 2 illustrates a discretized model of the CASSI sensing 
phenomena. Note that the pattern tq affecting the qth row slice of the data cube 
Sq is independent from the patterns affecting the other slices. Additionally, as 
each coded row transverses the prism, it is shifted only along the x - axis and 
the coded projection on the detector, row yq, results mutually independent from 
the others.

Figure 2. The discrete spectral sensing process in CASSI

Source: Authors’ own elaboration.

Considering this property, the data cube F can be decomposed into N 
matrices, each matrix corresponding to one row slice. To generalize the inde-
pendence of the row slices, let the kth slice Sk ∈ ℝN×L of F be defined as (Sj,i)k = 
Fk,j,i for k = 0, ..., q, ..., N-1. The data cube is represented as F = [S

0
; ...; S

q
; 

...; S
N-1

]. Similarly, the coded aperture T ∈ ℝN×N affecting the entire data cube 
can be expressed as T = t0

T ;...;tq
T ;...;tN 1

T . Finally, the CASSI measurements of the 
FPA Y are expressed as Y = y0

T ;...; yq
T ;...; yN 1

T , where y
k
 ∈ ℝN+L-1 are the CASSI 

measurements of the row slice Sk coded by the aperture tk ∈ ℝN. The spectral 
scene is recovered with MC by independently reconstructing each slice Sk from 
its corresponding measurements y

k
. The estimated data cube F̂ ∈ ℝN×N ×L is 

obtained by concatenating the solutions of the N optimization problems 
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minimize ||Uk Vk-Z||F
2

  Uk,Vk,Zk

subject to PΩ (Zk) = PΩ (Mk),
(7)

for k = 0, 1, ..., N – 1 where Ŝk = Uk Vk represents the estimation for the matrix 
slice Sk and the data cube is estimated as F̂ = Ŝ0; Ŝ1;...; ŜN 1 .

1.4. Optimal coded aperture design
The proposed coded aperture design satisfies the MC conditions when the scene 
is sensed with the CASSI system. The first MC condition dictates that the ob-
served entries must be uniformly distributed such that, each row and column 
have at least one observation, otherwise, one could never guess the information 
in the row or column. The second condition is that the number of accurately 
observed entries must be sufficiently large, given that, if Ω has cardinality  
|Ω| = p ≥ Cd5/4r logd, then the recovery is exact with a probability of at least 
1 – cd–3, where C and c are two constants [13]. 

To satisfy the first MC condition, multiple snapshots with complementary 
coded aperture patterns are required to gather sufficient information for the 
reconstruction process such that each column of each matrix slice Sk is observed 
once and only once. To satisfy the second condition, we define a desirable CASSI 
measurement as one where the multiplexing phenomena, that mixes spectral 
information in each single spatial location on the detector, is reduced as much as 
possible, thus reducing inaccurate entries. This desirable projection is attained if 
the patterns are designed such that they avoid multiplexing when the scene 
is dispersed by the prism. 

Figure 3 compares a desirable and an unwanted CASSI measurement for 
MC. Observe in Figure 3a that the desirable projection is attained when the 
distance between the translucent elements in the pattern corresponds to at least 
the number of spectral bands. 
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Figure 3. Comparison of  a desirable and an unwanted CASSI measurement to increase estimation 
quality by MC methodology

Source: Authors’ own elaboration.

In contrast, in Figure 3b the pattern does not avoid multiplexing, and an 
unwanted projection with no accurate entries is attained. The designed coded 
aperture then maximizes the separation between each pair of translucent ele-
ments over the same row as much as possible. This maximum distance is bounded 
above by the number of spectral bands in the data cube (L) since more separa-
tion results in poor light throughout the system. With these arrangements, let 
T̂ = t̂0

T ;...; t̂1
T ;...; t̂N 1

T  be the designed coded aperture pattern set, where t̂k
N 

represents the pattern for K snapshots affecting the matrix slice  Sk. Each optimal 
pattern t̂k

N is attained by solving the integer optimization problem in Eq. (8).

maximize D
    D, t̂

Subject to D t̂( ) j '
t̂( ) j

L, j ' j

t̂( )
=0

K 1
= 1

(8)
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for ℓ = 0, 1, ..., K–1 and j, j ' = 0, 1, ..., N–1, where D is a decision variable 
representing the minimum distance between two translucent elements for each 
row in the coded aperture pattern. Finally, t̂( ) j

 is a binary decision variable rep-
resenting the block/unblock pattern for the ℓth snapshot in the jth spatial location. 
The designed coded aperture patterns are randomly used for each single matrix 
slice in the acquisition process. 

