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ABSTRACT 

 

This paper presents a numerical assessment on the performance of two structural control strategies based on 

magnetorheological (MR) dampers.  At first, a control strategy based on artificial neural networks was employed on a 

simple structure to control vibration.  This controller combines a predictive model function to control forces and an 

inverse model of voltage calculation to manage the MR dampers. Secondly, a control strategy based on fuzzy logic 

was also used. Therefore, the controller governs the actions from a set of rules that represent the heuristics of the 

system to be controlled.  Results achieved from the numerical simulations indicate that the performance of these two 

control strategies is promising and satisfactory, based on response reductions of up to 83% relative to the performance 

of the system without control. 

 

KEYWORDS: Control of structures, Vibration reduction, Magnetorheological dampers, Artificial neural networks, 

Fuzzy logic.     

 

 

RESUMEN 
 

En este trabajo se presenta una evaluación numérica sobre el desempeño de dos estrategias de control estructural basado 

en amortiguadores magnetoreológicos (MR).  En primer lugar, se empleó una estrategia de control basada en redes 

neuronales artificiales en una estructura simple para el control de vibraciones.  Este controlador combina una función 

de modelo predictivo para las fuerzas de control y un modelo inverso del cálculo de la tensión para manejar los 

amortiguadores MR. En segundo lugar, se utilizó una estrategia de control basada en lógica difusa. De esta forma, el 

controlador gobierna las acciones de un conjunto de reglas que representan la heurística del sistema a controlar.  Los 

resultados de las simulaciones numéricas indican que el rendimiento de estas dos estrategias de control es prometedor 

y satisfactorio, basado en la reducción de la respuesta de hasta un 83% en relación con el rendimiento del sistema sin 

control. 

 

PALABRAS CLAVE: Control de estructuras, Reducción de vibraciones, Amortiguadores magnetoreológicos, Redes 

neuronales artificiales, Lógica difusa. 
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1. INTRODUCTION 
 

Magnetorheological (MR) dampers are semi-active 

control devices whose operation is directly related to the 

rheological properties of MR fluids, especially to that one 

related to the possibility of changing quickly, and 

reversible form of a linear viscous free-flow state to a 

semi-solid when applying a magnetic field [1- 3]. This 

transition is possible due to that the magnetically 

polarizable micrometric particles (iron particles), that are 

contained in the MR fluids, become in milliseconds, 

linear chains parallel to the field, so the fluid leaves its 

natural state and gains resistance to flow [2]. 

 

Based on this feature, the MR dampers are adaptable 

devices capable of handling variable damping forces, 

which makes them versatile and ideal tools for the control 

of vibrations in structural systems. In the concerning 

literature, different mathematical models have been 

developed in order to simulate numerically the 

performance of the MR dampers. According to [4], these 

numerical models can be divided into two major groups, 

non-parametric models and parametric models. 

 

On the one hand, non-parametric models are based on the 

analysis of the actual performance of the MR dampers. 

This means that these numerical models work with a 

large amount of experimental data where the behavior of 

the device is examined on various operating conditions 

to reconstruct the approximated behavior of the dampers 

under such circumstances. Non-parametric models are 

based on mathematical approximations [5- 8], artificial 

neural network [9- 12], neuro-fuzzy systems and genetic 

algorithms [13- 16], among others. 

 

On the other hand, parametric models consist of a series 

of mechanical components such as springs, dampers and 

masses trying to emulate the complex behavior of MR 

dampers.  Generally, the parameters of these elements are 

determined by the experimental setting of the actual 

performance of the dissipating devices. One of the first 

functional parametric models for MR dampers was the 

Bingham model proposed in [17, 18], which consisted of 

an element of Coulomb friction placed in parallel with a 

viscous damper. 

 

Subsequently, [19] proposed a modified Bingham model, 

positioning it in series with a standard linear solid model. 

