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Abstract
Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. 

This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water 
resources management. The analysis is based on a hydraulic interpretation of tree functioning. 

Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/
global research on the subject. The scales of analysis range from the tree to catchment levels.

Material and methods: For literature review we used Scopus, Web of Science and Google Scholar as bibliographic databases. 
Data from two Quercus suber sites in Portugal were used for illustrative purposes.

Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree 
water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water 
is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture.

Research highlights: Given the scarce and variable (in space and in time) water availability in the region, further research is 
needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silvicul-
tural practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, 
a closer cooperation between forest and water managers is needed.
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between the evaporative atmospheric demand (potential 
evapotranspiration) and rainfall, increasing from north 
to south. In most of these areas aridity is increasing 
(FAO aridity index, average annual ratio between rain-
fall and potential evaporation is decreasing) (Spinoni 
et al., 2015). Therefore, actual evapotranspiration is 
restricted by water availability, and streamflow repre-
sents only a small fraction of annual rainfall (David  
et al., 1994; Huxman et al., 2005). Furthermore, water 
scarcity imposes limits on many activities, such as 
urban and industrial supply, agricultural production and 
ecosystem maintenance.

Forest trees need water to survive, grow, provide 
timber and non-timber products, and ecosystem ser-

The Mediterranean climate and forest 
vegetation

Mediterranean-type climate occurs in the Mediter-
ranean Basin, California, central Chile, the Cape region 
of South Africa, and southwestern and southern Aus-
tralia (Di Castri, 1991). Wet winters are coupled with 
dry and moderate/hot summers. Our work will be 
mainly focused on the driest areas that correspond to 
the Csa climate type of the Köppen-Geiger classifica-
tion - Mediterranean Hot (Peel et al., 2007; Spinoni  
et al., 2015). In Europe, these areas mainly occupy the 
southern parts of Portugal, Spain, Italy, Greece and 
Turkey, characterized by a negative annual balance 
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Tree strategies to withstand drought

Through evolution and natural selection Mediter-
ranean trees have developed structural and physiolog-
ical attributes to cope with drought (Chaves et al., 
2003; Baldocchi & Xu, 2007; Sardans & Peñuelas, 
2013). These short- and long-term features aim at 
maintaining a favourable balance between water lost 
through leaves (regulating stomatal and hydraulic 
conductivity, leaf nitrogen/photosynthetic capacity, 
reducing the size and/or increasing the thickness of 
leaves, constraining leaf area index by establishing a 
canopy with low tree density) and water uptaken by 
roots (maximizing water uptake by tapping deep water 
sources). These macro-evolutionary features are usu-
ally complemented by a high intra-specific genetic 
variability which also favours drought adaptation 
(Breda et al. 2006; Aranda et al., 2014; Nardini et al., 
2014; Ramírez-Valiente et al., 2015).

Based on a hydraulic interpretation of tree function-
ing and on a large dataset gathered in Portuguese cork 
oak ecosystems (montados), under different climatic 
and edaphic conditions (site 1 - central Portugal and 
site 2 - southern Portugal), we will illustrate some of 
the drought adaptive strategies of evergreen species to 
withstand the harsh summer drought. Cork oak 
(Quercus suber L.) is one of the native species to the 
western Mediterranean Basin, occupying over 1.3 mil-
lion hectares in the Iberian Peninsula (about 61% of its 
total area worldwide). Portugal and Spain contribute 
to about 80% of the world cork production and exports 
(APCOR, 2014).

Site water availability influences shoot growth as 
evidenced in Figure 1. When roots access water during 
the whole year, even during summer, predawn leaf 
water potential (ψl,pd) remains high throughout the year 
and shoot growth expands into summer (site 1, black 
symbols); when trees suffer some degree of summer 
water stress (drop in predawn leaf water potential), 
shoot growth ceases at the onset of ψl,pd decline (a small 
drop started by the end of May-June, followed by more 
pronounced ones in July and August) and cumulative 
shoot growth is reduced (site 2, white symbols).