The data cube is recovered from the coded projections by solving independent-
ly the MC problem for each row slice in the detector using the LMaFit algorithm, 
which requires a matrix Mk ∈ ℝN×L, where PΩ(Mk) are the entries to recover the 
row slice Sk in the locations in Ω. However, the CASSI system only provides 
an array yk ∈ ℝN+L-1 on the detector. The input matrix Mk is obtained from the 
captured array by a back-projection of the K snapshots in the kth row as follows

M ji( )
k
=

y j+i( )
k

E
,if ti( )

k
= 1,

0,otherwise,
(9)

for j, k = 0, ..., N – 1, i = 0, ..., L – 1 and ℓ = 0, 1, ..., K – 1 snapshots, where  
F represents the number of wavelengths multiplexed in each coded projection, 
E = tp( )p=a

b

k
, with a = max (0, j + i + 1 – L) and b = min (j + i, N – 1). 

Ideally, the value of E for the MC technique should be 1, representing accurate 
information. However, it is necessary to consider the multiplexed information 
to guarantee the information is sufficient for reconstruction.

2. Results
To test the designed coded apertures, the quality of the estimations of two data 
cubes using designed patterns was compared to the quality of traditional ran-
dom and complementary coded aperture patterns. The peak signal to noise ratio 
(PSNR) was used as the comparison quality metric. The PSNR is defined as the 
ratio of the maximum possible power of a signal and the power of corrupting 
noise that affects the fidelity of its representation. The PSNR for the estimated 
data cube is the average of the PSNR

i
, i = 0, 1, ..., L – 1 per spectral band of 

the data cube, which is defined as

PSNRi = 10log10

max Fi( )2

MSE Fi , F̂i( )
, (10)
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Where Fi represents the ith spectral band, F̂i is the estimation of the matrix 
Fi, max (Fi)

2 is the maximum possible pixel value of the image Fi, and MSE is 
the mean squared error of the image Fi and its approximation F̂i given by

MSE Fi , F̂i( ) = 1
N 2 Fk , j( )

i
F̂k , j( )

ij=0

N 1

k=0

N 1 2

(11)

The experiments use 2 different test data cubes: F1 with 256 × 256 pixels 
of spatial resolution and L = 16 spectral bands taken from [25], and F2 with  
512 × 512 pixels of spatial resolution and L = 24 spectral bands taken from the 
multispectral databases of Columbia University [26]. All simulations assume 
the rank of the spectral scenes to be equal to one. 

Figure 4 depicts zoomed versions of the first two patterns of the coded 
aperture set with K = 5 snapshots and with transmittance equal to 1/K for 3 
different distributions. 

Figure 4. Comparison of  the three coded aperture pattern sets used to modulate the source light 
and to capture the compressed measurements

Source: Authors’ own elaboration.

Note that, the random patterns in Figure 4a do not guarantee that each 
spatial location is sensed because there are locations where the voxel is blocked 
in both snapshots; therefore, the first MC condition is not satisfied. The com-
plementary coded apertures in Figure 4b guarantee that information in each 
voxel is sensed only once; however, they do not correctly modulate the field 
to avoid the multiplexing of the information when the dispersive effect occurs. 
Finally, in Figure 4c the designed coded aperture patterns are shown to be 
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complementary and maximize the distance between the translucent elements, 
which will minimize the multiplexing phenomena in the sensing CASSI process. 

Figures 5a and 5b show a comparison of the average spatial PSNR attained for 
10 simulations for the data cubes F1 and F2 using the 3 different coded aperture 
patterns. The highest PSNR value is obtained when the designed pattern set is 
used; an improvement of up to 3 dBs compared to estimations with the complemen-
tary (Boolean) coded aperture set and up to 9 dBs compared to reconstructions 
with the random coded aperture set. Note that there is not an increment in the 
PSNR for the random coded aperture as the number of snapshots is increased. 
This occurs because the random patterns hardly satisfy the requirement of having 
at least one observation for each row and column of the unknown matrix despite 
taking many more snapshots. Figures 5c and 5d show the percentage of accurate 
observed entries 0 attained for a different number of captured snapshots. 0 is 
calculated as the ratio of the number of translucent element pairs in the same 
row whose separation is at least the number of spectral bands v, and the total 
number of acquired measurements KN (N + L – 1). Accurate entries are obtained 
by O = v/KN (N + L–1). The greater the number of accurate entries, the higher 
the value of the PSNR attained, as dictated by MC. 