This model showed a behavior quite accurate and similar 

to the results obtained experimentally, although the 

behavior of the fluid when the velocity was close to zero 

was not properly emulated [3]. Finally, [20] proposed a 

modified Bouc-Wen model, also called 

phenomenological model. This model consists of a spring 

positioned in parallel with a damper installed in series to 

a model reproducing hysteretic systems (Bouc-Wen 

model). The development of this model represented an 

important step forward in the development of numerical 

applications aimed at working with MR dampers, since a 

properly phenomenological model reproduces the 

nonlinearities of the dampers and their numerical results 

greatly resemble the experimental ones that can be 

obtained with this type of devices. 

 

As mentioned above, several numerical models have 

been developed to understand the behavior of MR 

dampers. Once the dampers are modeled, the research has 

focused on the planning and development of control 

techniques that can take advantage of the main 

characteristics of these mechanisms. This includes the 

treatment of structural control systems that use MR 

dampers. Therefore, research works focused on the 

control of structures dealt with the management of 

systems through various control algorithms based on 

mathematical models, fuzzy logic, genetic algorithms 

and neural networks [4, 9, 21-30]. 

 

This work aims at developing two structural control 

projects focused on the use of intelligent systems. The 

first control strategy consists of a dual system based on a 

prediction model and an inverse dynamic model, 

developed from artificial neural networks (ANN). 

Thereafter, the second control strategy implemented is 

based on fuzzy logic (FL), which uses heuristic 

knowledge from the system to be managed in order to 

generate control actions based on a set of preset rules. 

Finally, to compare the performance of the control 

strategies studied, a numerical study is conducted to 

evaluate their performance and infer characteristics and 

behaviors related to the operation and efficiency of each 

controller. 

 

2. ARTIFICIAL NEURAL NETWORK-BASED 

CONTROLLER 

 

The first control strategy to be described is a controller 

based on a predictive model and an inverse dynamic 

model. These models were developed by NARX-type 

(nonlinear autoregressive exogenous model) artificial 

neural networks (ANN) that are based on a nonlinear 

autoregressive model with exogenous inputs. These 

networks are of a type of recurrent network with global 

feedback links and whose basic construction block is 

based on multilayer perception. This type of network is 

commonly referred to in the literature as a dynamically 

managed recurrent network because of their use as input-

output mapping networks [31]. By definition, the input 

space of a network of this class is mapped to an output 

space, causing the network to temporarily respond to an 

externally applied input signal. Furthermore, the 
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application of feedback links allows the networks to 

obtain representations of state, which make them proper 

devices for application to nonlinear dynamic systems 

with the potential to significantly reduce computational 

cost.  

 

The primary objective of the ANN-based control 

algorithm is to calculate the optimal control force to be 

applied by the energy dissipation mechanism (MR 

damper) so that it reduces the movement of the protected 

structure as much as possible. Nevertheless, the control 

project should also determine the voltage to be applied 

on the controller, as the increase or decrease in the forces 

produced by the damper is indirectly controlled by the 

voltage applied to the device. To determine these two 

fundamental parameters, i.e. the optimal force and 

voltage, two properly trained NARX networks are used. 

The first network simulates a predictive model 

responsible for determining the optimal control force 

required by the MR damper to minimize, as efficiently as 

possible, the structural vibrations when external forces 

act on the structure’s base. In turn, the second network 

works as an inverse model; i.e. the network determines 

the input to the control plant with the delayed output of 

the system. Thus, the second network defines the proper 

voltage applied to the control device so that the latter 

applies a force to the structure close to the optimal force 

calculated by the first neural system. Figure 1 shows the 

schematics of the ANN-based controller. 

 

 

 
 

 Figure 1. ANN-based control system. Source: The authors. 

