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Abstract
Aim of study: We analyzed the hypothesized causal effects of relative density, density, height, species richness, species diversity, 

temperature, precipitation, and slope on above ground biomass growth (AGBG). 
Area of study: Eastern region of the USA.
Materials and methods: We used the USDA Forest Service’s Forest Inventory and Analysis (FIA) database. A total of 2554 plots 

from all stand ages, regardless of disturbance history, were selected from the state of Alabama and 967 plots of stand age under 30 
years and no prior disturbance were selected from the eastern US. We analyzed the data using descriptive statistics and structural 
equation modeling.

Main results: Relative stand density exhibited a strong positive direct effect on AGBG, especially in the young forests (path 
coefficient 0.79), but a weaker indirect effect through species richness/diversity. Tree height influenced positively AGBG directly 
and indirectly through relative density and species richness. The effect of temperature and slope was greater than the effect of species 
richness/diversity on AGBG in the young forests of the eastern US. 

Research highlights: For the forests of the eastern US, greater tree species diversity did not appear to result in neither greater nor 
lower productivity. The diversity-productivity relationship was negative in forests of Alabama, however, where prior management likely 
resulted in removal of select dominant trees from valuable species (i.e., high-grading). 

Additional keywords: FIA; productivity; path analysis; relative stand density; species richness; Shannon’s diversity index; 
temperature.

Abbreviations used: AGB (above ground biomass); AGBG (above ground biomass growth); CCR (compacted crown ratio); DBH 
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(structural equation modeling).
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Introduction

Forests play a critical role in reducing atmospheric 
carbon through sequestration (Woodall et al., 2011). The 

forests of the eastern United States (US) in particular 
are known for having high levels of carbon storage, 
species diversity, and structural diversity (Woodall et 
al., 2011). There are uncertainties however, about how 
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changes in the drivers of forest growth will affect this 
carbon sequestration (Coulston et al., 2015). 

Forest structural diversity is one important factor 
among many that influence productivity (Zhang & 
Chen, 2015; Ali et al., 2016). A stand with a combination 
of species differing in characteristics such as shade 
tolerance, height growth rate, crown structure, leaf 
phenology, and root depth, can be highly productive 
because of complementary resource use (Kelty, 1992).

Studies have shown that environmental and climatic 
factors are particularly important for productivity (Zuo 
et al., 2012; Behera et al., 2017). Quantitative analysis of 
the hypothesized causal relationships between various 
driving factors and productivity is useful to understand 
ecosystem functioning across various levels (Timilsina 
et al., 2014; Grace et al., 2016). Site variables influence 
individual tree growth rates for different species, which 
ultimately affects stand dynamics and structure (Fig. S1 
[suppl.]). But stand structure and individual tree growth 
influence each other and both impact ecosystem services 
and productivity (Pretzsch, 2009). The competitive 
or facilitative interactions among trees are important 
structural mechanisms in forest dynamics, which may 
vary across environmental gradients and successional 
stages (Fichtner et al., 2015). 

Structural equation modeling (SEM) or path analysis 
(PA) is a method of analysis where covarying biotic 
and abiotic variables are connected in a network. It 
has been widely used for exploring complicated causal 
relationships among variables (Grace, 2008; Paquette 
& Messier, 2011; Lam & Maguire, 2012; Zuo et al., 
2012; Timilsina et al., 2014; Zhang & Chen, 2015; 
Ali et al., 2016; Dănescu et al., 2016; Grace et al., 
2016). SEM models represent hypothesized cause-
effect relationship between variables and describe 
complex interdependencies of the variables (Shipley, 
2000). In SEM, the causal relationships are described 
by magnitude of effects, i.e., direct, indirect, and total 
effects that independent variables have on dependent 
variables (Pugesek et al., 2003). There is a need of 
observational studies to enhance our understanding 
of the multivariate relationships of the ecological and 
environmental drivers that affect aboveground biomass 
productivity or carbon storage in natural forests (Zhang 
& Chen, 2015). 

We aimed to explore the relationships among above 
ground biomass growth (AGBG), stand structure, 
environmental, and climatic variables using structural 
equation models in forests of Alabama and the eastern 
United States. The objectives of the study were to 
examine if i) species diversity affects AGBG directly, 
ii) relative stand density affects AGBG directly or 
indirectly through its effect on species diversity, 
iii) height and tree density affect AGBG directly or 

indirectly through their influence on relative density and 
species diversity, and iv) temperature, precipitation and 
slope affect AGBG indirectly through their influence on 
height, tree density, relative stand density and species 
diversity.

