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ABSTRACT 

Water, under normal conditions, tends to boil at a “normal boiling temperature” at which 
the atmospheric pressure fixes the average amount of kinetic energy needed to reach its 
boiling point. Yet, the normal boiling temperature of different substances varies depending 
on their nature, for which substances like alcohols, known as volatile, boil faster than 
water under same conditions. In response to this phenomenon, an investigation on the 
coexistence of both gas and liquid phases of a volatile substance in a closed system was 
made, establishing vapor pressure as the determining tendency of a substance to vaporize, 
which increases exponentially with temperature until a critical point is reached. Since 
atmospheric pressure is fixed, the internal pressure of the system was varied to determine 
its relationship with vapor pressure and thus with the boiling point of the substance, 
concluding that the internal pressure and boiling point of a volatile liquid in a closed 
system are negatively proportional.

Key words:  Pressure, enthalpy of vaporization, temperature. 

RESUMEN

El agua, en condiciones normales, tiende a hervir a una “temperatura de ebullición 
normal”, en la que la presión atmosférica fija la cantidad media de energía cinética 
necesaria para alcanzar su punto de ebullición. Sin embargo, la temperatura de ebullición 
normal de las diferentes sustancias varía en función de su naturaleza, por lo que sustancias 
como los alcoholes, conocidos como volátiles, hierven más rápido que el agua en las 
mismas condiciones. En respuesta a este fenómeno, se realizó una investigación sobre la 
coexistencia tanto de fases gaseosa como líquida de una sustancia volátil en un sistema 
cerrado, estableciendo la presión de vapor como la tendencia determinante de una sustancia 
a la vaporización, que aumenta exponencialmente con la temperatura hasta que se alcanza 
un punto crítico. Dado que la presión atmosférica es fija, se varió la presión interna del 
sistema para determinar su relación con la presión de vapor y con el punto de ebullición 
de la sustancia, concluyendo que la presión interna y el punto de ebullición de un líquido 
volátil en un sistema cerrado son negativamente proporcionales.

Palabras clave: Presión, entalpía de vaporización, temperatura.
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RESUMO

A água, em condições normais, tende a ferver a uma «temperatura normal de ebulição» na 
qual a pressão atmosférica corrige a quantidade média de energia cinética necessária para 
atingir seu ponto de ebulição. No entanto, a temperatura normal de ebulição de diferentes 
substâncias varia dependendo da sua natureza, para as quais substâncias como álcoois, 
conhecidas como voláteis, ferver mais rapidamente do que a água nas mesmas condições. 
Em resposta a este fenômeno, foi feita uma investigação sobre a coexistência de fases 
gasosas e líquidas de uma substância volátil em um sistema fechado, estabelecendo 
pressão de vapor como a tendência determinante de uma substância a vaporizar, que 
aumenta exponencialmente com a temperatura até chegar a um ponto crítico. Uma vez 
que a pressão atmosférica é fixa, a pressão interna do sistema foi variada para determinar 
sua relação com a pressão de vapor e, portanto, com o ponto de ebulição da substância, 
concluindo que a pressão interna e o ponto de ebulição de um líquido volátil em um 
sistema fechado são negativamente proporcionais .

Palavras-chave: pressão, entalpia de vaporização, temperatura.

1. Introduction

The main aim of this investigation is to 
show the relationship between the vapor 
pressure and temperature (average kinetic 
energy of the molecules) of a fluid, more 
specifically a volatile liquid, by measuring 
the vapor pressure of the substance when it 
has balanced the atmospheric pressure at a 
certain temperature and total pressure inside 
the system. Unlike researches performed by 
other scientists on the subject (e.g. Planes 
1998, DeMuro 1999), where the relationship 
between vapor pressure and temperature is 
analyzed in consideration of a substances’ 
enthalpy of vaporization alone, this 
investigation will, in addition to the latter, 
alter the basic pressure conditions from which 
the experiment is carried on to understand 
how pressure changes determine the amount 
of energy needed to reach the boiling point 
in function to a set critical temperature and 
expand the already existing knowledge on 
the enthalpy of vaporization of a substance in 
vacuum. Hence, the question to be investigated 
in the experiment is: What is the relationship 
between the vapor pressure and boiling point 
of a volatile liquid in a closed system as 
temperature is increased and internal pressure 

is modified? This investigation will address 
the inquiry mentioned above by carrying on 
a detailed analysis on the fluctuations of the 
vapor pressure of a substance in a closed 
system when temperature is increased and the 
system is at different internal pressures, both 
theoretically and experimentally, and describe 
the rate of growth of vapor pressure in all cases 
by comparing the difference in initial pressure 
readings with the difference in boiling point 
readings for the samples obtained.