 

The optimal force-prediction model used in the control 

project consists of a completely interlinked NARX-type 

neural network containing a layer of sensory units 

composed of fifteen input signals and a bias, a layer of 

computational processing composed of sixteen hidden 

neurons and a layer of results composed of a single 

output. Based on the results obtained in [32], the delay in 

the network inputs was of the second order. Thus, the 

selected input values (displacement, velocity and 

acceleration of the floor level of the structure, and the 

voltage) and the output values of the model feeding back 

to the system were delayed by times of one and two units, 

respectively.  

 

The inverse model for determining the voltage to be 

applied to the MR damper also consists of a completely 

interlinked NARX network. Similarly to the predictive 

model, the network is configured with a layer of sensory 

units composed by fifteen input signals and a bias, a layer 

of computational processing composed of sixteen hidden 

neurons and a layer of results composed of a single 

output. The neural network input layer of the inverse 

model manages the displacement, velocity and 

acceleration values of the first floor of the structure, 

which are added to the values of optimal control force 

calculated by the predictive model and to the feedback of 

the recurrent network itself with the output value 

(voltage). 

 

The activation functions used by the inverse model were 

exactly the same as those used by the predictive model; 

i.e. fifteen hyperbolic tangent sigmoid functions were 

applied to the input-processor step, and one linear 

function was applied to the processor-output path. The 

Inverse
model

based in 
ANN

MR
Damper

Structure
to be

controlled

Üg(t) f(t)

z-1

V(t) F(t)

z-1

z-1

X(t)
Ẋ(t)
Ẍ(t)

z-1

z-1z-1

Prediction
model

based in 
ANN

z-1z-1



230   
 
 

L. Lara, J. Brito, C. Graciano 

 

Levenberg-Marquardt algorithm [33,34] was the training 

algorithm used to adjust the weights of synaptic 

connections between neurons in the proposed models. A 

schematic of the neural networks applied to the force 

prediction model and the inverse model for the 

determination of the voltage is presented in Figure 2. 

Details of the definition, setup, training and validation of 

the NARX networks used for both the prediction model 

and the inverse model can be found in [30, 35]. 

 

 
    
Figure 2. NARX networks applied to controller: a) force prediction model and b) inverse model of voltage determination. Source: 

The authors. 

 

3. FUZZY LOGIC-BASED CONTROLLER 

 

The second control strategy analyzed in this study is 

based on fuzzy logic. This controller is based on if-then 

rules that correlate the plant inputs of the system with the 

desired outputs. In [36, 37], it was described a fuzzy logic 

(FL) control process consisting of three fundamental 

steps: fuzzification, decision-making and 

defuzzification. In the first step, fuzzification, the 

controller converts the system inputs into fuzzy linguistic 

values with the use of pertinence functions; i.e., the 

numerical input values are converted into linguistic 

values. Once the system is fuzzified, the controller makes 

decisions based on programmed control rules while 

always considering the information in the system to then 

determine the optimal output linguistic value. Finally, the 

defuzzification consists of converting the optimal 

linguistic output value into a numerical value 

corresponding to the command signal that will act 

directly on the MR dampers. Figure 3 presents the 

schematics of the control project based on fuzzy logic. 

 

 

 
 

Figure 3. Control system based on fuzzy logic. Source: The authors. 
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The controller described in this section is mostly based 

on the studies developed in [4, 24]. Based on these 

studies, the displacement and velocity of the first floor of 

the structure were used as input variables for the 

controller, and the output variable was the voltage 

applied to the MR dampers.  