When a severe water imbalance occurs (water 
losses far exceeding water uptake), causing xylem 
water potential to drop below a critical threshold, a 
cascade of multiple failures in multiple subsystems 
(hydraulic failure, carbon starvation, susceptibility to 
pests and diseases) may occur (McDowell et al., 2008; 
Anderegg et al., 2012; O’Grady et al., 2013; Zeppel  
et al., 2013; Millar & Stephenson, 2015), ultimately 
resulting in tree death. Hydraulic failure (increase of 
embolised xylem conduits that fail to transport water 
to tree crowns) is considered the main cause of plant 

vices. Water is up taken from the rhizosphere, trans-
ported through the vascular system and evaporated to 
the atmosphere through leaf stomata (transpired water).
Transpiration keeps stomata open to allow the intake 
of carbon dioxide required for photosynthesis and 
growth – the so called trade-off of water for carbon 
(Choat et al., 2012; Buckley & Mott, 2013; Manzoni 
et al., 2013). In the Mediterranean hot climate zone, 
transpiration is the main component of annual evapo-
transpiration (around 75%) (Paço et al., 2009).

During the seasonal hot summer drought, vegeta-
tion is prone to some degree of water and heat stress 
and has evolved a series of adaptive strategies to 
survive and grow under such conditions (Chaves  
et al., 2003; 2009; Baldocchi & Xu, 2007; Sardans & 
Peñuelas, 2013), and to maximize the use of scarce 
resources. The reviews by Chaves et al. (2003; 2009) 
bring together information from whole plant level to 
gene expression, proteomics, metabolomics and bio-
chemical signalling in plant response to drought. In 
this work, we aim at a different/complementary ap-
proach to the “water and forests” issue. The scale of 
analysis is from the tree to the stand and catchment 
levels; and the scope essentially based on the theo-
retical background of the physics of water movement 
and water balance.

The ongoing climate change, linked to an increase 
in the frequency, intensity and duration of droughts, is 
threatening the productivity and survival of many 
Mediterranean ecosystems facing rapid changes in the 
habitat. In what concerns trees, mortality is increasing 
(Barbeta et al., 2015; Doblas-Miranda et al., 2015) 
though this is not a specific situation of the Mediter-
ranean region. Other forest trees from different biomes, 
even from humid regions where a relative increase in 
drought is occurring, are facing similar problems (Allen 
et al., 2010, 2015; Choat et al., 2012; Engelbrecht, 
2012; Grant et al., 2013; Millar & Stephenson, 2015). 
Many are liable to suffer mega-disturbances over the 
long term (Millar& Stephenson, 2015), contracting 
from more arid conditions and expanding to wetter 
regions (Larter et al., 2015). Despite that, the trend and 
magnitude of tree mortality and forest decline still 
remain largely unquantified due to the absence of an 
adequate global-scale monitoring system (Allen et al., 
2010; Millar & Stephenson, 2015). Nowadays, the 
primary goal for forest management is probably to try 
to minimize the effects of these changes (Grant et al., 
2013; Millar & Stephenson, 2015). This implies a bet-
ter understanding of tree physiological responses to 
drought (Larter et al., 2015). Among these, the assess-
ment of tree vulnerability to drought is crucial to im-
prove prediction of forest mortality and species range 
limits (Børja et al., 2013; Urli et al., 2013).
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In isohydric species (most Mediterranean trees), sto-
mata closure maintains leaf water potentials at a safe 
constant daily minimum level during drought (Damour 
et al., 2010). This is exemplified in Table 1 for Q. suber 
(site 2, southern Portugal). At the same site, daily 
maximum canopy conductance (gc,max, dependent on 
stomatal conductance and leaf area index) signifi-
cantly decreased in summer (Table 1). Despite the 
seasonal variation in water availability, stomata closure 
maintained midday leaf water potential (ψl,md) at a con-
stant minimum around -3 MPa under high evaporative 
demand (vapour pressure deficit, VPD, above 1500 Pa), 
irrespective of seasons or years (Table 1).

The above mentioned interpretation of stomatal 
closure is based on the assumption that stomatal be-
haviour is solely determined by hydraulic signals, 
which is obviously simplistic. However, this approach 
seems to conform to stomatal behaviour under field 
conditions (Bond & Kavanagh, 1999). Some authors 
argue that hydraulic signals are the main effector of 
stomatal response (Brodribb & Cochard, 2009).