Material and methods

Study area

We conducted the study in two areas, the state of 
Alabama and the eastern region of the United States 
(Fig. 1) to examine if the models differ based on the type 
of dataset used. The Alabama data had fewer selection 
restrictions – no age limitations, regeneration mode, etc., 
while the regional data included only young naturally 
regenerated stands with no history of harvesting (more 
selection details in the next section). Alabama is in a 
humid subtropical climatic zone under the Köppen 
climate classification. Alabama is rich in floral diversity, 
contains about 200 tree species and 4000 species of 
vascular plants (Alabama Forestry Commission, 2010). 
Forests cover around 70% of the land area, comprising 
46 forest types including loblolly pine (Pinus taeda 
L.) as the most common forest type covering a third 
of all forested area (Alabama Forestry Commission, 
2010). About 57% of the state’s forestland is covered 
by hardwood or mixed pine-hardwood forests. The 
hardwood species which are most common in the state 
are northern red oak (Quercus rubra L.), southern red 
oak (Quercus falcata Michx.), white oak (Quercus alba 
L.), hickories (Carya spp.), sweetgum (Liquidambar 
styraciflua L.), and yellow poplar (Liriodendron 
tulipifera L.). Private landowners own about 94% of 
the total forest area, and plantations occupy about 30% 
of the forest area (Hartsell & Cooper, 2013). The major 
geographic ranges of Alabama are the Interior Plateau 
(Highland Rim), Southwestern Appalachians (or 
Cumberland Plateau), Piedmont, Ridge and Valley, and 
the East Gulf Coastal Plain (Alabama Dept. of Conserv. 
Nat. Resour., 2006). The average summer temperatures 
of the state range from 21 to 32oC, and average winter 
temperatures range from -1 to 10oC (Alabama Dept. of 
Conserv. Nat. Resour., 2006). 

Our second study area, the eastern region of the 
US, consisted of the 31 conterminous eastern states, 
from North Dakota in the northwest to Texas in the 
southwest (Fig. 1). The area covers a large number 
of forest types and geographic variations. Under the 
Köppen climate classification, the climate of the eastern 
region is classified as temperate continental climate, 
humid subtropical climate, temperate oceanic climate, 
warm semi-arid climate, cold semi-arid climate, warm 
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continental climate, temperate continental climate and 
cool continental climate (Zifan, 2016). The variability 
in climatic and geographical conditions is favorable for 
the high biodiversity in the region.

Data 

We used publicly available forest inventory data 
from the USDA, Forest Service Forest Inventory and 
Analysis (FIA) database. The FIA applies a quasi-
systematic sampling design that involves a nationally 
standardized sampling procedure with a sampling 
intensity of one plot for every 2428 hectares (Bechtold 
& Patterson, 2005). The area of the FIA standard plot 
size is 0.067 ha. The plot design consists of four 7.3 
m radius subplots, each of approximately 0.0168 ha in 
size and set 36.6 m apart in a triangular form with three 
plots at the corners and one subplot at the center of the 
triangle.

For the Alabama study area, we used plots measured 
between 2005 and 2012. We selected plots that had at 
least 10% cover by trees and had no visible natural 
disturbance since the last measurement or within the 
last five years. Out of the 2554 selected plots, about 
two thirds were naturally regenerated and the rest were 
artificially regenerated. Almost 98% of the plots had 
two-storied stand structure, 1% had multistoried, and 
1% had single-storied structure. The plots were under 
various ownership, including private, public (both 
federal and state government ownership), industrial, 
etc. Stand treatment and harvesting activities such as 
clearcut, various partial harvests, shelterwood harvest, 
commercial thinning, timber stand improvement, and 
salvage cutting had impact on about 20% of the plots 
since the last measurement.

For the second study area of the eastern US, we 
used plots measured between 1999 and 2009 across 
the eastern region. Our selection criteria for these 
plots were more restrictive. We selected all 967 plots 

that had at least 10% forest cover, stand age of less 
than 30 years and established under the new FIA plot 
design implemented after 1999. The selected plots had 
no visible natural or anthropogenic disturbance since 
the last measurement or within the last five years. 
Our selection criteria for the eastern US was aimed 
at selecting only plots that did not have biomass loss 
due to harvesting activities. Harvesting is generally 
not carried out in such young stands, so a more 
accurate estimation of the biomass growth would be 
possible. The stand origin of the plots was from natural 
regeneration and had single-storied to multistoried 
stand structure. The plots were managed under various 
private, public (both federal and state government 
ownership) and industrial ownership.

The stand age of the Alabama plots ranged from 1 to 
125 years, so we included all the trees from the subplots 
that had diameter at breast height (DBH, 1.37 cm above 
the ground) ≥12.7 cm. However, for the eastern region, 
the stand age of the selected plots was less than 30 
years, so we also included all stems with DBH ≥ 2.54 
cm. 

Aboveground biomass growth (AGBG) and 
predictor variables

We used information from the FIA database on 
species, DBH, height, compacted crown ratio, stand 
age, slope, aspect, elevation, and site productivity class. 
We calculated the plot level variables species richness, 
Shannon’s diversity index, trees per hectare, quadratic 
mean diameter (QMD), mean height, mean compacted 
crown ratio (CCR), dry above ground biomass of live-
trees, and relative density. 