 

Fuzzification of the controller input values starts by 

applying two linear functions, one for the displacement 

and another for the velocity, which are used to normalize 

the responses by the structure in a universe of pertinence 

functions with values between -1 and 1. Eqs. (1) and (2) 

gives expressions for the two linear functions used 

herein: 

 

𝑛𝑑 = 𝑘𝑑𝑥     (1) 

𝑛𝑣 = 𝑘𝑣�̇�    (2) 

 

Where 𝑛𝑑 and 𝑛𝑣 are, respectively, the input values 

normalized in the universe of displacement and velocity 

pertinence functions, and 𝑘𝑑 and 𝑘𝑣 are scale factors of 

the displacement and velocity, respectively. Based on the 

analysis of certain parameters, [24] proposed Eqs. (3) and 

(4) for the scale factors: 

 

𝑘𝑑 =
3

𝑥𝑚𝑎𝑥

     (3) 

𝑘𝑣 =
3

�̇�𝑚𝑎𝑥

    (4) 

 

Where 𝑥𝑚𝑎𝑥  and �̇�𝑚𝑎𝑥  represent, respectively, the 

maximum displacement and velocity of the structure 

without control and when subject to excitation. To 

determine the scale factors in this study, the structure in 

the numerical analysis was subjected to the record of 

standard acceleration from the Italian research project 

ReLUIS-DPC [28, 38]. This record was prepared 

beforehand by registering it in time with the magnitude 

according to the dimensions of the structure. Thus, it was 

determined that the scale factors 𝑘𝑑 = 612 and 𝑘𝑣 = 20 

would be used. 

 

Once the linear functions used to fuzzify the numerical 

inputs were determined, the pertinence functions for the 

input and output of the controller were defined. These 

input functions consist of seven identical triangles that 

overlap one another in the center of the base and are 

defined in the universe [-1, 1]. In turn, the pertinence 

functions of the controller output (voltage) consisted of 

four equal triangles that also overlap one another at the 

center of the base and are defined in the universe of 

pertinence functions [0, 1]. Note that the definition of 

pertinence functions of the system and its universes were 

created in [24], and this set of rules were adapted to the 

heuristics data of the system under study here. Figure 4 

shows schematics of the input and output pertinence 

functions of the designed controller, where the fuzzy 

linguistic designations NL, NM, NS, ZO, PS, PM and PL 

stand for negative large, negative medium, negative 

small, zero, positive small, positive medium and positive 

large degrees of membership, respectively. 

 

 
 

 Figure 4 Pertinence functions of the fuzzy controller: a) pertinence functions of controller inputs and b) pertinence functions of 

controller outputs. Source: The authors. 

 

The decision-making step is executed based on an 

inference engine that is linked to a database and works 

according to the pertinence degree of the controller 

inputs. [24] developed a system of inference rules that 

allow for the calculation of the necessary voltage so that 

the control devices efficiently dissipate the energy that 

enters the structure. This system is based on the following 

basic principle: if the structure is out of its neutral 

position and its tendency of movement is to shift farther 

from its neutral position, then the applied voltage should 

increase to improve its damping capacity. However, if the 

structure is out of its neutral position and its tendency of 

movement is to approach its neutral position, then little 

or no voltage is applied. Table 1 presents this inference 

system. 
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Table 1. Inference system. 

 

VEL. 

 

DIS. 

NL NM NS ZO PS PM PL 

NL PL PL PL PM ZO ZO ZO 

NM PL PL PL PS ZO ZO PS 

NS PL PL PL ZO ZO PS PM 

ZO PL PM PS ZO PS PM PL 

PS PM PS ZO ZO PL PL PL 

PM PS ZO ZO PS PL PL PL 

PL ZO ZO Z0 PM PL PL PL 

 

Source: The authors. 

 

Pertinence degree of the controller output is determined 

using the least squares method, which consists of 

selecting the output pertinence degree equal to the lowest 

input pertinence degree. Finally, the defuzzification 

strategy starts by using the centroid method, which 

allows for the determination of a voltage from the 

overlapping areas of the output pertinence functions. The 

voltage obtained using the centroid method is found in 

the universe [0, 1], and it is therefore necessary to use a 

scale factor that maps the output values of the fuzzy 

universe [0, 1] to the real universe [0, 2.5]. Eq. (5) gives 

an expression for the scale factor: 

 

𝑉 = 2.5 (
5

3
 𝑠 −

1

3
)    (5) 

 

Where 𝑉 is the voltage to be applied to the MR dampers, 

and s is the numerical value of the centroid method 

output. The defuzzification process of the controller was 

designed such that if the voltage V exceeds the maximum 

voltage allowed by the analysis (2.5 volts), the maximum 

voltage is automatically substituted for the value 

determined using Eq. (5). 