Following this hydraulically-based framework of 
tree functioning, transpiration (E) can be modelled by 
the Darcy Law (Wullschleger et al., 1998; Sperry, 
2000):

 E = k (ψs – ψl) [1]

where k is the hydraulic conductance in the root-leaf 
pathway, ψs is the water potential in soil/subsoil near 
the roots (assumed equal to ψl,pd), and ψl is the leaf 

mortality (Urli et al., 2013). When hotter temperatures 
combine with drought, the risk of tree mortality in-
creases (Allen et al., 2015).

Control of water losses

Stomatal closure

Among the short-term responses to control water 
losses, stomatal regulation of leaf gas exchange plays 
a key role. Stomata adjust their aperture in response to 
multiple environmental factors, modulating transpira-
tion and consequently determining the rate of soil water 
depletion (Damour et al., 2010). Multiple signal trans-
duction mechanisms are involved and substantial in-
teraction exists among the signalling pathways (Buck-
ley & Mott, 2013). Hydraulic and biochemical signals 
are involved in stomatal control (Tardieu et al., 2010; 
Torres-Ruiz et al., 2015). Yet, the integrated under-
standing of stomatal control is still poor (Brodribb & 
McAdam, 2011), and therefore modelling approaches 
remain fragmental (Damour et al., 2010; Tombesi  
et al., 2015). The hydraulic theory states that under 
water deficit (decrease in soil water potential or in-
crease in atmospheric demand) stomata close to prevent 
the formation of xylem embolisms (Damour et al., 
2010). Stomata can then be viewed as pressure regula-
tors, buffering the drop of xylem water potential and 
the consequent risk of massive xylem embolism and 
catastrophic hydraulic failure (Tombesi et al., 2015). 
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Figure 1. Q. suber cumulative shoot elongation (circles) at two sites with different water availabil-
ity in Portugal (predawn leaf water potentials, bars): site 1, no summer stress (black symbols); site 
2, stress in summer (white symbols). Error bars are standard errors. (Adapted from Pinto et al., 2011).
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sites in the Mediterranean region (e.g., Infante et al. 
(1997) for Q. ilex near Seville, Spain).

Manzoni et al. (2013) predicted maximum transpira-
tion plateaus (Emax) with a reasonably accuracy (R = 0.88) 
for different species, functional types, plant sizes and 
climates through a hydraulically based model.

Leaf shedding

In addition to stomatal control, the decrease in the 
transpiring leaf area is also an effective drought adjust-
ment in Mediterranean species (Limousin et al., 2012). 
In a strictly hydraulic point of view, short-term leaf 
shedding may be regarded as a mechanism to further 
reduce transpiration when stomata fail to regulate ψl. 
Under severe water stress embolism is liable to occur, 
starting preferentially in the more vulnerable xylem of 
leaf shoots and small roots. These organs act as hydrau-
lic fuses (safety valves), localizing failure to relatively 
cheap and replaceable organs, preventing disruption in 
the major conduits of the axial transport and diminish-
ing the risks of hydraulic rupture (Jackson et al., 2000; 
Zufferey et al., 2011; Bucci et al., 2003). Experimental 
results obtained by Vilagrosa et al. (2003) for seedlings 
of Pistacia lentiscus and Quercus coccifera seem to 
support this functional hydraulic trait.

Although this interpretation is simple and appella-
tive, care must be taken since the mechanisms underly-
ing leaf area adjustment are not yet fully understood 

water potential. This approach views the ascending 
water flow in trees, during transpiration, as driven by 
the difference in water potential between leaves and 
soil/subsoil near the roots (ψs – ψl). According to equa-
tion (1), the minimum constant ψl imposed by stomata 
closure during drought (ψl,md) determines the maximum 
plateau for transpiration (Emax). This plateau also de-
pends on ψs (≈ψl,pd) and k (decreases in ψl and ψs can 
also reduce hydraulic conductance when some degree 
of xylem embolism occurs). As soil/subsoil dries out 
in summer, ψl,pd decreases (Table 1) and so Emax plateau 
(Figure 2) due to a smaller difference in water potential. 
This is clearly shown for the same Q. suber trees re-
ferred above (Figure 2).