Species richness and Shannon’s diversity index were 
used to characterize species diversity. Species richness 
is simply a count of the number of species in the plot. 
Shannon’s diversity index (H’) was calculated with the 
formula:

Figure 1. Approximate location of the plots in study area (a) Alabama and (b) eastern United States.

(a) (b)
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where S is the number of species and pi is the proportion of 
species i relative to the total number of species (Magurran, 
1988). We used basal area of the species for the calculation of 
Shannon’s diversity index. Unlike most non-woody plants, 
trees can be highly divergent in size. Basal area accounts 
better than density for the space that each tree species 
occupies on a site (McMinn, 1992). Hereafter we refer to 
the term Shannon’s diversity index as species diversity. We 
used each, species richness and species diversity, in the path 
models to test corresponding effect on AGBG. 

CCR is the percent of the tree bole supporting 
live, healthy foliage that is measured at the individual 
tree level (Woudenberg et al., 2010). Climatic data 
(temperature and precipitation) were extracted from 
spatial data of 800 m resolution (PRISM Climate Group, 
http://www.prism.oregonstate.edu/normals ). The data 
values were the 30 year average for the period of 1981 
to 2010. 

We estimated aboveground biomass (dry) of each live 
tree as a total sum of the biomass of the tree components 
merchantable bole, top of the tree, and tree stump using 
the same method as the FIA, the Jenkins biomass 
equations (Jenkins et al., 2003) and adjustment factors 
of the tree components. Plot level AGB was estimated 
by summing up the biomass of all individual live trees 
of the plot. AGBG is the mean annual increment of live 
AGB and we estimated AGBG of each plot by dividing 
the total live (AGB) of the plot by the stand age of the 
plot and expressed it in Mg/(ha·yr). We interchangeably 
referred to it as ‘AGBG’ or ‘productivity’. Because of 
the nature of the dataset we could not account for the 
biomass that may have been removed in some of the 
Alabama plots, the estimate of AGBG in such plots was 
likely below its true value. 

A square root transformation was applied to AGBG 
and tree density to make the data close to normal and meet 
the homogeneity assumptions (Legendre & Legendre, 
2012). We refer to them as square root AGBG and 
square root tree density. A transformation was applied 
to modify aspect from 0-360o azimuth to values ranging 
from 0 to 2 (Beers et al., 1966), where, 2 corresponds 
to northeast facing slopes (mesic) and 0 to southwest 
facing slopes (xeric). The arcsine transformation was 
applied to slope and CCR, which is generally used to 
transform percentages and fractions to make data close 
to normal (Legendre & Legendre, 2012). 

Estimation of relative density 

Relative density (RD) is the stand stocking, defined 
as the number of trees per unit area in a stand relative to 

the potential maximum number of trees (Woodall et al., 
2011). The relative density of the plots was calculated 
by dividing the current stand density index (SDI) by 
the maximum SDI (Woodall et al., 2005). SDI is based 
on tree density and size for fully stocked pure stands 
(Reineke, 1933). The formula was slightly modified 
for use in unevenaged stands using the additive 
or summation method. The SDI is determined on 
individual tree basis and then summed up for the stand 
(Long & Daniel, 1990), which is expressed as:

		

where tphi is number of trees/ha for the ith tree in the 
stand, and DBHi is the diameter of the ith tree in the 
stand (cm).

To estimate stand specific maximum SDI of 
mixed species stands, we used a published regression 
equation (Woodall et al., 2005) based on wood specific 
gravity (Miles & Smith, 2009) of each tree species in 
the stand. Relative density was used to characterize 
comparative stocking level of each plot and its values 
range from 0 to 1 representing understocked to 
overstocked plots.

Data analysis and construction of path analysis 
model

With the observational data, construction of the path 
model and interpretations about cause and effect of the 
model are done based on a priori conceptual knowledge 
of the complex system under observation (Grace, 
2008). While constructing path analysis network, the 
knowledge about system functioning mechanisms, 
rather than mere associations are applied. The causal 
links were constructed based on empirical observations 
and theoretical explorations about how components 
of a forest system interrelate. The network of multiple 
causal links between the variables in the path model 
was constructed based on causal relationships found 
in the literature (Pretzsch, 2009; Paquette & Messier, 
2011) as shown in Fig. 2. The causal links among the 
variables were slightly modified to retain significant 
paths and obtain best goodness of fit values.

A stepwise multiple linear regression procedure 
was used to select predictors of the response variable 
square root AGBG from among the stand variables 
(relative stand density, mean height, tree density, 
quadratic mean diameter, species diversity, species 
richness and compacted crown ratio) and from among 
the environmental variables (slope, aspect, mean 
precipitation, mean temperature, and elevation). 
Multicollinearity test was also applied to remove 
collinear predictor variables.