 

4. NUMERICAL MODEL, RESULTS AND 

DISCUSSION 

 

4.1 Numerical model 

 

Figure 5 shows a schematic view of the structure used in 

the numerical model.  Accordingly, the structure consists 

of a two-floor building of frame type; each floor is 2m tall. 

In a plain view, the building is a rectangle measuring 3m 

in the Y direction and 4m in the X direction. Each floor has 

three degrees of freedom, i.e. horizontal displacements on 

axis X and Y and rotation around axis Z.  The structural 

properties of the frame are shown in Figure 6, where the 

mass matrix has units of kg and kg·m2, the stiffness matrix 

has units of N/m and N·m and the damping matrix has units 

of N·s/m and N·s·m. 

 

 

 
 

     Figure 5. Structure used in the numerical model. Source: The authors. 

 

 

 
 

     Figure 6.  Structural properties of the frame. Source: The authors.
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Table 2 shows the geometry and dimensions of the 

structural elements used in the building shown in Figure 5. 

Two types of structures elements were employed, 

specifically commercial steel profiles type HE 140B for 

the pillars and IPE 180 for the beams. The slabs of the 

floors are composed of a concrete-coated steel plate [28, 

38], this geometry is similar to the one used in [25]. 

Furthermore, the model includes a pair of MR RD-1005-3 

[39] dampers in the base of the building, used to control 

the vibration of the structural system. The characteristic 

behavior of these devices was modeled using the 

phenomenological model proposed in [20]. Table 3 shows 

the primary properties of RD-1005-3 MR dampers, 

according to the technical specifications published by the 

manufacturer [39]. 

 
Table 2. Geometry and dimensions of the structural components. 

  

Parameters Col. Beams Steel profile 

h (mm) 140 180 

 

b (mm) 140 91 

a (mm) 7 5.3 

e (mm) 12 8 

r (mm) 12 9 

A (cm2) 43 23.9 

Ipx (cm4) 1509 1317 

Ipy (cm4) 550 101 

Jp (cm4) 20 4.8 

E (MPa) 210 210 

 

Source: The authors. 

 

In order to apply an acceleration to the model, an 

acceleration record taken from [38], was applied to the 

base of the structure on the Y direction.  This acceleration 

record was previously prepared by staggering it in time and 

magnitude, in such a way that is compatible with the 

dimensions of the structure, thereby resulting in a 40s 

duration with an absolute maximum amplitude of 1.47 

m/s2, as shown in Figure 7. 

 
Table 3 – Properties of the RD-1005-3 MR damper [39]. 

 

Damper properties Values 

Extended length (mm) 208 

Compressed length (mm) 155 

Body diameter (mm) 41.4 

Maximum operating temperature (°C) 71 

Maximum extension force (N) 4448 

Maximum input current (A) Continuous = 1 

  Intermittent = 2 

Input voltage (V) 12 DC 

Electrical resistance at room temperature (Ohms) 5 

Response time (ms) < 15 

 

Source: The authors. 

 

4.2 Response parameter  

 

Figures 8, 9 and 10 shows the displacement, velocity and 

acceleration records of the structure (time domain) with 

time for the cases without control (Not controlled),  case 

of fuzzy logic control (Fuzzy), and the case under semi-

active control based on the artificial neural networks 

(NARX), respectively. 

 

 

 

 

 
 

Figure 7. Registration of accelerogram. Source: The authors. 
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Figure 8. Displacements in the structure in the case without control and in the cases with controls based on ANN and Fuzzy logic: a) 

1st floor, and b) 2nd floor. Source: The authors. 