Similar patterns of Emax decrease during prolonged 
drought have been reported for many other species and 

Table 1. Average values (2 years; for days with VPD greater 
than 1500 Pa) of maximum daily canopy conductance (gc,max) 
and leaf water potential at predawn (ψl,pd, usually considered a 
surrogate of soil/subsoil water potential near roots) and mid-
day (ψl,md), for spring and summer (Q. suber, site 2). (Adapted 
from David et al., 2007). Values between brackets are stand-
ard errors.

gc,max (mm s-1) Leaf Water Potential (MPa)

Predawn
(ψl,pd)

Midday
(ψl,md)

Spring 5.244 (±0.156) -0.16 (±0.05) -2.85 (±0.12)

Summer 1.086 (±0.067) -1.75 (±0.57) -2.80 (±0.13)
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Figure 2. Variation on the maximum plateau of daily transpiration (heat dissipation sap flow method) 
between spring and summer for Q. suber at site 2 (southern Portugal).
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Deep rooting allows trees to maximize water uptake, 
exploring larger and deeper water reservoirs. This 
strategy is particularly important for evergreen trees 
that must survive a dry season. Several studies con-
firmed that Mediterranean oaks (Quercus suber and 
Quercus ilex in the Iberian Peninsula and Quercus 
douglasii in California) use this deep rooting strategy 
to tap water from groundwater reservoirs, whenever 
the superficial soil is dry and the water table is within 
the reach of the deep roots (David et al., 2004, 2007, 
2013; Lubczynski & Gurwin, 2005; Miller et al., 2010; 
Barbeta et al., 2015). This drought avoidance trait has 
also been observed in Australia (Zencich et al., 2002; 
O’Grady et al., 2006), South Africa (Le Maitre et al., 
1999), China (Yin et al., 2015) and even in temperate 
forests during occasional droughts (Dolman, 1988). In 
these studies the evidence of groundwater uptake by 
tree roots was supported by different measuring tech-
niques: lysimeters, sap flow measurements in stems 
and roots, stable isotopes and groundwater fluctuations. 
Since the soils in the Mediterranean region are fre-
quently shallow and with low water retention capacity, 
the access of roots to groundwater (larger and more 
efficient water reservoir for inter-seasonal and inter-
annual rainfall transference) may be critical for tree 
survival and growth. 

Figure 4 shows the dimorphic root system of Q. 
suber trees at site 1 (dense network of superficial 
roots connected to sinkers roots, Figure 4a), which 
enabled the access to different water sources in space 
and time, preventing summer water stress and main-
taining tree growth (Figure 4b, Figure 1). During most 
of the year trees used soil water (when available), but 
relied on groundwater uptake through sinker roots 
when top soil dried out in summer (Figure 4c). The 
same pattern of tree water use was observed by Dol-
man (1988) in Netherlands and Gou & Miller (2014) 
in California. During the dry summer period, tree 
roots also performed night-time hydraulic lift (HL, 
passive movement of water through roots from 
groundwater to the top soil, in response to the differ-
ence in water potential between the two water stor-
ages, which is much lower in the dry top soil) (Na-
dezhdina et al., 2010; Prieto et al., 2012). The amount 
of water hydraulically lifted was small (Figure 4c) but 
ecologically important to mobilise the nutrients stored 
in the top soil, incorporating them in the transpiration 
flux of the following day. HL may also allow the 
maintenance of plant-plant interactions by providing 
water to the understorey vegetation (facilitation 
mechanism), as observed in a Mediterranean ecosys-
tem (Peñuelas & Fillela, 2003).

When the soil is shallow, and roots only access soil 
water, severe water stress is liable to develop during 

(Limousin et al., 2012). These authors have found that 
leaf area index declined rapidly in a Quercus ilex plot 
subjected to artificial throughfall exclusion (19% in 
relation to a control plot, after 7 years of treatment). 
Kurz-Besson et al. (2014) also observed a reduction in 
leaf area in Q. suber trees in response to the extreme 
drought of 2005 (leaf area dropped by 10.4% in an 
ambient treatment plot and 14.7% in a dry treatment 
plot subjected to 20% rainfall-exclusion).