[1]

[2]
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We performed path analysis on the standardized 
data, displaying the simple correlations among 
independent variables, and the relationship of all 
independent variables with the dependent variable. 
Standardized path coefficient and t-value were used 
to compare the relative magnitude of the effects of 
different predictor variables in the model (Cramer et 
al., 1999). The standardized path coefficients and the 
effects were produced through maximum likelihood 
estimation in covariance structure analysis. The direct 
effects, when one variable affects another directly, were 
estimated in the form of partial regression coefficients. 
The indirect effects, when one variable affects another 
indirectly through its effect on other variables, were 
estimated by multiplying the path coefficients by the 
simple correlation coefficients (Cramer et al., 1999; 
Pugesek et al., 2003). The total effect is estimated 
by adding the direct and indirect effects. In structural 
equation modeling the term exogenous variable refers 
to a variable that explains other variables in the model 
and whose variation is influenced by factors outside 
the model, while an endogenous variable refers to a 
variable whose variation is explained by using one or 
more of the other variables.

There are several indices available for describing 
the model fit and indicating how the model 
represents the data in structural equation modeling. 
We used the absolute fit indices root mean square of 
approximation (RMSEA), standardized root mean 
squared residual (SRMR), goodness of fit index 
(GFI), and adjusted goodness of fit index (AGFI) 
as well as the comparative fit indices Bentler’s 
comparative fit index (Bentler’s CFI), Bentler-Bonett 
normal fit index (Bentler-Bonett NFI), and Bentler-
Bonett non-normal fit index (Bentler-Bonett NNFI) 
to determine the fit of the path models (Hooper et 
al., 2008). 

Good fit is indicated by RMSEA fit values from 0 to 
0.08, or SRMR values between 0 and 0.05 (Hooper et 
al., 2005). GFI and AGFI range between 0 and 1 and 
values of 0.9 or greater indicate well-fitting models 
(Pugesek et al., 2003). The Bentler’s CFI values range 
from 0 to 1 and values closer to 1 indicate good fit while 
more than 0.9 is considered adequate (Pugesek et al., 
2003; Hooper et al., 2008). Values of Bentler’s NFI 
and Bentler’s NNFI also range between 0 and 1 and 
values greater than 0.9 indicates a good fit (Hooper et 
al., 2008). 

Chi-squared fit index has some limitations as it is 
sensitive to sample size and multivariate normality 
deviation, so it nearly always rejects the model when 
large sample size is used (Hooper et al., 2008). Because 
of using large samples for each model construct, we did 
not report chi-squared fit index for our path models. 
The SAS PROC CALIS procedure with Levenberg-
Marquardt optimization and McDonald method from 
the statistical package SAS® 9.3 was used for path 
analysis. 

Results

A total of 113 tree and shrub species were found 
across the Alabama plots. Species richness ranged 
from 1 to 17. Out of the 2554 plots, the most common 
species richness was 1 (pure stands) on 12% of the 
plots, while the least common was species richness of 
17, occurring on only one plot. About 50% of the plots 
had species richness of 5 or less. The range of current 
AGB was from 0.10 to 403.5 Mg/ha and of AGBG was 
from 0.01 to 15.7 Mg/(ha·yr). The top three dominant 
species on the basis of importance value percent 
(IVP) across Alabama were loblolly pine (31.58%), 
sweetgum (7.97%), and water oak (Quercus nigra L., 
4.78%), all of which are shade intolerant species. The 
next three most dominant species were yellow-poplar, 
white oak, and red maple (Acer rubrum L.), with IVP 
values from 3.08% to 4.32%. The IVP of each species 
was the average of relative frequency percent, relative 
density percent, and relative dominance percent (Curtis 
& McIntosh, 1951). The stand age of about 45% of the 
plots was less than 25 years and over 95% of the plots 
were younger than 75 years. Descriptive statistics of the 
variables for the Alabama plots are shown in Table 1.

There were a total of 147 tree and shrub species 
in the data from across the eastern region (Table 1). 
Species richness ranged from 1 to 15, whereas current 
AGB and AGBG ranged from 0.06 to 246.84 Mg/ha 
and 0.01 to 15.04 Mg/(ha·yr), respectively (Table 1). 
The most common species richness (152 plots) was 3. 
The greatest observed species richness of 15 was found 

Figure 2. A conceptual path model depicting a complex 
causal links of stand-, climatic- and environmental- vari-
ables influencing aboveground biomass (AGB) growth in 
forest ecosystems (Pretzsch, 2009; Paquette & Messier, 
2011).
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on 4 plots. The IVP percent of the three top dominant 
species of the area in descending order were quaking 
aspen (Populus tremuloides Michx. 13.5%), loblolly 
pine (9.1%), and red maple (7.7%). The descriptive 
statistics of the variables for the eastern region plots are 
shown in Table 1.

The results for Alabama and eastern region are 
described separately below.