2. Hypothesis and theoretical background:

In pursuance of properly and uniquely 
describing the state of a thermodynamic 
system, either it is open, closed or isolated, 
macroscopic state variables, both extensive 
and intensive, must necessarily be stated 
to fulfil said task always depending on the 
fundamental relation U = U (S, N, V…) from 
the first and second laws of thermodynamics, 
where U is the internal energy of the system 
and S, N and V are the main natural variables 
which can be set (entropy, number of particles 
and volume respectively). Thus, in a closed 
system where two different “phases” coexist, 
for instance a pure substance in both its liquid 
and vapor phase, each phase can be regarded 

Boiling point of volatile liquids at various pressures

PP: 87-101



89

Respuestas

Cúcuta-Colombia

Vol. 22

No. 2

Julio - Dic. 2017

ISSN 0122-820X

E-ISSN 2422-5053

as a partial system and its state can be defined 
through set macroscopic variables mentioned 
before by the postulation of the second law as 
demonstrated below (equation 1),

(1)

The equation (1), is the first law of 
thermodynamics for an open system (Euler’s 
equation for internal energy U denoted as (1)), 
where quantities of the ith phase are denoted 
by i = 1, 2… P may be re-written as follows:

 (2)

Which depends on K + 2 extensive variables 
for each phase and P (K + 2) variables for the 
system noting K is the number of different 
particle species. This formula, however, 
is set to describe a system for reversible 
changes of state for which the process of 
vaporization (which will be considered 
next) is to be described for infinitesimal 
equilibrium points in a process that carries on 
by itself and is started when the total system 
is in thermodynamic equilibrium. In this 
way, since intensive variables T, p and μ are 
functions of extensive, natural variables S, V 
and N, and the system is in equilibrium, one 
variable can be eliminated to determine the 
state of the system, thus only K + 2 extensive 
variables are necessary [1, p. 63]. From such, 
a parameter or degree of freedom can be 
solved from the Gibbs phase rule which will 
determine the number of intensive variables 
needed to describe the system following the 
formula F = (K + 2) – P where F is the number 
of intensive variables needed to describe the 
system and P represents the number of phases. 
[2, p. 74] Following this rule, for instance, in 
a closed system containing a pure substance 
in both its vapor and liquid phase which 
exchanges heat with the outside will undergo 

an increase in temperature, causing surface 
molecules with a large amount of kinetic 
energy (regarding the average amount of KE) 
to vaporize [3, p. 112]. As temperature is 
increased, vapor molecules will condense at 
the same rate liquid molecules are vaporizing 
until equilibrium is reached (saturated vapor 
pressure). Given that the system is now in its 
equilibrium state where Tliquid = Tvapor; pliquid = 
pvapor; μliquid = μvapor, applying the Gibbs phase 
rule fixes the number of intensive variables to 
be set, namely of one (Temperature), as K = 
1, P = 2 and thus F= 1 + 2 – 2 = 1 such that 
the vapor pressure will automatically assume 
its equilibrium value [4, p. 105]. Further, 
an expression for vapor pressure when a 
given temperature is set and the system is in 
thermodynamic equilibrium can be deduced 
regarding the Gibbs-Duhem relation, in 
which variables are not independent from 
each other. The follow expression, which is 
a total differentiation of the Euler equation 
for internal energy (Equation 1) describes the 
Gibbs-Duhem relation:

(3)

The latter equation, to make Euler’s equation 
for internal energy valid, must be equal to 
zero. If equation 1 is known, and as T and 
p are dependent to each other and thus may 
assume a fixed value, the chemical potential 
may be calculated giving μliquid (p, T) = μvapor 
(p, T). If temperature is variated (dT) and thus 
pressure variates at an equivalent rate (dp), 
the chemical potential along a coexistence or 
bimodal curve is dμliquid (p, T) = dμvapor (p, T) 
[5, p. 112]. This equation can be expressed 
through the Gibbs-Duhem relation (Equation 
3) in the following way and per Greiner et al:

(4)
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Where S/N for both equations is the specifi c 
entropy and V/N for both equations as well is 
the specifi c volume (in relation to the number 
of particles). After both equations (Equation 
4) are equalized following that chemical 
potentials are equal the latest equation may 
be re-written as:

 (5)

