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logical organisms, the physical properties of the soil, 
the stocks of available nutrients and regeneration pro-
cesses that take place in the ecosystem (Gebauer et al., 
2012). 

Soil compaction is affected by a large number of 
endogenous and exogenous factors (Horn, 1988). 
The extent of soil compaction depends on soil char-
acteristics and the pressure and vibration applied to 
the soil surface by forestry machines (Ole-Meilud-
ie & Njau, 1989). Brais (2001) identifies machine 
induced soil compaction as one of the primary fac-
tors of soil degradation. Soil compaction is associ-
ated with significant changes in soil structure and 
soil moisture content (Standish et al., 1998; Neruda 
et al., 2008). The critical value of bulk density of 
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Introduction

The primary objective of research focused on the 
effect of the forestry machine traffic on soil is to de-
scribe a complex of soil’s physical properties, which 
enable prediction of the soil’s susceptibility to such 
load (Hildebrandt et al., 1982). It is necessary to define 
the acceptable changes of key soil characteristics (Som-
mer, 1979). In terms of the protection of ecosystems 
or maintaining stand production capacity, the primary 
objective of forestry is to ensure a stable development 
of forest ecosystems and to preserve optimal productive 
and non-productive functions of forests. This can only 
be fulfilled by preserving all of the natural processes 
that occur in the soil, i.e. the activity of all microbio-
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and 85 % of total erosion occurs in the first year after 
such a disturbance (Lousier, 1990).

The consequences of machine traffic through the 
forest stands depend on the load bearing capacity of 
the soil on one hand and the loading of the soil by the 
machine on the other. Both of these factors are complex 
and highly variable. Soil load bearing capacity chang-
es depending on the weather and the stand, which are 
primarily reflected in changes in instantaneous soil 
moisture content. Instantaneous soil moisture content 
has a strong influence on soil load bearing capacity. 
For this reason it is important to answer one question: 
what level of soil moisture content leads to maximal 
soil compaction? 

Another important factor is soil loading, which 
changes according to the type of the machine. A ma-
chine is in balance, meaning it causes minimal distur-
bance, if the size of the contact area of the machine and 
its weight are appropriate. In such case the soil re-
sponds elastically to the soil and no visible ruts appear. 
Despite this, permanent damage is unavoidable if the 
machine moves repeatedly through one trail (Skoupý 
et al., 2011). Ulrich et al. (2003) indicate that the most 
severe soil compaction occurs during the first to the 
third passage and after the fifth to tenth passage the 
soil is compacted to an extent that only minimal incre-
ments in bulk density occur. 

The primary objective of this paper is to compare 
the extent of soil compaction caused by various types 
of forestry machines and to define the critical soil 
moisture content values, leading to maximum com-
paction resulting from the forestry machine traffic. 
Soil compaction is one of the most dangerous soil 
disturbance factors, particularly in highly productive 
stands, which can result in long-term reduction of 
tree growth. The greater the reduction in the growth 
of tree root systems, the smaller the increases in the 
tree growth (Halverson & Zisa, 1982; Tuttle et al., 
1988). 

Material and methods

Measurements were conducted in eight forest 
stands located in Slovakia and the Czech Republic, 
where different types of machines were deployed. 
They were cut-to-length (CTL) machines, both 
tracked and wheeled, and wheeled skidders (Table 1). 
A GIS database provided by the National Forestry 
Centre was used to identify the soil types in the in-
dividual forest stands and their coordinates (Table 2). 
Thinning was carried out in two of the five stands, 
clear cut was performed in two stands, and shelter-
wood cut was performed in the last stand; the total 