Alabama

The stepwise linear regression analysis showed 
that the best model for predicting square root AGBG 
included species richness/diversity, relative density, 
height, slope and precipitation. In the first path model, 

the square root AGBG, species richness, height and 
relative density were treated as endogenous variables, 
while slope and precipitation were linked as exogenous 
variables (Fig. 3a). 

All the predictors explained 31% of the variation 
in the dependent variable (square root AGBG). The 
effect of relative density on the response variable 
was the strongest among all variables and with the 
greatest path coefficient of 0.46 (Fig. 3a), followed 
by height, and species richness with path coefficients 
0.32 and -0.24, respectively. Species richness had 
significant negative effect on square root AGBG. The 
effect of height, relative density, and slope on species 
richness was significant with path coefficients 0.31, 
0.28, and 0.22, respectively (R2=0.29; Fig. 3a), while 

Table 1. Mean, standard deviation, minimum and maximum values of the variables across 2554 FIA plots in Alabama 
and 967 plots in the eastern US.

Variables
Alabama plots Eastern USA plots

Mean SD Min Max Mean SD Min Max
Quadratic mean diameter, QMD (cm) 23.1 5.73 12.7 94.1 7.5 4.11 2.5 43.5
Basal area (m2/ha) 16.2 9.14 0.19 58.9 11.65 8.59 0.09 46.9
Height (m) 16.7 3.83 6.1 32.6 11.5 3.60 2.9 27.6
Tree density (trees/ha) 392 229 15 1324 3377 2705.28 15 16480
Relative stand density 0.4 0.15 0.00 0.83 0.23 0.16 0 0.92
Compacted crown ratio 0.39 0.10 0 0.99 0.44 0.17 0 0.99
Stand age (yr) 34 22 1 125 14.3 5.01 3 30
Total AGB (Mg/ha) 82.8 60.4 0.10 403.5 33.13 30.15 0.06 246.8
Mean annual AGBG (Mg/ha·yr) 2.7 1.8 0.01 15.7 2.3 1.94 0.01 15.04
Species richness (S) 5.8 3.36 1 17 4.6 2.98 1 15
Shannon’s diversity index 
(species diversity)

1.11 0.69 0 2.54 0.86 0.56 0 2.29

Precipitation (cm) 142 8.4 121 172.7 102 25.7 51 166
Slope (%) 12 12 0 85 6.3 9.56 0 71
Elevation (m) 137.66 90.45 0 676.7 300.7 179.59 0 1109

Figure 3. First path analysis model (a) showing the causal links between the square root aboveground biomass growth 
(AGBG) and predictor variables across the 2554 FIA plots in Alabama. The path coefficient signifies the effect of each 
respective predictor on the square root AGBG. The second path analyses model (b) uses species diversity instead of rich-
ness. The heavy black line indicates high and significant effect. The dotted line indicates no significant effect at α=0.05. 

(a) (b)
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precipitation had a no effect on species richness (Fig. 
3a). Height and slope had significant effect on relative 
density (R2=0.09; Fig. 3a). Slope and precipitation had 
negligible influence on height and relative density. The 
model (Fig. 3a) was well-fitted, as indicated by the fit 
indices (model I for Alabama in Table 2).

Species richness had a significant negative direct 
effect on square root AGBG, and it had no indirect 
effect on it (Table 3). Relative density had a significant 
direct effect on square root AGBG but it had negligible 
indirect effect (-0.07) on it via species richness. The 
effect of height on square root AGBG was direct, while 
its effect through relative density and species richness 
was negligible (0.03). Slope and precipitation had no 
direct effect and also had insignificant indirect effect 
through height, species richness and relative density on 
square root AGBG (Table 3). 

In the second path model we replaced only species 
richness with species diversity while keeping the other 

variables the same as in the first path model (Fig. 3b, 
Table 3). The results were virtually the same. One 
exception was the relative density, which had lower 
effect (path coefficient 0.16) on species diversity than 
it had on species richness (0.28). The model fit indices 
of the path model (Fig. 3b) were adequate (model II for 
Alabama in Table 2).

Eastern region

For the eastern region, the variables relative density, 
height, square root tree density, species richness, slope, 
and temperature were significant predictors of square 
root AGBG. The square root AGBG, species richness, 
relative density, square root tree density, and height were 
linked as the endogenous variables, while temperature 
and slope were connected as the exogenous variables 
(Fig. 4a). As before, two path models were computed 
using species richness in one and species diversity in 

Table 2. Goodness of fit and comparative fit indices of the path models.