Where sli is the specifi c entropy for the 
substance in its liquid phase, sv is the specifi c 
entropy for the substance, vli is the specifi c 
volume for the substance in its liquid phase 
and vv is the specifi c volume for the substance 
in its vapor phase. This equation (5) is the 
Clausius-Clapeyron equation (named after 
Paul Émile Clapeyron and Rudolf Clausius 
in 1834), relating the rate of change of 
pressure over temperature when specifi c 
entropies and volumes are known. Noting 
that 
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5. These equations, still, must fulfill additional parameters to be true. As the latest re-
evaluation of the Clausius Clapeyron equation deals with entropy differences, which determine the reasons why 
processes tend to happen, thermodynamic potentials as entropy and others equivalent to internal energy as 
enthalpy and free enthalpy should be considered. In fact, following that the process of vaporization is taken to 
be reversible, thermodynamic potentials will give information in function of the internal energy of the system 
relevant to equilibrium positions. [6, p. 425] Additionally, as natural variable S is hardly measurable (consider-
ing it makes an account of the microscopic configuration of the system) given potentials, namely H for exam-
ple, can transform U in such way entropy is stated in function of its correspondent intensive variable T, and so 
on via the Legendre Transformation [7]. For such purpose, given a function of internal energy U for two inten-
sive variables, f(x), at a random point x a transformation to a new equation g(x) can be made by           
        or              when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows: 
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Where the potential H, the enthalpy in equation 6, is obtained following the assumption for g(x). Then, accord-
ing to the differential of g(x),              , the change of enthalpy reads as: 
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Enthalpy then, when viewing the experimental realization of the vaporization of a liquid, represents the energy 
needed to transform the substance into a gas [8, p. 24]. The latter assumption is validated by the last transfor-
mation of the Clausius-Clapeyron equation,      

          
          , as           given that when volume is con-

stant in equation 7 ∂Wrev = 0, in such way     
  
  . Likewise, this assumption can be made from another poten-

tial, the free enthalpy, which is obtained by creating a function g(x) by means of the Legendre transformation 
of two extensive variables, S and V, and proves to be more convenient given that S is not easy to control [9, p. 
13]. This potential is also called the Gibbs potential for it was named after J.W. Gibbs as it closely resembles 
the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
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In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 
equation for internal energy. The differential for G, following g(x),         –      –     , change of free 
enthalpy thus reads as (and should correspond to the transformation of the Clausius-Clapeyron) following 
equation (9): 
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Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing μ in equation 9 and 
differentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 
enthalpy per particle is identical to the chemical potential” [1, p. 101]. In this way, for a system to be in ther-
modynamic equilibrium, the difference in Gibbs free energy must equal zero equivalent to μliquid = μvapor, and 
therefore, the Gibbs relation (Equation 3) can be applied. Consequently, dS in the differential may be solved 
for and introduced in the Clausius-Clapeyron, giving Sv = ΔH / T as stated before. Finally, assuming V follows 
the equation for ideal gases Vv = RT/P, the new equation for vapor pressure and its integration read as:  
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evaluation of the Clausius Clapeyron equation deals with entropy differences, which determine the reasons why 
processes tend to happen, thermodynamic potentials as entropy and others equivalent to internal energy as 
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ple, can transform U in such way entropy is stated in function of its correspondent intensive variable T, and so 
on via the Legendre Transformation [7]. For such purpose, given a function of internal energy U for two inten-
sive variables, f(x), at a random point x a transformation to a new equation g(x) can be made by           
        or              when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows: 
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of two extensive variables, S and V, and proves to be more convenient given that S is not easy to control [9, p. 
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In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 
equation for internal energy. The differential for G, following g(x),         –      –     , change of free 
enthalpy thus reads as (and should correspond to the transformation of the Clausius-Clapeyron) following 
equation (9): 
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Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing μ in equation 9 and 
differentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 
enthalpy per particle is identical to the chemical potential” [1, p. 101]. In this way, for a system to be in ther-
modynamic equilibrium, the difference in Gibbs free energy must equal zero equivalent to μliquid = μvapor, and 
therefore, the Gibbs relation (Equation 3) can be applied. Consequently, dS in the differential may be solved 
for and introduced in the Clausius-Clapeyron, giving Sv = ΔH / T as stated before. Finally, assuming V follows 
the equation for ideal gases Vv = RT/P, the new equation for vapor pressure and its integration read as:  
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as a partial system and its state can be defined through set macroscopic variables mentioned before by the pos-
tulation of the second law as demonstrated below (equation 1), 
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(1) 
The equation (1), is the first law of thermodynamics for an open system (Euler’s equation for internal energy U 
denoted as (1)), where quantities of the ith phase are denoted by i = 1, 2… P may be re-written as follows: 
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Which depends on K + 2 extensive variables for each phase and P (K + 2) variables for the system noting K is 
the number of different particle species. This formula, however, is set to describe a system for reversible 
changes of state for which the process of vaporization (which will be considered next) is to be described for 
infinitesimal equilibrium points in a process that carries on by itself and is started when the total system is in 
thermodynamic equilibrium. In this way, since intensive variables T, p and μ are functions of extensive, natural 
variables S, V and N, and the system is in equilibrium, one variable can be eliminated to determine the state of 
the system, thus only K + 2 extensive variables are necessary [1, p. 63]. From such, a parameter or degree of 
freedom can be solved from the Gibbs phase rule which will determine the number of intensive variables need-
ed to describe the system following the formula F = (K + 2) – P where F is the number of intensive variables 
needed to describe the system and P represents the number of phases. [2, p. 74] Following this rule, for in-
stance, in a closed system containing a pure substance in both its vapor and liquid phase which exchanges heat 
with the outside will undergo an increase in temperature, causing surface molecules with a large amount of 
kinetic energy (regarding the average amount of KE) to vaporize [3, p. 112]. As temperature is increased, vapor 
molecules will condense at the same rate liquid molecules are vaporizing until equilibrium is reached (saturated 
vapor pressure). Given that the system is now in its equilibrium state where T liquid = Tvapor; pliquid = pvapor; μliquid = 
μvapor, applying the Gibbs phase rule fixes the number of intensive variables to be set, namely of one (Tempera-
ture), as K = 1, P = 2 and thus F= 1 + 2 – 2 = 1 such that the vapor pressure will automatically assume its equi-
librium value [4, p. 105]. Further, an expression for vapor pressure when a given temperature is set and the 
system is in thermodynamic equilibrium can be deduced regarding the Gibbs-Duhem relation, in which varia-
bles are not independent from each other. The follow expression, which is a total differentiation of the Euler 
equation for internal energy (Equation 1) describes the Gibbs-Duhem relation: 
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(3) 
The latter equation, to make Euler’s equation for internal energy valid, must be equal to zero. If equation 1 is 
known, and as T and p are dependent to each other and thus may assume a fixed value, the chemical potential 
may be calculated giving μliquid (p, T) = μvapor (p, T). If temperature is variated (dT) and thus pressure variates at 
an equivalent rate (dp), the chemical potential along a coexistence or bimodal curve is dμliquid (p, T) = dμvapor (p, 
T) [5, p. 112]. This equation can be expressed through the Gibbs-Duhem relation (Equation 3) in the following 
way and per Greiner et al: 
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(4) 
Where S/N for both equations is the specific entropy and V/N for both equations as well is the specific volume 
(in relation to the number of particles). After both equations (Equation 4) are equalized following that chemical 
potentials are equal the latest equation may be re-written as: 
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thus reads as (and should correspond to the 
transformation of the Clausius-Clapeyron) 
following equation (9):
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Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing μ in equation 9 and 
differentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 
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its vapor phase. This equation (5) is the Clausius-Clapeyron equation (named after Paul Émile Clapeyron and 
Rudolf Clausius in 1834), relating the rate of change of pressure over temperature when specific entropies and 
volumes are known. Noting that             