 

Table 4 shows a summary of the results obtained after 

analyzing Figure 8a and 8b, for the two-floor structure.   

 
Table 4. Displacements in the structure. 

 

Structure 

Absolute values 

(cm) 
RMS values (cm) 

1st 

floor 

2nd 

floor 

1st 

floor 

2nd 

floor 

Not 

controlled 
0.49 1.10 0.14 0.32 

Fuzzy 0.22 0.50 0.02 0.06 

NARX 0.22 0.50 0.02 0.05 

 

Source: The authors. 

 

Accordingly, the maximum displacements in both floors 

occur when the structure is without any type of control.  In 

absolute values, the displacements in the first and second 

floor were 0.49 cm and 1.1 cm, respectively. In order to 

provide a more general picture of the dynamic response, 

the corresponding RMS (Root Mean Square) values were 

also determined. Hence, the RMS displacement for the 

first floor was 0.14 cm and for the second one was 0.32 

cm.  It is important to notice that RMS values characterize 

the central tendency of the response values with time for 

each model characteristic. 

 

In Table 4, the absolute values of the displacements were 

basically the same for the Fuzzy and NARX controlled 

responses, but a reduction of 55% is observed when 

comparing these displacements with the response without 

control for the two floors.  A further reduction is observed 

for the RMS displacement values, in which for the first 

floor achieved 86% and 84 % for the second. Therefore, it 

is noticed that the reduction in the responses of the Fuzzy 

controlled structure undergoing seismic motion are very 

similar to the responses associated with the NARX 

managing control. 
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Figure 9. Velocities in the structure in the case without control and in the cases with controls based on ANN and Fuzzy logic: a) 1st 

floor, and b) 2nd floor. Source: The authors. 

 

Velocity is the second response parameter investigated 

herein.  Figure 9a and 9b show the velocity records for first 

and second floors. Correspondingly, Table 5 shows 

absolute and RMS values for the velocities.  

 
Table 5. Velocities in the structure. 

 

Structure 

Absolute values 

(cm/s) 

RMS values 

(cm/s) 

1st 

floor 

2nd 

floor 

1st 

floor 

2nd 

floor 

Not 

controlled 
14.66 33.57 4.35 9.89 

Fuzzy 6.22 13.80 0.72 1.65 

NARX 6.39 12.81 0.69 1.57 

 

Source: The authors. 

 

The absolute maximum velocities without control were 

14.66 cm/s on the first floor and 33.57 cm/s on the second 

floor, and the corresponding RMS velocities of these 

floors were 4.35 cm/s and 9.89 cm/s, respectively.  After 

controlling the structural responses, significant reductions 

in velocity values are also observed. For Fuzzy control, the 

velocity in absolute values for the first and second floors 

reduces 57% and 59%, respectively. A slightly difference 

is observed for the NARX controlled response, the 

corresponding absolute displacement values are reduced 

56% for the first floor and 62% for the second. Comparing 

the RMS values for the velocity, a reduction of 83% is 

observed for the first and second floor for the Fuzzy 

controlled system, and for NARX controlled the reduction 

for the speed in both floors 84%. Basically, both control 

strategies provide similar structural responses. 

 

Finally, the third response parameter investigated is the 

acceleration. In this regard, Figures 10a and 10b show the 

acceleration records for the first and second floors, and 

Table 6 summarizes the absolute and RMS values for the 

accelerations.  As a result, the absolute maximum 

acceleration without control was 4.85 m/s2 on the first floor 

and 10.17 m/s2 on the second floor. The RMS acceleration 

without control was 1.34 m/s2 and 3.04 m/s2 on the first 

and second floors, respectively. As expected, a significant 

reduction in the acceleration values is achieved after 

applying the control strategies. For Fuzzy control, the 

acceleration in absolute values for the first and second 

floor was reduced 56% and 60% respectively. Once again, 

the differences in the acceleration values are very small 

when comparing both control strategies.  For the NARX 

controlled system, the reductions in the accelerations were 

53% for the first, and 58% for the second floor.  Regarding 

the RMS acceleration values, a reduction of 83% is 

achieved for the first and second floors for the Fuzzy 

controlled system, and for NARX controlled the reduction 

for the acceleration in both floors is 83%.  Similarly to the 

velocity responses, both control strategies provide a 
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similar effect on the acceleration diagram for the two 

floors. 