Maximizing water uptake

Root systems/ Water sources

In addition to reducing water losses through leaves, 
trees adapted to drought invest in extensive and deep 
root systems. The first work to clearly unravel this 
strategy of increasing biomass allocation to below-
ground tissues, as the environment becomes more 
severe, was that of Canadell et al. (1996). Maximum 
rooting depth was found to increase in arid environ-
ments and in environments with a long dry season. 
Mean maximum rooting depth of sclerophyllous 
Mediterranean trees (including mainly Eucalyptus spp. 
and Quercus spp.) was about 12.6 m (Canadell et al., 
1996). Deep rooting habit has also been reported for 
Pinus pinea, whose roots were damaging the Jewish 
catacombs of Villa Torlonia (Rome) at a depth of 8-10 
m below soil surface (Caneva et al., 2009). The evo-
lutionary trait of evergreen Mediterranean oaks to 
preferentially allocate growth to root biomass is clear 
from the early stages of acorn germination, as illus-
trated in Figure 3 for Quercus suber seedlings from 
natural regeneration. After germination acorns quick-
ly develop a strong taproot to facilitate access to water 
and permit seedlings to allocate reserves (Pausas et 
al., 2009).

Figure 3. Root development in Quercus suber seedlings from 
natural regeneration.
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rock (fractured rocks facilitate the penetration of deep 
roots (David et al., 2004, 2007)), and on the spatial 
homogeneity/heterogeneity of these features. This may 
be one of the possible causes of the frequent patchy 
nature of drought-induced tree mortality (Barbeta et 
al., 2015).

a single/short drought event. The access of roots to 
groundwater may have an efficient buffering effect 
on the impact of drought on trees (Gou & Miller, 
2014). It is important to be aware that root access to 
groundwater does not depend solely on tree species 
but also on water table depth, nature of the underlying 

Figure 4. (a) Dimorphic structure of Q. suber root system at site 1 (central Portugal); (b) cumulative 
rainfall and daily tree transpiration; (c) relative daily contribution of soil water (SW), groundwater 
(GW) and hydraulic lift (HL) to tree transpiration (heat dissipation and heat field deformation sap 
flow methods). (Adapted from David et al., 2013).
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Figure 5 shows the vulnerability curves for shoots 
of two Mediterranean evergreen oaks (Q. suber and Q. 
ilex) and one temperate maritime deciduous oak (Q. 
robur). ψx,88PLC values of Q. ilex and Q. suber shoots 
(non-return embolism threshold for angiosperms) are 
more negative than those of the temperate maritime 
oak (Urli et al., 2013). The more negative values of 
ψx,88PLC, together with the lower VC slopes estimated 
for Q. suber and Q. ilex, reflect their higher tolerance 
to drought-induced embolism (Tyree & Cochard, 1996; 
Domec & Gartner, 2001; Urli et al., 2013).

The ability of trees to survive and recover from 
periods of drought, related to xylem resistance to em-
bolism, is largely determined by xylem structure 
(Jansen et al., 2009; Choat et al., 2012; Brodribb et al., 
2014). A more tolerant xylem (i.e., less vulnerable to 
embolism) is usually characterized by smaller inner 
diameters of xylem conduits, with smaller and lesser 
inter-conduit connections (Hacke et al., 2006; Jansen 
et al, 2009; Lens et al., 2011; Martínez-Vilalta et al., 
2012). At the tissue level, there is a strong correlation 
between vulnerability to cavitation and mechanical 
strength parameters (Lens et al., 2011). Greater wood 
density (reinforced conduit walls) seems related to the 
avoidance of vessel implosion under low negative pres-
sures during drought (Hacke et al., 2001; Nardini et 
al., 2014). However, an intensive debate is still going 
on about the mechanisms underlying the relationship 
between drought resistance and xylem anatomy (e.g. 

Xylem vulnerability to drought-induced 
embolism

Under severe drought, major drops in xylem water 
potential (low negative pressures) may induce the for-
mation of embolisms (sucked/trapped air) in the xylem 
conduits, reducing their water transport capacity (xylem 
conductance). As a consequence, water supply to 
leaves, photosynthesis and tree growth are reduced. In 
extreme situations, below a species-specific water 
potential threshold, catastrophic/generalised embolism 
may eventually lead to tree death (Choat et al., 2012; 
Wheeler et al., 2013).