         , (amount of energy needed to evaporate all the substance), 

then      
          
          

5. These equations, still, must fulfill additional parameters to be true. As the latest re-
evaluation of the Clausius Clapeyron equation deals with entropy differences, which determine the reasons why 
processes tend to happen, thermodynamic potentials as entropy and others equivalent to internal energy as 
enthalpy and free enthalpy should be considered. In fact, following that the process of vaporization is taken to 
be reversible, thermodynamic potentials will give information in function of the internal energy of the system 
relevant to equilibrium positions. [6, p. 425] Additionally, as natural variable S is hardly measurable (consider-
ing it makes an account of the microscopic configuration of the system) given potentials, namely H for exam-
ple, can transform U in such way entropy is stated in function of its correspondent intensive variable T, and so 
on via the Legendre Transformation [7]. For such purpose, given a function of internal energy U for two inten-
sive variables, f(x), at a random point x a transformation to a new equation g(x) can be made by           
        or              when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows: 

                                
(6) 

Where the potential H, the enthalpy in equation 6, is obtained following the assumption for g(x). Then, accord-
ing to the differential of g(x),              , the change of enthalpy reads as: 

               
(7) 

Enthalpy then, when viewing the experimental realization of the vaporization of a liquid, represents the energy 
needed to transform the substance into a gas [8, p. 24]. The latter assumption is validated by the last transfor-
mation of the Clausius-Clapeyron equation,      

          
          , as           given that when volume is con-

stant in equation 7 ∂Wrev = 0, in such way     
  
  . Likewise, this assumption can be made from another poten-

tial, the free enthalpy, which is obtained by creating a function g(x) by means of the Legendre transformation 
of two extensive variables, S and V, and proves to be more convenient given that S is not easy to control [9, p. 
13]. This potential is also called the Gibbs potential for it was named after J.W. Gibbs as it closely resembles 
the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 

          
(8) 

In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 
equation for internal energy. The differential for G, following g(x),         –      –     , change of free 
enthalpy thus reads as (and should correspond to the transformation of the Clausius-Clapeyron) following 
equation (9): 

                       
(9) 

Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing μ in equation 9 and 
differentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 
enthalpy per particle is identical to the chemical potential” [1, p. 101]. In this way, for a system to be in ther-
modynamic equilibrium, the difference in Gibbs free energy must equal zero equivalent to μliquid = μvapor, and 
therefore, the Gibbs relation (Equation 3) can be applied. Consequently, dS in the differential may be solved 
for and introduced in the Clausius-Clapeyron, giving Sv = ΔH / T as stated before. Finally, assuming V follows 
the equation for ideal gases Vv = RT/P, the new equation for vapor pressure and its integration read as:  

  
    

  
    

(10) 

                     (10)
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Where L is the specific latent heat of vaporization or ΔH, R is the gas constant, 8.3145 J mol-1 K-1, and P, T are 
the vapor pressure and temperature respectively in both equation 10 and 11. In accordance to the information 
presented above, if a liquid is heated at different internal pressures in a closed system, then its temperature will 
increase as heat increases the average kinetic energy of the substance. Once vapor pressure equalizes the at-
mospheric pressure, the substance will reach its boiling point as liquid molecules are no longer being held by 
vapor pressure. As a result, a liquid heated in a closed system at room temperature and normal internal pressure 
will reach its boiling point at a temperature corresponding to 1atm. As noted in the equation for vapor pressure, 
as temperature is increased by 1°C, the molecules with sufficient energy to escape will grow exponentially [3, 
p. 114]. Additionally, substances which tends to vaporize faster, as molecules have weaker bonds or a higher 
amount of internal kinetic energy, are known as volatile [10]. The vapor pressure of a volatile substance is 
greater than the vapor pressure a non-volatile substance like water. To change the boiling point of a substance, 
the internal pressure can be modified in such way that if it is decreased then the amount of energy required to 
boil the liquid from equilibrium with the vapor pressure in the same system, or enthalpy of vaporization, will 
be greater resulting in a higher boiling point. However, as the substance is the same, the rate of growth must be 
the same and the difference in initial pressure readings must equal the difference in boiling point. 
 

3. Previous analysis: 

The graph for vapor pressure versus temperature must be exponential. According to the equation for vapor 
pressure stated before (equation 11), if the natural logarithm of the vapor pressure is graphed against the in-
verse temperature, the relationship must appear linear and its slope should be the enthalpy of vaporization, 
which is to be calculated in order to prove the equation and hypothesis valid. Various repetitions variating the 
internal pressure should be done, comparing every result at the end as well as boiling points and difference in 
initial pressure reading over difference in boiling points, which should be equal or close to one. Finally, free 
enthalpies are to be calculated and compared. 
 

4. Variables: 

Controlled: Volume of the system (keeping the flask unaltered), Volume of the substance (measured 
in milliliters with a digital scale), approximated number of molecules (stays relatively constant as the 
same amount of substance is used per trial), atmospheric pressure (stays constant in the same altitude 
above the sea), Surface area (constant as the flask is the same). 
Independent: Temperature as the substance reaches its boiling point (measured in °C and K with a 
Vernier logger pro temperature sensor inside a hot bath). The temperature results are different per trial, 
however, the rate of change of temperature per trial is the same and thus can be set independent. It is 
important to recognize that temperature, theoretically, does not behave as an independent variable. 
However, given every point in the infinitesimal set of data for the laboratory behaves as an equilibri-
um point it is correct to affirm that temperature is indeed an independent variable.  
Dependent: Internal Pressure (initial pressure plus vapor pressure as temperature is increased) (Meas-
ured in kPa with a gas pressure Vernier logger pro sensor) 

 
5. Materials: 

 
 A 50mL Erlenmeyer flask and a 1000mL beaker. 
 A Vernier logger pro. 
 A temperature sensor for the reader. 
 A vapor pressure sensor for the reader. And a #5 rubber stopper fitting the tip of the flask and with 

holes for the sensor. Plus, the additional support parts of the sensors. 

                  (11)

Where L is the specifi c latent heat of 
vaporization or ΔH, R is the gas constant, 
8.3145 J mol-1 K-1, and P, T are the vapor 
pressure and temperature respectively in 
both equation 10 and 11. In accordance to 
the information presented above, if a liquid 
is heated at different internal pressures 
in a closed system, then its temperature 
will increase as heat increases the average 
kinetic energy of the substance. Once vapor 
pressure equalizes the atmospheric pressure, 
the substance will reach its boiling point as 
liquid molecules are no longer being held by 
vapor pressure. As a result, a liquid heated 
in a closed system at room temperature and 
normal internal pressure will reach its boiling 
point at a temperature corresponding to 1atm. 
As noted in the equation for vapor pressure, 
as temperature is increased by 1°C, the 

molecules with suffi cient energy to escape will 
grow exponentially [3, p. 114]. Additionally, 
substances which tends to vaporize faster, 
as molecules have weaker bonds or a higher 
amount of internal kinetic energy, are known 
as volatile [10]. The vapor pressure of a 
volatile substance is greater than the vapor 
pressure a non-volatile substance like water. 
To change the boiling point of a substance, 
the internal pressure can be modifi ed in such 
way that if it is decreased then the amount 
of energy required to boil the liquid from 
equilibrium with the vapor pressure in the 
same system, or enthalpy of vaporization, 
will be greater resulting in a higher boiling 
point. However, as the substance is the same, 
the rate of growth must be the same and the 
difference in initial pressure readings must 
equal the difference in boiling point.