soil ranges from 1.2 to 1.4 g.cm–3 (Lousier, 1990). 
Buchar et al. (2011) indicates that regarding accept-
able disturbance caused by forestry machines, com-
paction to 1.3 – 1.7 g.cm–3 should be the limit. 
Šimon & Lhotský (1989)  s ta te  that  1 .35 – 
1.70 g.cm–3 is the critical range of bulk density. 
Arshad & Coen (1992) state that critical range of 
bulk density is 1.4 – 1.8 g.cm–3. Root growth in a 
majority of soil types is effectively stopped if these 
values are exceeded. According to Arnup (1999) soil 
susceptibility to compaction is defined by the fol-
lowing factors: the magnitude of the contact pres-
sure applied by the vehicle, the instantaneous soil 
moisture content, the share of soil skeleton and sand 
particles, soil structure, bulk density of soil, soil 
porosity, and the current thickness of the topsoil. 
Anthropogenic soil compaction and the formation 
of ruts is the result of applying short-term contact 
pressure to the soil and drive wheel slippage caused 
by machine traffic in forest stands (Horn et al., 
2004). Skid trails and forest landings endure the 
most severe soil compaction during forest harvesting 
(Bob, 2002). Soil compaction may be more prob-
lematic in the modern age, given that the weight of 
the forestry machines (harvesters and forwarders) 
continues to increase (Langmaack et al., 2002). The 
pressure applied to the top layers of soil causes 
breakdown of the soil’s structural aggregates, which 
are then compacted. The compaction of soil aggre-
gates results in a decrease in the number of pores 
and a reduction in the actual volume of the soil 
(Poršinsky, 2005). The thermal regime, the air and 
water balance, and plant nutrient transfer are all 
significantly affected (Arnup, 1999), the activity of 
microorganisms also decreases as the soil reverts to 
anaerobic conditions (Frey et al., 2009). Soil com-
paction results in a decrease in the quantity of cap-
illary pores and water permeability (Halvorson 
et al., 2003), which accelerates surface water run-off 
along slopes and causes erosion (Owende et al., 
2002). The number and frequency of machine pas-
sages has a significant impact on the characteristics 
of the soil structure as well. The overall forest 
growth is affected, as soil compaction is reflected 
in a decrease of tree growth (Arvidsoon, 2001; Am-
poorter et al., 2007).

Soil compaction is often related to the formation of 
crust on the surface, which reduces water absorption 
and ultimately increases surface run-off (Malmer & 
Grip, 1990). The risk of local inundation increases 
where the run-off conditions cannot be modified (Jim, 
1993). Experimental research showed that machine 
traffic increases the speed of surface erosion by 2 to 
15 times its natural rate compared to the control plot 
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ple plots were 20 x 20 m or 20 x 40 m, depending on 
the type of machines employed in the individual stands. 
The sample plots were primarily selected because be-
sides soil disturbance measurements, damage to the 
remaining stand was inspected too (not the subject of 
this paper).

The following equation was used to calculate the 
sample size (Šmelko, 2007):

 
i n p

P
%  =

×  

n × p – dimensions of all sample plots (m2)
P – dimensions of the stand (m2)

volume of harvest in the individual stands ranged 
from 90 to 411.3 m3.

Soil samples were collected to determine the extent 
of soil compaction and soil moisture content in the 
investigated stands. These samples were collected from 
sample plots established across the stand based on the 
requirements of statistical sampling and the variability 
of the natural conditions in the stands (Scheer, 2010). 
In general the area of the sample plots was 10 % of the 
total area of the stand in stands up to 50 000 m2. In 
stands larger than 50 000 m2, the area of the sample 
plots was 5 % of the total area of the stand (Lukáč, 
2005). The sample plots were located on skid trails 
disturbed by the machine traffic. The sides of the sam-

Table 1. Basic equipment parameters

Stand Technology Machines Weight (kg) Chassis type Width of contact 
surface (mm)