Mortality risk triggered by drought-induced em-
bolism can be assessed by vulnerability curves 
(VCs), plotting the percentage loss of hydraulic 
conductivity (PLC) versus xylem water potential 
(ψx). The most common indexes to express embolism 
resistance are ψx,50PLC and ψx,88PLC, i.e., the xylem pres-
sures inducing 50% and 88% loss of hydraulic con-
ductivity. When ψx falls below these embolism 
thresholds, accelerated, non-recoverable embolism 
is liable to occur, leading to long-term reductions in 
productivity, tissue damage, and ultimately death 
(Choat et al., 2012; Urli et al., 2013). Brodribb et 
al. (2010) and Urli et al. (2013) demonstrated that 
in conifers and angiosperms death occurred when 
trees experienced PLC losses in stems greater than 
50% or 88%, respectively.

Figure 5. Vulnerability curves (VCs) of shoots of two Mediterranean evergreen oaks (Quercus suber 
- full black line and Q. ilex - full grey line), and one temperate oak Q. robur (dashed grey line). VCs 
were obtained from mature trees, using the air-dehydration method and fitting an exponential sigmoid 
equation (Pammenter & Vander Willigen, 1998).Values of ψx,50PLC and ψx,88PLC for the 3 species are 
given as inserts. Dashed horizontal line through PLC = 88 % defines the threshold of non-return 
catastrophic embolism for angiosperms. (Adapted from Cochard et al., 1992; Pinto et al., 2012; Urli 
et al., 2013).
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tive traits of Mediterranean forest trees, climate change 
might surpass their drought resistance limits in many 
places (Nardini et al., 2014). Although we cannot alter 
climate at the local level (it is a global issue), forest 
management options can help to mitigate some of the 
negative impacts (Valladares et al., 2014).

Adaptation measures should rely on the evaluation 
of the risks that Mediterranean forests are/will face, 
through improved drought monitoring, early warning 
systems, and mapping of areas representing different 
levels of risk. Also, water use priorities (water require-
ments for people and for the environment) need to be 
set in order to manage and use water in a sustainable 
way (Iglesias & Garrote, 2015). Forest management 
measures should be tailored to site-specific conditions, 
namely preventing damages to the evolutionary tools 
that Mediterranean trees have developed to survive 
drought. They should also be preferentially directed to 
situations where the greatest positive effects are ex-
pected (Millar & Stephenson, 2015).

Examples of some of the possible approaches 
to better adapt forest management to water 
scarcity

To start with, the mapping of zones with distinct 
water availability to trees is critical to frame any lo-
cally adapted management strategy (Orellana et al., 
2012). The spatial evaluation of water availability can 
be based on several variables and parameters, such as 
annual and seasonal rainfall and future foreseen chang-
es (estimated by global climatological models), soil 
water storage capacity and soil water dynamics, and 
hydrogeology (water capacity and dynamics of the 
groundwater storage, and identification of areas of 
potential access of roots to the water table). While data 
for climatic and edaphic mapping can be obtained eas-
ily in most cases, information on groundwater is un-
common. For this particular purpose, both spatial 
surveys and modelling are important. Several models 
are available to estimate the dynamics of groundwater 
use by tree transpiration (Gou & Miller, 2014; Orel-
lana et al., 2014; Pinto et al., 2014). The large-scale 
mapping of zones where roots might have or not access 
to groundwater (groundwater dependent ecosystems) 
has been most frequently done indirectly, through re-
mote sensing techniques coupled with geographic in-
formation systems (Howard & Merrifield, 2010; Gou 
et al., 2015; Yin et al., 2015). However, these two 
technological tools are not yet widely applicable and 
require further development and validation.

As described above, one of the evolutionary traits 
that trees have developed to cope with drought, not 

wood density, wall thickness, vessel size, pit membrane 
structure, and vessel grouping) (Hajek et al., 2014).