3. Previous analysis:

The graph for vapor pressure versus 
temperature must be exponential. According 
to the equation for vapor pressure stated before 
(equation 11), if the natural logarithm of the 
vapor pressure is graphed against the inverse 
temperature, the relationship must appear 
linear and its slope should be the enthalpy 
of vaporization, which is to be calculated in 
order to prove the equation and hypothesis 
valid. Various repetitions variating the internal 
pressure should be done, comparing every 
result at the end as well as boiling points and 
difference in initial pressure reading over 
difference in boiling points, which should be 
equal or close to one. Finally, free enthalpies 
are to be calculated and compared.

4. Variables:

Controlled: Volume of the system (keeping 
the fl ask unaltered), Volume of the substance 
(measured in milliliters with a digital scale), 
approximated number of molecules (stays 
relatively constant as the same amount of 
substance is used per trial), atmospheric 
pressure (stays constant in the same altitude 
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above the sea), Surface area (constant as the 
fl ask is the same).

Independent: Temperature as the substance 
reaches its boiling point (measured in °C 
and K with a Vernier logger pro temperature 
sensor inside a hot bath). The temperature 
results are different per trial, however, the 
rate of change of temperature per trial is the 
same and thus can be set independent. It is 
important to recognize that temperature, 
theoretically, does not behave as an 
independent variable. However, given every 
point in the infi nitesimal set of data for the 
laboratory behaves as an equilibrium point it 
is correct to affi rm that temperature is indeed 
an independent variable. 

Dependent: Internal Pressure (initial 
pressure plus vapor pressure as temperature 
is increased) (Measured in kPa with a gas 
pressure Vernier logger pro sensor)

5. Materials:

• A 50mL Erlenmeyer fl ask and a 1000mL 
beaker.

• A Vernier logger pro.

• A temperature sensor for the reader.

• A vapor pressure sensor for the reader. 
And a #5 rubber stopper fi tting the tip of 
the fl ask and with holes for the sensor. 
Plus, the additional support parts of the 
sensors.

• A Bunsen burner.

• Approximately 1000mL of water. 

• Approximately 25mL of Isopropyl 
alcohol.  

• A 20mL plastic syringe.

• A tripod, a ring stand and a Wire Gauze. 

Figure 1. Apparatus set up.
Source: Authors

6. Procedure: 

1. Place the tripod and wire gauze over the 
Bunsen burner. Next, place the ring stand 
beside the Bunsen burner. Fill the beaker 
with water and put it over the tripod, as 
indicated in Figure 1. 

2. Hold the tip of the Erlenmeyer fl ask with a 
ring from the stand tightly over the beaker. 
Close the Erlenmeyer fl ask and connect 
the gas pressure sensor to the fl ask. Lower 
the fl ask into the beaker, letting the water 
cover almost all the fl ask and hold tightly.

3. Measure 3mL of alcohol with the pipette 
and put the liquid inside the syringe. 
Open the valve of the rubber stopper (an 
additional accessory) and insert the liquid 
into the fl ask. Close the valve and empty 
the syringe if liquid remains. 

4. Put the temperature sensor inside the water 
after calibrating it, turn the readings of the 
logger pro on and wait for it to equilibrate.

5. After equilibrium is reached, turn on the 
Bunsen burner and start recording data for 
pressure and temperature.

6. Record data until the rubber stopper pops 
out of the fl ask. Wait for the supplies to 
cool down and reach room temperature 
and repeat the processes, but instead, 
after adding the liquid and emptying the 
syringe, reopening the valve to take vapor 
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 A Bunsen burner. 
 Approximately 1000mL of water.  
 Approximately 25mL of Isopropyl alcohol.   
 A 20mL plastic syringe. 
 A tripod, a ring stand and a Wire Gauze.  

 
Figure 1. Apparatus set up. 

Source: Authors 
6. Procedure:  

 
1. Place the tripod and wire gauze over the Bunsen burner. Next, place the ring stand beside the Bunsen 

burner. Fill the beaker with water and put it over the tripod, as indicated in Figure 1.  
2. Hold the tip of the Erlenmeyer flask with a ring from the stand tightly over the beaker. Close the Er-

lenmeyer flask and connect the gas pressure sensor to the flask. Lower the flask into the beaker, letting 
the water cover almost all the flask and hold tightly. 