 

 
 
Figure 10. Accelerations in the structure without control and with controls based on ANN and Fuzzy logic:a) 1st floor, and b) 2nd 

floor. Source: The authors. 

 
Table 6. Accelerations in the structure. 

 

Structure 

Absolute values 

(cm/s2) 

RMS values 

(cm/s2) 

1st 

floor 

2nd 

Floor 

1st 

floor 

2nd 

Floor 

Not 

controlled 
485.59 

1017.3

8 
134.86 304.21 

Fuzzy 230.56 424.08 23.46 50.59 

NARX 214.51 410.22 23.60 47.59 

 

Source: The authors. 

 

As mentioned above, it is worth noticing that the damped 

responses for the Fuzzy controlled structure under seismic 

motion are very similar to the responses associated with 

the NARX managing control strategy. 

 

 

 

4.3 Performance indexes 

 

For a better evaluation of the results obtained herein from 

the numerical model, four performance indexes are 

defined in Table 7. The first three performance indexes (I1, 

I2 and I3) are normalized measurements of the peaks of 

displacements, velocities and accelerations of each floor. 

The fourth index (I4) is the peak displacement between the 

normalized floors. 

 

 Table 8 and Figure 11 present the values of the indexes 

obtained by the control strategies in this study. The 

performance indexes of the system indicate the effective 

performance of the controllers throughout the system. For 

this case of specific loading, the equilibrium between the 

analyzed control strategies can be observed, particularly in 

indexes I1 and I4, although the numbers produced by the 

neural networks control are slightly higher than those of 

the controller based on fuzzy logic, particularly on the 

second floor of the structure. 
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Table 7. Definitions of performance indexes. 

 

Index Parameters Definition 

I1 

𝑋𝑖(𝑡): Relative displacement of each floor of 

the controlled system 

𝑋𝑚𝑎𝑥: Maximum displacement of the system 

without control  

𝑚𝑎𝑥𝑡,𝑖 (
|𝑋𝑖(𝑡)|

𝑋𝑚𝑎𝑥

) 

I2 

�̇�𝑖(𝑡): Relative velocity of each floor of the 

controlled system 

�̇�𝑚𝑎𝑥: Maximum velocity of the system 

without control 

𝑚𝑎𝑥𝑡,𝑖 (
|�̇�𝑖(𝑡)|

�̇�𝑚𝑎𝑥

) 

I3 

�̈�𝑖(𝑡): Relative acceleration of each floor of the 

controlled system  

�̈�𝑚𝑎𝑥: Maximum acceleration of the system 

without control 

𝑚𝑎𝑥𝑡,𝑖 (
|�̈�𝑖(𝑡)|

�̈�𝑚𝑎𝑥

) 

I4 

𝑑𝑖(𝑡): Relative displacement between floors of 

the controlled system 

𝑑𝑚𝑎𝑥: Displacement of the relative peak 

between floors of the system without control  

𝑚𝑎𝑥𝑡,𝑖 (
|𝑑𝑖(𝑡)|

𝑑𝑚𝑎𝑥

) 

 

Source: The authors. 

 
Table 8. Magnitudes of the performance indexes. 