Index
Alabama Eastern region

Model I Model II Model I Model II
Goodness of fit index (GFI) 0.99 0.99 0.99 0.99
Adjusted goodness of fit index (AGFI) 0.95 0.95 0.94 0.93
Bentler’s comparative fit index (Bentler’s CFI) 0.98 0.98 0.99 0.99
Bentler-Bonett normal fit index (Bentler-Bonett NFI) 0.98 0.98 0.99 0.99
Bentler-Bonett non-normal fit index (Bentler-Bonett NNFI) 0.88 0.87 0.95 0.94
Standardized root mean squared residual (SRMR) 0.02 0.02 0.01 0.01
Root mean square of approximation (RMSEA) 0.08 0.07   0.08 0.08

Table 3. Standardized effects of the predictor variables on the response variable square root aboveground biomass growth 
across the 2554 FIA plots in Alabama. The first path model uses species richness, the second uses species diversity. Values 
in parentheses are p values and effects are significant at α=0.05.

Variable Total Direct Indirect

1st path model, using species richness

Relative density 0.39 (<0.001) 0.46 (<0.001) -0.07 (<0.001)

Height 0.36 (<0.001) 0.32 (<0.001) 0.03 (0.02)

Species richness -0.24 (<0.001) -0.24 (<0.001) 0

Precipitation  -0.005 (0.67)  0 -0.005 (0.67)

Slope  -0.009 (0.44)  0 -0.009 (0.44)

2nd path model, using species diversity

Relative density 0.39 (<0.001) 0.44 (<0.001)  -0.05 (<0.001)

Height 0.35 (<0.001) 0.33 (<0.001) 0.02 (0.03)

Species diversity -0.28 (<0.001) -0.28 (<0.001) 0

Precipitation -0.009 (0.44)  0 -0.009 (0.44)

Slope -0.01 (0.29)  0 -0.01 (0.29)
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Height’s indirect effect through tree density, relative 
density and species richness on square root AGBG 
was substantial (0.25). The square root tree density 
showed a strong and positive indirect effect through 
relative density and species richness (0.59) on square 
root AGBG, while it had significant but comparatively 
low and negative direct effect (-0.16) on square root 
AGBG (Table 4). Species richness had significant but 
weak direct effect on square root AGBG (Table 4). Both 
temperature and slope showed significant and positive 
indirect effect on square root AGBG (Table 4).

In the second path model from the eastern US data, 
we replaced species richness with species diversity 
while keeping the other variables and causal paths 
the same. As with the Alabama data, there was no 
measurable improvement in the model (Fig. 4b, Table 
4). In fact, the effects of the predictor variables on other 
predictors, particularly on diversity, were somewhat 
weaker. The path model (Fig. 4b) fit was adequate 
(model II for the eastern region in Table 2). 

We found a non-significant indirect effect of relative 
stand density on square root AGB growth (Table 
4), which was significant in the last model. Species 
diversity had no direct and indirect effect on square root 
AGBG (Table 4).

Discussion 

The results from the Alabama data need to be 
evaluated with some important considerations: i) the 
stand age range of the plots was fairly large (1 to 125 
years) and many plots were impacted by past forest 
management activities such as thinning, timber stand 
improvement, and harvestings, as well as by natural 
disturbances; ii) the common practice of selectively 
harvesting the largest trees of the most valuable species 

the other, while keeping other variables the same in 
both models.

In the first path model for the data from the eastern US, 
the predictors explained 66% of the variation in square 
root AGBG (Fig. 4a). The predictors height, square root 
tree density, slope and temperature explained the same 
amount of variation (66%) in relative density. Relative 
density was the most influential factor for square root 
AGBG. Based on the path coefficients, the effect of 
relative density on square root AGBG was the strongest 
among the predictors with a path coefficient 0.78 (Fig. 
4a). After relative density, height had the greatest effect 
on square root AGBG with a path coefficient of 0.27. 
The effect of square root tree density was negative 
and significant (-0.16). Species richness had a positive 
effect on square root AGBG, but it was weak compared 
to other stand variables (Fig. 4a). Relative density had 
stronger effect on species richness, with path coefficient 
0.32, than the other variables. Similarly, slope, 
temperature, and height had positive effect on species 
richness with path coefficients 0.28, 0.23, and 0.16, 
respectively (Fig. 4a). The square root tree density also 
had a positive effect on species richness. Temperature 
had a greater effect on tree height and square root tree 
density than did slope. Slope had no effect on square 
root tree density. The effect of temperature and height 
on relative density was positive and significant, with 
path coefficients 0.49 and 0.23, respectively (Fig. 4a). 
The square root tree density had greatest effect (0.73) 
on relative density among the predictors. The values of 
the model (Fig.4a) fit indices were adequate (model I 
for the eastern region in Table 2).

Relative density had a very strong direct effect 
(0.78) on square root AGBG, while it had a very weak 
indirect effect (0.02) through species richness on square 
root AGBG. The direct and indirect effects of height 
on square root AGBG were almost equal (Table 4). 