The comparison of the hydraulic safety margins (dif-
ference between the minimum xylem water potential 
experienced in the field and species-specific embolism 
thresholds) enables the assessment of their risk of mor-
tality under drought (Choat et al., 2012; Delzon & 
Cochard, 2014). In the two cork oak sites reported 
above trees seemed well adapted to local water avail-
ability, operating with large safety margins above the 
non-return xylem cavitation threshold: minimum ψx 
values under field conditions, estimated from ψl,pd and 
ψl,md, were 5.45 and 4.68 MPa above ψx,88PLC, in sites 1 
and 2 respectively (Pinto et al., 2012).

Intra-specific variation and plasticity  
in hydraulic traits

As referred, a high intra-specific variability for the 
aforementioned features also favours drought adapta-
tion. In Q. suber, intra-specific variability has been 
studied on leaf traits related to drought (Ramírez-Va-
liente et al., 2009; 2011; 2015), but corresponding 
information on rooting depth and xylem vulnerability 
to drought-induced embolism is still not available in 
literature. Ramírez-Valiente et al. (2009; 2011; 2015) 
have shown that leaf traits related to drought tolerance, 
namely specific leaf area (SLA), leaf size and nitrogen 
leaf content, vary significantly between different 
populations of Q. suber. Their recent work (Ramírez-
Valiente et al., 2015) shows that specific maternal Q. 
suber families with low SLA have growth benefits in 
dry years, whereas families with large leaf sizes are 
favoured in mesic years, highlighting the potential role 
of intra-population variability for the selection of bet-
ter adapted genotypes to different weather conditions. 
These authors also found that SLA and leaf size were 
particularly plastic in Q. suber in response to annual 
rainfall variations, though the adaptive significance of 
this plasticity could not be confirmed.

Adaptation measures for managing 
forests under enhanced drought 

Human influences have shaped the structure and 
composition of Mediterranean woodlands impacting 
on forest management and land-use practices (Doblas-
Miranda et al., 2015). However, some of these prac-
tices are no longer adequate and must be adapted to the 
ongoing environmental changes, particularly in view 
of water availability regarded as the most limiting fac-
tor for survival, productivity and ecosystem diversity 
(Engelbrecht, 2012). Despite the aforementioned adap-
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Since water is the main limiting factor for tree 
growth, irrigation has frequently been considered a pos-
sible solution to promote plant productivity in the 
Mediterranean region. Irrigation has been traditionally 
used for agricultural crops. Intensively managed olive 
orchards expanded in the last two decades increasing 
the development of irrigation strategies balancing water 
saving, tree vigour and olive oil production (Fernandez 
et al., 2013; Girón et al., 2015). In the case of forests, 
there is experimental evidence of increased stem diam-
eter growth in response to irrigation (Mayor & Rodà, 
1994), particularly when groundwater is not within the 
reach of roots (Kurz-Besson et al., 2014). However, 
irrigation has not been used in an extensive manner in 
forests. Yet, it seems appealing for tree species that sup-
ply raw material to highly competitive industrial uses. 
In Portugal, such examples are Eucalyptus globulus, 
that supplies the pulp and paper industry, and Quercus 
suber that supplies the industrial production of bottle 
wine stoppers. However, irrigation impacts on product 
quality and on ecological and economical sustainabil-
ity are still missing in international literature. Irrigation 
might change the paradigm on how some Mediterra-
nean forests (and species) are viewed, particularly in 
the case of cork oak. These will be intensive forest 
plantations, grown in very specific places within the 
existing irrigation project areas or in their vicinity. Re-
search, experimentation, technological development/
adaptation, and legislation adaptations will be required, 
in the case of a successful pursue of this trend.

Tree populations contain substantial genetic vari-
ability in tolerance to drought and heat stress, which 
maximizes their potential to withstand and adapt to 
biotic and abiotic stresses (Aranda et al., 2014; Allen 
et al., 2015; Doblas-Miranda et al., 2015). Therefore, 
genetic breeding and phenotypic selection may be 
extremely useful in providing more resilience to 
drought (Allen et al., 2015). However the study of the 
genetic intra-specific features with functional implica-
tions on drought tolerance is complex and results will 
be lagged in time, particularly in slow growing trees 
(Allen et al., 2015; Aranda et al., 2015). Given the 
underlying complexities it seems needed to intensify 
cross-disciplinary research among different disciplines 
such as genetics, genomics, and functional ecophysi-
ology (Doblas-Miranda et al., 2015). The maintenance 
of high genetic diversity within natural populations 
is also important to maximize their potential to with-
stand disturbances (Doblas-Miranda et al., 2015). 
However, it is still an unresolved question whether 
the existing genetic variability is sufficient to com-
pensate for the fast and large predicted changes in 
drought and heat in many locations (Nardini et al., 
2014; Allen et al., 2015).