2052 CTL JD 1070D – JD 810D 14,100 – 10,970 wheeled 600 - 620
2027 CTL JD 1070D – JD 810D 14,100 – 10,970 wheeled 600

805J13 CTL Ponsse ERGO –  
Ponsse BUFFALO

17,200 – 17,400 wheeled 700 - 710

187C20 CTL Neuson 132 HVT -  
Novotný LVS 5

14,400 – 4,475 tracked/wheeled 400 - 520

188 CTL Neuson 132 HVT -  
Novotný LVS 5

14,400 – 4,475 tracked/wheeled 400 - 520

2051 Skidder Zetor 7245 UKT 3,985 wheeled 280 - 420
574B11 Skidder HSM 805 HD 9,200 wheeled 600

588 Skidder HSM 805 HD 9,200 wheeled 600

Table 2. Overview of the details of the individual stands

Stand GPS Type of harvest Volume of 
harvest (m3) Soil type Soil texture

2052 48°40’37.95”N
18° 5’41.25”E

thinning 50 + 265.9 luvisol clay – 9 %, silt – 11 %,  
sand 28 %, gravel – 60 %

2027 48°41’19.48”N
18° 5’38.19”E

thinning 50 + 232.6 40 % luvisol
60 % stagnosol

clay – 4 %, silt – 33 %,  
sand – 42 %, gravel – 21 %

805J13 49°49’59.69”N
14°46’25.71”E

clear cut  96.6 cambisol clay – 2 %, silt – 38 %,  
sand – 37 %, gravel – 23 %

187C20 48°58’6.31”N
18°39’15.40”E

thinning < 50  90 20 % debris rendzina
80 % typical rendzina

clay – 1 %, silt – 46 %,  
sand – 31 %, gravel – 22 %

188 48°58’5.55”N
18°39’24.47”E

thinning < 50 190 10 % debris rendzina
90 % typical rendzina

clay – 4 %, silt – 46 %,  
sand – 48 %, gravel – 2 %

2051 48°41’9.31”N
18° 4’57.79”E

thinning > 50  95.4 luvisol clay – 3 %, silt – 28 %,  
sand – 40 %, gravel – 29 %

574B11 48°35’25.84”N
19° 2’41.66”E

clear cut 411.3 95 % cambisol
5 % luvisol

clay – 17 %, silt – 44 %,  
sand – 22 %, gravel – 7 %

588 48°34’59.62”N
19° 3’16.79”E

shelterwood cut 215.2 40 % cambisol
60 % luvisol

clay – 5 %, silt – 65 %,  
sand – 26 %, gravel – 4 %
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container with a known volume from a height of 30 cm. 
Dried soil was sieved through 16 mm sieves and com-
pacted in three layers by 25 strikes from the cylinder to 
each layer. The test was repeated several times at in-
creased soil moisture content, with the sample of com-
pacted soil weighed at each moisture content level. The 
measurement results were then plotted on a diagram 
where optimum soil compaction corresponding to 
maximum bulk density of the soil sample was deter-
mined. Proctor empirically proved that soils compact to 
different bulk densities by the same compaction work at 
different moisture contents. Dry soil creates clumps that 
do not break down during compaction and large pockets 
are formed in the soil. At low moisture, great friction is 
exerted by the grains as they move, which leads to im-
perfect compaction, and hence low bulk density. Increas-
ing soil moisture beyond the optimum moisture content 
levels results in over saturation of the soil with water 
and subsequent decrease in bulk density. Water moves 
into the soil’s pores and prevents further compaction. 

The STATISTICA 10.0 software was used for sta-
tistical analyses of gathered data, namely multivariate 
analysis of variance (MANOVA) and Duncan’s test.

Results

Soil compaction is one of the primary indicators of 
soil disturbance caused by machine traffic. On average 
the bulk density in ruts of the skid trails was 
0.39 g.cm–3 (32 %) higher than the bulk density ob-
served in the undisturbed stand. Wheeled CTL machines 
caused 34.7 % compaction in ruts of the skid trails com-
pared to the control measurements (bulk density in-
creased by 0.42 g.cm–3), while the tracked CTL machine 
caused 34.9 % compaction compared to the control 
measurements (bulk density increased by 0.37 g.cm–3), 
as shown in Figure 1. Skidders caused an increase in 
bulk density of 0.36 g.cm–3 (29 % compaction) in ruts of 

The following equation was used to determine the spac-
ing between the individual sample plots (Šmelko, 2007):

 
s P

n
100= ×

P – stand area (m2)
n – number of sample plots

The measurement locations for soil disturbance were 
positioned on two opposing sides of each plot, and were 
located on the skid trail. The measurement locations 
were: (i) in the ruts of the skid trail (one side); (ii) the 
centre of the skid trail (between the individual ruts); (iii) 
the undisturbed stand (control measurements). This al-
lowed collection of two sets of material on a one sample 
plot and a total of six samples. In stands where the soil 
disturbance was not studied through the sample plot 
method (clear cut stands 574B11 and 805J13), measure-
ment sites positioned on the skid trails were established 
with spacing of 5 m (Schürger, 2012). The measurement 
locations were the same as for the sample plot method.

Soil samples were collected from every measurement 
location in order to determine soil bulk density in its 
natural conditions. The samples were collected into 
100 cm3 Eijkelkamp cylinders. They were hermeti-
cally sealed in the cylinders to prevent any loss of 
moisture content. Samples were then weighed in labo-
ratory conditions on calibrated laboratory scales with 
an accuracy of 0.1 g and dried at a temperature of 
105ºC for 24 hours. Finally the mass of the samples in 
dried state and their moisture content were determined. 
Soil moisture content was calculated using the follow-
ing equation (Hraško et al., 1962):

 
w m m

m
 % –v s

s

=

Soil disturbance was assessed from a total of 130 
measurement locations. A total of 390 soil samples 
were collected from all measurement locations.