Figure 4. A first path analysis model (a) based on the 967 FIA plots in young forests of the eastern US, depicting the 
causal links between the square root aboveground biomass growth (AGBG) and predictor variables. The second path 
analyses model (b) uses species diversity instead of richness. The path coefficients signify the effect of each respective 
predictor on the square root AGBG. The heavy black lines indicate a strong significant effect. The dotted line indicates 
no significant relationship at α=0.05. 

(a) (b)
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(often referred to as highgrading) and not accounting 
for their volume (because it was not possible for us 
to do it with the available data), would have resulted 
in underestimation of the growth in the mixed stands; 
and iii) the pine stands are generally younger than 
the hardwood stands, as they are often harvested at a 
younger age than hardwood stands. 

In all of our path models (Figs. 3 and 4), the effects on 
AGBG of the variables related to stand structure were 
stronger than the effects of the environmental variables. 
Relative density (stand stocking), tree density, and 
height were each found to influence AGBG directly 
and indirectly. However, the indirect effect of relative 
density through species richness/species diversity on 
AGBG was weak. The stand characteristics density 
and tree height were the main determinants, from the 
selected predictors, in the variation of AGBG in both 
datasets. 

It is not surprising that dense stands accumulate 
more biomass than sparse stands where more growing 
space is unoccupied. Others have similarly found that 
among the processes and stand structural attributes 
that influence the diversity-productivity relationships 
in forests, density can be a stronger determinant of 
productivity than species richness (Forrester & Bauhus, 
2016). Furthermore, the simultaneous interaction 
effects of stand density and other causal factors can 
influence the diversity-productivity relationship, and 
the complementarity effect in forests can increase or 

decrease with increasing stand density depending on 
the limiting resources or climatic conditions (Forrester 
& Bauhus, 2016). In the temperate region, however, 
tree productivity and richness are primarily determined 
by the intensity of the competition, since competitive 
exclusion (low complementarity effect) and selection 
effects in this region are prominent due to a stable and 
productive environment (Paquette & Messier, 2011). 

Relative density, age, and site productivity strongly 
affect forest growth (Innes et al., 2005; Weiskittel, 
2011) and we similarly found strong positive influence 
of relative density on AGBG. As stocking increases, 
the site occupancy grows, resulting in more complete 
use of the available site resources and an increase in 
growth. 

The relationship between species diversity and 
AGBG in the forests of Alabama (significant and 
negative) was different from that for the eastern region 
(positive but very weak). As the selected plots from 
the forests in Alabama were older than those from 
the eastern US, they were much more likely to have 
experienced partial removal, whose volume is not 
accounted for in the data. In the rather common practice 
of removing the largest trees from commercially 
valuable species (high-grading), this would result 
in stands with somewhat lower diversity but greatly 
reduced biomass growth. Because the stands from the 
eastern US were young, such removals are less likely 
to have occurred or would have been uncommon. As a 

Table 4. Standardized effects of the predictor variables on the response variable square root aboveground biomass growth 
across the 967 FIA plots in young forests in the eastern US. The first path model uses species richness, the second uses 
species diversity. Values in parentheses are p values and effects are significant at α=0.05.
Variables Total Direct Indirect

1st path model, using species richness

Relative density 0.80 (<0.001) 0.78 (<0.001) 0.02 (0.04)

Height 0.52 (<0.001) 0.27 (<0.001) 0.25 (<0.001)

Square root tree density 0.43 (<0.001) -0.16 (<0.001) 0.59 (<0.001)

Species richness 0.05 (0.03) 0.05 (0.03) 0

Temperature 0.14 (<0.001) 0 0.14 (<0.001)

Slope 0.11 (<0.001) 0  0.11 (<0.001)

2nd path model, using species diversity

Relative density 0.80 (<0.001) 0.79 (<0.001) 0.01 (0.15)

Height 0.52 (<0.001) 0.27 (<0.001) 0.25 (<0.001)

Square root tree density 0.43 (<0.001) -0.17 (<0.001) 0.60 (<0.001)

Species diversity 0.04 (0.10) 0.04 (0.10) 0

Temperature 0.14 (<0.001) 0 0.14 (<0.001)

Slope 0.11 (<0.001) 0  0.11 (<0.001)
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result, the diversity-productivity relationship in the two 
datasets was different. 