 

Control 

Strategy 

𝐼1 𝐼2 𝐼3 𝐼4 

1st 

Floor 

2nd 

Floor 

1st 

Floor 

2nd 

Floor 

1st 

Floor 

2nd 

Floor 

1st 

Floor 

2nd 

Floor 

ANN 0.4490 0.4545 0.4359 0.3816 0.4418 0.4032 0.4490 0.4553 

FL 0.4487 0.4558 0.4245 0.4110 0.4748 0.4168 0.4487 0.4630 

 

Source: The authors. 

 

 
 Figure 11. Performance indexes associated with the control strategies:  a) I1, b) I2, c) I3 and d) I4. Source: The authors. 
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Figure 12 displays certain characteristic patterns for the 

voltage variations produced by the control strategies. In the 

case of the controller based on neural networks, as the 

excitation applied to the structure increases, the voltage 

applied to the control mechanism increases until reaching 

the established signal limit. The signal command produces 

values ranging from 0 to 2.5 volts. The controller based on 

fuzzy logic displays behavior that closely reflects the 

varying excitation applied to the structure. Thus, the range 

of voltages remains practically constant during the time the 

acceleration is varying. This voltage generally ranges 

between 0.4 and 1.1 volts, although voltages lower than 

0.4 volts were observed at many times in the test. In 

addition, the voltage applied by the fuzzy controller on the 

dampers only exceeds the maximum voltage when the 

excitation increases and reaches a maximum, i.e. the limit 

of 2.5 volts in this study. 

 

 

 

 
 

Figure 12. Voltages applied to MR dampers: a) control based on neural networks and b) control based on fuzzy logic.  Source: The 

authors. 
 

Figure 13 presents the plot of the damper forces exerted by 

the controllers in the time-domain. The plot suggests the 

way in which the force applied by the MR dampers in the 

ANN-based control strategy constantly reaches the 

maximum force delivered by the energy-dissipating 

devices. This behavior is not as evident in the control 

strategy based on fuzzy logic: the damping force varies 

more; this behavior is consistent with that of the voltage. 

This difference may be the primary explanation for the 

slightly better performance of controllers based on neural 

networks in terms of more-efficient energy dissipation and 

control of vibrations.

 

 

 
 

Figure 13. MR damper force in time domain for the controller based on: a) neural networks, and b) fuzzy logic.  Source: The authors. 
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5. CONCLUSIONS 

 

In this study, a numerical model was developed in which 

the performance of two semi-active control strategies 

based on MR dampers was analyzed. The algorithms that 

ruling the two examined controllers are based on artificial 

neural networks and fuzzy logic and were efficient, 

robust and safe tools in managing the MR dampers. The 

different analyzed control strategies were sufficiently 

competent at reducing the response of the studied frame 

structure, thus confirming the potential for using such 

semi-active systems to control structures. 

 

The numerical analysis indicated that the control projects 

based on intelligent systems produce similar reductions in 

certain response functions, particularly with regard to 

displacement and velocity of the first floor. The ANN-

based controller, however, was more efficient in reducing 

the response peaks and RMS acceleration of the first floor 

and the displacement, velocity and acceleration of the 

second floor. The better performance of the neural network 

control may be explained by its continuous production of 

high control forces, which produces greater energy 

dissipation. The predictive and inverse models acted 

properly, i.e. in a synchronized and competent manner, 

despite the complexities of the problem and the solution. 

Perhaps the greatest flaw in this control alternative is the 

excessive processing time, which makes its execution 

more difficult in real time or increases the cost of 

implementing the design because it requires a great deal of 

processing power to solve the problem rapidly. 

 

The control project based on fuzzy logic as a command 

signal selection tool may be the most balanced control 

strategy. This controller clearly combines noticeable 

efficiency, fast processing and simplicity. In practice, the 

control algorithm based on fuzzy sets may be easily 

implemented due to the heuristics of the system to be 

managed. A primary disadvantage may be the inference 

system’s decision-making based on the velocity and 

displacement, which are derived from the integration of 

the acceleration, and thus there may be noise and low 

frequencies that would need to be removed using a high-

pass filter.  
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