only under Mediterranean climate but also in semi-
arid regions, is deep and extensive rooting. Manage-
ment practices should not damage or destroy roots to 
prevent decoupling trees from water and nutrient 
sources. This is particularly relevant in evergreen oaks 
in dehesas and montados, where a low density tree 
stratum coexists with pasture or crops in the open 
spaces. Ploughing, which has a damaging effect on 
tree root systems (superficial roots are connected to 
sinkers, see Figure 4), should be avoided as well as 
soil compaction promoted by heavy machinery or 
livestock overpressure (Hillel, 1982; Nadezhdina et 
al., 2012; David et al., 2013). Ploughing activities and 
livestock browsing have also been found to affect 
negatively cork oak natural regeneration (Pausas et 
al., 2009; Arosa et al., 2015), and may contribute to 
the spread of diseases and modify the physical proper-
ties of soils (Bugalho et al., 2009). Therefore, mini-
mum tillage techniques are recommended (David et 
al., 2013). Furthermore, soil conservation practices 
capable of improving soil surface infiltration and of 
maintaining high soil water holding capacities are of 
paramount relevance, particularly in the Mediterra-
nean agroforestry systems where soils are usually 
shallow and poor in organic matter (Grant et al., 2013). 
Mulching using debris can also be used to improve 
soil conditions and reduce soil evaporation (Grant et 
al., 2013; Jiménez et al., 2016), particularly in agro-
forestry systems.

Another drought adaptation trait is the reduction of 
the transpiring area (leaf area and low tree density). 
Forests from southern Europe tend to be sparser than 
those from northern Europe. In the Mediterranean 
region, forest intensification due to land abandonment 
has increased the competition for water and therefore 
the likelihood of drought-induced forest die-off (Do-
blas-Miranda et al., 2015). Several authors report 
evidence that forest thinning can mitigate the drought 
effects on forest growth and tree mortality (Gracia et 
al., 1999; Linares et al., 2010; Giuggiola et al., 2013; 
Grant et al., 2013; Kerhoulas et al., 2013). Competi-
tion between trees may amplify the climatic-driven 
drought stress and further predispose forests to decline 
(Linares et al., 2010). Therefore, tree density should 
be well balanced with the local water availability, 
considering the water storages that may supply roots 
(unsaturated/saturated soil/groundwater). However, 
stand density reductions can, in some cases, adverse-
ly affect the soil macro-detritivore assemblages and 
soil functioning (Henneron et al., 2015). Further ex-
perimentation and research is needed on this issue. 
Shrub encroachment can also contribute to enhance 
competition for water, particularly in extremely dry 
years (Caldeira et al., 2015).
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The definition of priorities for water use under these 
competing conditions is complex and may be contro-
versial. For instance, and in contrast to the widely held 
view that forest management should emphasize the 
provision of water for downstream uses, Grant et al. 
(2013) argue that the maintenance of forest health 
might be a priority in the context of a changing climate, 
even if at some expense to downstream water supply.

However, under extreme hot droughts, all the com-
ponents of the catchment water balance are liable to be 
affected, impacting on both ecosystems and anthropo-
genic activities. In fact, the unprecedented, prolonged 
hot drought that California is facing - four consecutive 
years of water shortfall and high temperatures, lead to 
massive groundwater overdraft, decline in unique eco-
logical ecosystems, cutbacks to farmers, reductions in 
hydroelectricity generation, and a range of voluntary 
and mandatory urban water restrictions (Cook et al., 
2015; Mann & Gleick, 2015).

Water resources planning options should be ulti-
mately determined by the objectives considered as the 
most relevant, and decision-making should always be 
based on a good scientific perception about the con-
flicts and trade-offs that are involved. Under the present 
circumstances, a close cooperation between forest and 
water managers seems clearly a must in the Mediter-
ranean region.
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