Based on the diversity-productivity relationship in 
the forests of the eastern US, it appears that while more 
diverse forests did not have a productivity advantage 
over less diverse forests, they were not less productive 
either. Species diversity has been reported in many 
studies as a significant factor for aboveground biomass 
productivity in naturally regenerated forests (Caspersen 
& Pacala, 2001; Liang et al., 2007, 2016; Vilà et al., 
2007; Paquette & Messier, 2011), while others found 
stronger effects of species identity (referring to which 
species or set of species are in the community) than 
diversity (Nadrowski et al., 2010). Forest ecosystem 
productivity and nutrient availability are not determined 
solely by the number of species, but are more likely to be 
determined by the characteristics of the species present 
(Firn et al., 2007). Species identity or characteristics and 
spatial distribution are important factors that sometimes 
determine whether diverse stands are more productive 
than monospecific stands of similar age, tree stocking, 
soil characteristics, and management. Other studies 
(Vilà et al., 2007) found that the dominant tree species is 
an important determinant for wood production in Spain. 
There are several factors that influence the relationships 
between species diversity and aboveground biomass 
productivity, such as environment (Hooper et al., 2005; 
Vilà et al., 2005; Ma et al., 2010; Paquette & Messier, 
2011), spatial scale (Chase & Leibold, 2002), plant 
density (He et al., 2005; Potter & Woodall, 2014), 
successional status (Caspersen & Pacala, 2001; Vilà et 
al., 2003), site productivity (Paquette & Messier, 2011; 
Potter & Woodall, 2014), soil fertility (Rodríguez-
Loinaz et al., 2008; Thoms et al., 2010), evolutionary 
history and latitude (Pärtel et al., 2007), and seed 
dispersal limitation (Pärtel & Zobel, 2007). 

Precipitation and slope had no indirect effect on 
AGBG in the forests of Alabama, where the variation 
in these factors is not as great as that in the area covered 
by the other dataset. Precipitation was not in the models 
for the dataset from the eastern US, but of the examined 
climate variables that were in the model, temperature 
and slope had a significant indirect effect on AGBG. 
According to the Köppen climate classification 
(Zifan, 2016), the eastern region represents an area 
with substantial climate variability, whereas Alabama 
represents only humid subtropical climate. Temperature 
appeared to have a positive effect on species richness/
diversity, which is not unusual as forests further from 
the poles tend to be more diverse (latitudinal diversity 
gradient (LDG)). Temperature also had a positive effect 
on relative stand density, as southerly forests of the US 
can grow at higher stocking levels in the more favorable 
temperature, precipitation and extended growing 

season. Temperature generally increases tree and stand 
growth in temperate forests, where photosynthesis may 
exceed respiration in response to increased temperature 
(Ryan, 2010). However, temperature had a particularly 
strong and negative effect on tree height. Warmer 
climates do not necessarily mean greater tree height, as 
the determinants of tree height are complex. Previous 
work has shown that the tallest trees in the world are not 
necessarily in the equatorial regions where the growing 
season is the longest and there is plentiful precipitation. 
Instead, they are located in areas with thermally similar 
climates with average annual temperature around 10oC 
and seasonal temperature variation of approximately 
10oC (Larjavaara, 2014).

Slope had a positive association with species richness/
diversity. As slope becomes steeper, the conditions for 
plants become harder to a critical slope angle beyond 
which plants can no longer grow (Nadal-Romero et al., 
2014). It is harder for a species to become dominant in 
habitats with limited resources and harsher conditions 
(Tilman & Pacala, 1993). And as slopes become steeper 
and conditions less favorable, this likely contributes 
towards greater number of species occupying such sites, 
up to a point where the critical slope angle prevents 
vegetation from establishing and surviving.

We found that species richness had the lowest total 
effect (direct plus indirect), among the examined stand 
structure and environmental variables, on AGBG in 
the eastern forests. A similar result was found for the 
Mediterranean Aleppo pine forests in Spain, where 
Vilà et al. (2003, 2005) found that species richness is 
a less important factor than climate, successional stage, 
bedrock type, and solar radiation for wood production. 

The predictors explained a relatively low (31% or 
33%) amount of the variation in AGBG in the Alabama 
forests, which we contend could be due to factors such 
as disturbances, mortality, removals, and herbivory. In 
the path models of the eastern region, the predictors 
explained 66% of the variation in AGBG. 

The study contributes to our understanding of the 
complex relationships between climatic, environmental 
and stand structure variables in forests of the eastern 
US. 

Conclusion

We analyzed the hypothesized causal relationship 
between aboveground biomass productivity and 
stand structural (relative stand density, tree density, 
height), climatic (temperature, and precipitation), and 
environmental (slope) variables. The study used FIA 
data for path analysis and examined the direct and 
indirect effects of drivers of aboveground biomass 
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productivity in the forests of Alabama and the eastern 
US. 

We found that the relative density, or stocking, 
was the most important variable among the selected 
predictors. Relative density showed a strong direct 
effect on AGBG, although it had a weak indirect 
effect through species richness/species diversity. 
Tree height and tree density were significant factor 
in influencing AGB productivity directly as well as 
indirectly through relative stand density and species 
richness. The environmental and climatic factors were 
more influential than species richness/species diversity 
for increasing AGB productivity in eastern forests. 
Species richness was negatively associated with AGB 
productivity in Alabama, where selective harvesting 
may have resulted in removal of the fastest growing 
trees. In the plots from the younger forests of the eastern 
US, the increase of species richness and diversity did 
not seem affect negatively, nor positively, productivity. 
Overall, increasing stocking appears to provide the 
greatest increase in productivity.
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