3. Measure 3mL of alcohol with the pipette and put the liquid inside the syringe. Open the valve of the 
rubber stopper (an additional accessory) and insert the liquid into the flask. Close the valve and empty 
the syringe if liquid remains.  

4. Put the temperature sensor inside the water after calibrating it, turn the readings of the logger pro on 
and wait for it to equilibrate. 

5. After equilibrium is reached, turn on the Bunsen burner and start recording data for pressure and tem-
perature. 

6. Record data until the rubber stopper pops out of the flask. Wait for the supplies to cool down and 
reach room temperature and repeat the processes, but instead, after adding the liquid and emptying the 
syringe, reopening the valve to take vapor from the flask and closing it again. Variate the amount of 
vapor eliminated from the flask to obtain different results. 

7. Repeat at least with five pressure readings per trial with initial pressure. The number of pressure varia-
tions may be seven or six. 

8. Get rid of the alcohol considering environmental and laboratory risks carefully and in such way alco-
hol is far from fire or hot surfaces. 
 

7. Uncertainty evaluation: 

Variable measuring is bound to have a significant percentage of error which can be reduced if variables are 
carefully measured. First, it is important to acknowledge the fact that variables were properly chosen so that 
they match the first assumptions for the vapor pressure equation (equation 5), volume is constant, temperature 
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from the fl ask and closing it again. Variate 
the amount of vapor eliminated from the 
fl ask to obtain different results.

7. Repeat at least with fi ve pressure readings 
per trial with initial pressure. The number 
of pressure variations may be seven or six.

8. Get rid of the alcohol considering 
environmental and laboratory risks 
carefully and in such way alcohol is far 
from fi re or hot surfaces.

7. Uncertainty evaluation:

Variable measuring is bound to have a 
signifi cant percentage of error which can be 
reduced if variables are carefully measured. 
First, it is important to acknowledge the fact 
that variables were properly chosen so that 
they match the fi rst assumptions for the vapor 
pressure equation (equation 5), volume is 
constant, temperature is set and vapor pressure 
depends mainly on the internal energy and 
other extensive variables (excepting for 
volume) of the system. The system is set to 
only exchange reversible heat with the outside 
which is transferred through the heat bath 
and thus controlled. However, the heat bath, 
for not attempting to resemble an adiabatic 
system, may lose heat irreversibly and said 

change may be considered in the results.  The 
uncertainty of the apparatus used to measure 
the two main variables, however, is minimal 
and results tend to be precise. Variables such 
as atmospheric pressure are always constant. 
The value for atmospheric pressure is 101.35 
kPa. The amount of the substance, which is 
controlled, must be 3mL and more not only as 
it clearly affects the result but also as pressure 
will pop out the rubber stopper before the 
substance has reached its boiling point given 
that the gas occupies are larger volume than 
what its available. Other condition boundaries 
include room temperature which constantly 
variates but will only change the starting 
point of data. Lastly, the experiment may 
cause damages so the technological apparatus 
must stay far from the Bunsen burner and 
temperature cannot exceed 110°C or else the 
glass fl asks may explode. Alcohol must also 
be disposed properly.

7.1 Data: After running the experiment fi ve 
times per trial, seven trials, the best results 
were picked. The number of data taken was 
of 14486, over 900 each trial and a maximum 
run time of 53.25 minutes. A sample of the 
data for one of the runs is listed below in 
Table 1:

Table 1: sample data obtained
 Source: Authors
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through the heat bath and thus controlled. However, the heat bath, for not attempting to resemble an adiabatic 
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which constantly variates but will only change the starting point of data. Lastly, the experiment may cause 
damages so the technological apparatus must stay far from the Bunsen burner and temperature cannot exceed 
110°C or else the glass flasks may explode. Alcohol must also be disposed properly. 
 
7.1. Data: After running the experiment five times per trial, seven trials, the best results were picked. The 
number of data taken was of 14486, over 900 each trial and a maximum run time of 53.25 minutes. A sample 
of the data for one of the runs is listed below in Table 1: 

Table 1: sample data obtained 
 Source: Authors 

For a trial starting at 32.2 kPa of pressure (Table 1). Values are aproximated to four significant values 
according to the uncertainties. As this run consisted of 2569 different data points, values seem to be unvaried.  
All variables are stated according to the information that was previously mentioned. Additionally, values for 
uncertainties were taken as well as propgated uncertainty for Ln (pressure) and 1/T. When considering the 
graph of Natural lograithm of pressure against the inverse of temperature, error propagation will be considred 
too. The first graph to be processed, the normal pressure graph, shows as following (Figure 2),  
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For a trial starting at 32.2 kPa of pressure (Table 
1). Values are aproximated to four signifi cant 
values according to the uncertainties. As this 
run consisted of 2569 different data points, 
values seem to be unvaried. All variables are 
stated according to the information that was 
previously mentioned. Additionally, values for 

uncertainties were taken as well as propgated 
uncertainty for Ln (pressure) and 1/T. When 
considering the graph of Natural lograithm of 
pressure against the inverse of temperature, 
error propagation will be considred too. The 
fi rst graph to be processed, the normal pressure 
graph, shows as following (Figure 2), 