The matrix slice reconstructions were obtained for 70% of the total entries, 
no matter if they were accurate or mixed, to guarantee sufficient entries to 
reconstruct the scene using the LMaFit algorithm; the 30% of the information 
was estimated. 

To evaluate the fidelity and quality of the spectral information, Figure 6 shows 
a comparison of the spectral signature (SS) of three randomly selected spatial 
locations of the scenes obtained using 3 different distributions for data cubes 
F1 and F2 when K = 12 snapshots. A high-quality estimate of the spectral 
signatures is obtained when the designed patterns are used. 
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Figure 5. PSNR and the percentage of  accurately observed entries obtained using the three 
different coded aperture pattern sets for data cubes F1 and F2
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Figure 6. Spectral signatures of  different spatial locations (x, y) of  the data cubes F1 and F2 using 
three different coded aperture sets
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Figure 7. Visual comparison of  data cubes F1 and F2 using three different coded aperture  
sets for K = 12 snapshots
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3. Discussion
This paper introduced optimal coded aperture patterns to solve the compres-
sive spectral imaging inverse problem using the MC framework. The proposed 
designs were tested and show good reconstructions for this methodology, which 
can be useful when there is no prior information about the basis of represen-
tation where the scene is sparse. This approach can also be valuable when the 
low-rank property is more evident than the sparsity. The MC methodology 
requires strong constraints on the accuracy of entries, which can be contrary to 
the multiplexing process of the CS approach. 

A desirable CASSI measurement for the MC reconstruction approach is 
defined as one that reduces the multiplexing of the spectral information. 
This concern can be confusing since one of the main concepts in CASSI is 
multiplexing so that information from many voxels can be captured at once. 
The proposed approach reduces the multiplexing phenomena as much as 
possible, but it is constrained to maintain the compression ratio, and the 
transmittance is defined by the number of snapshots. Because of reduced 
multiplexing, more snapshots are required to provide sufficient information 
for reconstruction, especially for those cases where the scene is not smooth. 
Under no circumstances will the number of snapshots exceed the number of 
spectral bands in the scene. Therefore, the proportion of light throughout the 
system using the designed patterns is equivalent to that using the traditional 
random and complementary patterns.

It was found by simulations that using 70% of the observed entries, without 
considering if they were accurate or multiplexed, provided sufficient measure-
ments for each row and column of the matrix row slices to have at least one 
observation, which obtains a good MC reconstruction. When fewer observations 
were used, the MC constraint was not satisfied, and we obtained poor recon-
structions, such as those estimations obtained with random coded aperture 
patterns since this distribution does not guarantee gathering information from 
all the voxels despite capturing more snapshots. When more measurements were 
used, the degrees of freedom of the LMaFit algorithm were reduced; missing 
values could not be estimated because the matrix was almost complete, and 
the reconstructions were not different from the input entries. Not satisfying the 
MC constraints can result in poor reconstructions containing hole-like artifacts 
such as those in Figure 7. 

As future work, the proposed coded aperture patterns can be tested with 
traditional algorithms and the optimal coded aperture patterns that can be found 
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in the literature, such as those proposed in [9], [12], to compare the performance 
of the designed patterns without considering the reconstruction algorithm. 

Conclusions
The design of a coded aperture set for compressive spectral matrix completion is 
proposed. The coded apertures are attained by solving an integer optimization 
problem that maximizes the distance between each translucent element in the 
coded aperture pattern. The designed set maximizes the number of accurately 
observed entries captured by means of the CASSI system and back-projection 
guarantees that each column and each row have at least one observed entry, thus 
satisfying the MC conditions. The results show higher quality reconstructions when 
the designed coded aperture set is used compared to the traditional random and 
complementary coded apertures. The improvement attained is 1 to 3 dBs over 
the complementary coded aperture set and 3 to 9 dBs over the random coded 
aperture set. A visual comparison of the signal signature recovered using the 
three coded aperture patterns in three different spatial locations was obtained to 
evaluate and confirm the improvement of quality across the spectral dimension. 
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