The Proctor standard test (STN 72 1015), was used 
to determine the soil moisture content, at which the 
maximum compaction is achieved. Laboratory analyses 
were conducted to define the soil texture (the percent-
age share of clay, silt, sand, and gravel) in the indi-
vidual stands using sieving method to determine the 
share of material larger than 2 mm and the Casagrande 
method for the finer granular fractions (< 2 mm).

Moisture content, at which maximum soil compaction 
is achieved, is primarily influenced by soil texture and 
the share of clay, silt, and sand. Therefore it was influ-
enced by the conditions at the measurement location. A 
2.5 kg cylinder was used for the Proctor standard test. 
It was used to strike a layer of soil stored in a special 
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Figure 1. Differences in soil densities (g.cm–3) in natural condi-
tions (moist) caused by different types of chassis in the undis-
turbed stand, rut and centre of the forwarding line.
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moisture content between the measurement locations 
and the individual stands. The results of this analysis 
showed that statistically significant differences in soil 
moisture occurred between the individual stands 
(F = 53.65; p = 0.00), but did not occur between the 
measurement locations in the individual stands 
(F = 1.98; p = 0.14) (Figure 3). Average soil moisture 
content in the undisturbed stand was 23.8 %, 25.0 % in 
the ruts, and 23.6 % in the centre of the skid trail. 

The dried soil samples were analysed in order to 
eliminate the moisture content of soil as a bias and to 
determine the extent to which surface soil compaction 
was the result of the different forestry machine types. 
The average bulk density of dried samples measured in 
the ruts of the skid trails was 0.30 g.cm–3 (32 %) higher 
than the bulk density measured in the undisturbed stand. 
Wheeled CTL machines caused 0.35 g.cm–3 (35.4 %) 

the skid trails compared to the control measurements, 
which in this case appears to be the lowest level of im-
pact. Comprehensive data is shown in Table 3.

The level of compaction in the centre of the skid 
trails reached a lower value. Compared to the control 
samples from the undisturbed stand, wheeled CTL 
machines increased the bulk density by 0.13 g.cm–3 
(10.7 % compaction), tracked CTL machine increased 
the bulk density by 0.21 g.cm–3 (19.8 % compaction), 
and skidders increased the bulk density by 0.24 g.cm–3 
(19 % compaction). The highest level of compaction 
of soil in natural conditions was reached by tracked 
CTL machine. This was probably due to differences in 
soil moisture content and texture. MANOVA analysis 
was used to determine if statistically significant differ-
ences were present between soil bulk densities in their 
natural arrangements in the individual stands and in 
the measurement locations. The results of this analysis 
showed that there were statistically significant differ-
ences in density between the individual stands 
(F = 36.23; p = 0.00) and measurement locations 
(F = 130.38; p = 0.00) in the individual stands, which 
can be attributed to the variability of soil conditions 
(Figure 2).

The variability of soil moisture content serves as a 
bias. Soil moisture content varied from 11.2 % to 
39.2 % in the individual stands when the measurements 
took place. The differences in moisture content mani-
fested in differences of bulk densities of moist samples. 
The moisture level, at which the maximum compaction 
is achieved, was exceeded in all stands and varied in a 
range of 12 – 35 % based on the individual conditions 
and soil texture, therefore the maximum soil compac-
tion occurred already after the first machine passage. 
MANOVA analysis was carried out to compare the soil 

Table 3. Changes in soil density caused by various types of chassis

Stand 2052 2027 805J13 187C20 188 2051 574B11 588

chassis wheeled wheeled wheeled wheeled/
tracked

wheeled/
tracked

wheeled wheeled wheeled

Machine harvester harvester harvester harvester harvester Skidder Skidder Skidder
moisture for max.  
compaction ( %)

16.87 15.93 12 28.08 34.06 15.34 21.9 27.95

moist stand g.cm–3 1.21 1.10 1.32 1.05 1.07 1.14 1.43 1.16
moist rut g.cm–3 1.64 1.71 1.54 1.34 1.52 1.46 1.79 1.56
moist centre g.cm–3 1.31 1.37 1.46 1.18 1.22 1.31 1.72 1.42
dry stand g.cm–3 0.96 0.90 1.12 0.82 0.83 0.95 1.05 0.97
dry rut g.cm–3 1.31 1.36 1.35 1.02 1.06 1.24 1.35 1.29
dry centre g.cm–3 1.05 1.12 1.27 0.91 0.90 1.09 1.28 1.18
stand moisture ( %) 25.94 23.04 13.20 28.2 20.4 20.18 39.2 20.41
rut moisture ( %) 25.48 26.36 11.17 31.5 32.4 18.60 33.6 20.92
centre moisture ( %) 24.80 22.98 11.47 28.7 24.8 20.35 35.1 20.80
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Figure 2. Average soil density values in natural conditions 
(moist) in the individual stands and measurement locations (ver-
tical lines depicting 95 % confidence intervals).
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nificant differences in level of soil compaction between 
the individual stands (F = 32.94; p = 0.00) and meas-
urement locations (F = 97.54; p = 0.00) in the indi-
vidual stands (Figure 5). It is important to determine 
what variables contributed to refuting the hypothesis 
of the equality of the averages of bulk densities. The 
Duncan’s test was used to analyse the dried soil sam-
ples from ruts. The test results show all combinations 
of changes in soil density between the samples from 
the ruts (Table 4). The Duncan test confirmed that in 
stands where wheeled machines were used (even with 
various types of machines used, different volumes of 
harvests, and different machine weight classes) the 
same level of soil compaction was reached (805J13, 
574B11, 588, 2027, 2052, 2051). The bulk density 
varied in a range of 1.24 g.cm–3 – 1.35 g.cm–3. The 
tracked chassis enabled a better weight distribution and 
caused lower compaction in stands 187C20 and 188 
with the bulk densities ranging from 1.01 to 
1.05 g.cm–3. The results of this study indicate that 
maximum soil compaction occurred even at minimum 
surface soil loading and a minimum number of pas-
sages, even when wide and low-pressure tyres were 
used. 

Discussion

Soil bulk densities in their natural arrangement fluc-
tuate between the individual measurement locations 
and stands, which was confirmed by multivariate 
analysis of variance (MANOVA).

A similar conclusion was reached by Williamson & 
Neilson (2000), who studied the soil compaction in ruts 
of the skid trails at a depth of 10 cm caused by skid-

increase of bulk density, tracked CTL machine caused 
a 0.21 g.cm–3 (25.3 %) increase of bulk density, and skid-
ders caused 0.30 g.cm–3 (30.3 %) increase of bulk den-
sity compared to the control measurements. The tracked 
chassis proved to have the least effect on soil once the 
bias factor of moisture content was removed. 

The increase of bulk density in the centre of the skid 
trail was 0.16 g.cm–3 (16.2 %) for wheeled CTL ma-
chines and 0.08 g.cm–3 (9.6 %) for tracked CTL ma-
chine; skidders compacted the soil to a higher level, 
which was primarily caused by skidding the load. They 
compacted the soil by 0.19 g.cm–3 (19 % compaction) 
(Figure 4).

The bulk densities of soil samples after drying fluc-
tuated in range of 1.25 – 1.36 g.cm–3 for wheeled ma-
chines and 1.02 – 1.06 g.cm–3 for tracked machine. The 
results indicate that the wheeled chassis caused 25 % 
higher soil compaction compared to the tracked chassis. 
MANOVA analysis was used to compare the samples. 
The results showed that there were statistically sig-
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Figure 3. Average soil moisture values in stands and individu-
al measurement locations (vertical lines depicting 95 % confi-
dence intervals).
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caused by different types of chassis in the undisturbed stand, rut 
and centre of the forwarding line.



Forest Systems December 2015 • Volume 24 • Issue 3 • e038

7Soil compaction of various soil types caused by traffic of various machine types

to 1.79 g.cm–3 compared to the control measurements 
in the undisturbed stand. The trend was the same for 
machines with tracked chassis, with lower bulk densi-
ties (1.34 – 1.52 g.cm–3), but the same level of compac-
tion (34.9 %). When looking at the compaction of soil 
in natural condition, it would seem that the tracked 
chassis had no positive effect on soil disturbance. How-
ever the positive effect was found when dried samples 
were assessed. Machines with wheeled chassis caused 
30.3 – 35.4 % compaction (bulk density ranged from 
1.24 to 1.36 g.cm–3), whereas the compaction of soil in 
ruts formed by the tracked machine varied from 1.02 
to 1.06 g.cm–3 and the level of compaction increased 
by 25.3 %. The highest bulk densities for soil in the 
centre of the skid trails was reached in stands where 
skidders operated. This was due to the nature of skid-
ding – semi-suspended loads caused increased compac-
tion in this location in comparison with the compaction 
caused by CTL machines. An important note is that the 
critical value of compaction for tree root growth was 
exceeded in the skid trail ruts in all cases.

The greatest compaction occurs in the top 30 cm of 
the soil, which contains the majority of the root bio-
mass (Sands & Bowen, 1978; Kozlowski, 1999). Skid-
der passage results in 41 – 52 % compaction of the top 
soil layer (0-8 cm) (Kozlowski, 1999). Lousier (1990) 
found that the top layer of soil (0 – 10 cm) compacts 
by 15 – 60 % in skid trails. According to this author, 
the compaction in deeper soil layers decreases but he 
observed some levels of compaction in depths of 30 cm 
and more. The highest level of compaction occurs after 
the first machines passage. The critical level of mois-
ture content, at which the soil reaches maximum com-
paction maximum soil compaction according to Rab 
(2005) is in range of 39 – 49.2 %. The results of our 

ders. The results of their study confirmed that soil bulk 
density increases by 62 % compared to the control plots 
in the undisturbed stand after the first passage of for-
estry machines through the forest stands. Soil compac-
tion and the formation of ruts in relation to the number 
of forwarder passages was the subject of a study by 
Proto et al. (2012), who determined that the first pas-
sage causes 20 % compaction of the top layer of the 
soil. The issue of forest soil compaction was also the 
focus of a study by Leutz et al., (1980), who investi-
gated machines traffic in loess - clay sites. Measure-
ments showed the changes in soil properties are caused 
by the machines traffic. Most of the soil disturbances 
and structural change is caused by the first passage of 
forestry machines (Steinbrenner, 1955; Jakobsen & 
Moore, 1981; Miles et al., 1981). 

Makineci et al. (2008) investigated the impact of 
timber forwarding on soil at depths of 0 – 5 cm and 5 
– 10 cm. The results of their study indicate that the bulk 
density of the dry soil samples from the ruts increases 
significantly compared to the samples from the control 
plots in the undisturbed stand. Eric (2006) reached a 
similar results while taking samples from depths of 5, 
10, and 20 cm. Sakai et al. (2008) monitored the impact 
of forwarding operations using an eight-wheeled for-
warder to compact the top layers of the soil at a depth 
of 0 – 40 cm with different charging pressures of tyres 
in relationship with the number of passages. Their re-
sults indicate that structural changes of soils happen 
after the first passage of the forwarder and that severe 
soil compaction appears after a total of eight passages 
of the machine. 

According to the findings in this study, machines 
with wheeled chassis caused 29 – 34.7 % compaction, 
with bulk density of moist samples ranging from 1.46 

Table 4. Duncan’s test of bulk density of dried samples in ruts

Duncan test, average density in g.cm–3 (dry sample) 
Approximate likelihood of post hoc tests

Error: between groups. PČ = 262.71, sv = 118.00

stand 1
135.01

2
101.82

3
135.49

4
105.98

5
128.76

6
136.49

7
124.11

8
131.18

805J13 0.000028 0.941157 0.000074 0.373223 0.832586 0.132366 0.559490

187C20 0.000028 0.000023 0.525553 0.000173 0.000018 0.001331 0.000066
574B11 0.941157 0.000023 0.000068 0.356236 0.878481 0.125179 0.538930

188 0.000074 0.525553 0.000068 0.001051 0.000047 0.006585 0.000396
588 0.373223 0.000173 0.356236 0.001051 0.301393 0.478802 0.712963

2027 0.832586 0.000018 0.878481 0.000047 0.301393 0.100750 0.466744

2051 0.132366 0.001331 0.125179 0.006585 0.478802 0.100750 0.313442
2052 0.559490 0.000066 0.538930 0.000396 0.712963 0.466744 0.313442
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The number of passages on the skid trails was not 
considered in this study and the measurements took 
place in stands with different natural conditions. This 
area of research requires a larger, more extensive re-
search, which would consider more machine types and 
various volume of harvest as well as consideration of 
the effects of harvesting remains on the soil compaction 
levels. A drawback of the used gravimetric sampling 
method is that it is only informative, providing infor-
mation on bulk density of soil. Despite this, the submit-
ted paper provides valuable objective results of the 
compaction levels reached by the given machines and 
in given natural conditions, confirmed by statistical 
analyses.
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