Figure 2: Pressure against Temperature
Source: Authors, Microsoft Excel graph.
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number of data taken was of 14486, over 900 each trial and a maximum run time of 53.25 minutes. A sample 
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according to the uncertainties. As this run consisted of 2569 different data points, values seem to be unvaried.  
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Figure 2 shows the relationship between 
pressure and temperature, appearing to be 
exponential as hypothesized. Error bars were 
added but are minimal and do not show in 
Figure 2. In order to fi nd the factor of growth 

of the exponential vapor pressure curve, 
and following equation 11, the relationship 
pressure-Temperature will be linearized by 
graphing ln(pressure) against the inverse 
temperature as shown below in Figure 3: 
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Figure 3: Natural logarithm pressure against inverse Temperature
Source: Authors, Microsoft Excel graph.
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Figure 2: Pressure against Temperature 
Source: Authors, Microsoft Excel graph. 

 
Figure 2 shows the relationship between pressure and temperature, appearing to be exponential as hypothe-
sized. Error bars were added but are minimal and do not show in Figure 2. In order to find the factor of growth 
of the exponential vapor pressure curve, and following equation 11, the relationship pressure-Temperature will 
be linearized by graphing ln(pressure) against the inverse temperature as shown below in Figure 3:  

 
Figure 3: Natural logarithm pressure against inverse Temperature 

Source: Authors, Microsoft Excel graph. 
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Figure 3 shows the relationship between the 
natural logarithm of the pressure against 
the inverse temperature, relationship which 
should hypothetically be linear and its slope 
should be the enthalpy of vaporization of 
such process. Now that error is propagated, 
error bars were added but again proved to be 
insignifi cant as error in this experiment is not 
relevant. However, the latest graph (Figure 3) 
is not linear. In fact, the graph is linear until 

some certain approximated point and then 
proceeds to be curved. This happened because 
the process was forced to perform work when 
popping the rubber stopper out of the fl ask 
changing the initial formulae that set dV as 
zero and thus ∂Wrev = 0. This error will be 
discussed later. The enthalpy of vaporization 
will be calculated partially assuming the 
Figure 3 is linear. The linearization appears 
as following, 
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Figure 4: Linearized natural logarithm pressure against inverse Temperature
Source: Authors, Microsoft Excel graph.
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Figure 3 shows the relationship between the natural logarithm of the pressure against the inverse temperature, 
relationship which should hypothetically be linear and its slope should be the enthalpy of vaporization of such 
process. Now that error is propagated, error bars were added but again proved to be insignificant as error in this 
experiment is not relevant. However, the latest graph (Figure 3) is not linear. In fact, the graph is linear until 
some certain approximated point and then proceeds to be curved. This happened because the process was 
forced to perform work when popping the rubber stopper out of the flask changing the initial formulae that set 
dV as zero and thus ∂Wrev = 0. This error will be discussed later. The enthalpy of vaporization will be calculat-
ed partially assuming the Figure 3 is linear. The linearization appears as following,  

Figure 4: Linearized natural logarithm pressure against inverse Temperature 
Source: Authors, Microsoft Excel graph. 

 
Proving the enthalpy of vaporization, which is the slope of the Figure 4, to be 929.85 kJ kg-1 and having its 
corresponding negative sign as when enthalpy is obtained from the Legendre Transformation it holds the sign 
for -pdV. Additionally, the value for the squared correlation is of 0.9815 proving data to be strictly related.  
Given that this trial corresponds to “normal pressure” then the theoretical value for the enthalpy of vaporization 
should correspond to this result. For such, relative error in comparison to the fixed value, 732.2 kJ kg-1 will be 
calculated following /Equation 12):  

      
|                     |

                

(12) 
Giving 27% of relative error. The reasons behind the high percentage of error will be explained later. Yet, val-
ues appear to be accurate regarding the boiling point. Moving on, the remaining data was similarly processed 
and its graphs were analyzed as well. The results for the remaining data read as follows (Table 2): 
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Proving the enthalpy of vaporization, which 
is the slope of the Figure 4, to be 929.85 kJ 
kg-1 and having its corresponding negative 
sign as when enthalpy is obtained from the 
Legendre Transformation it holds the sign 
for -pdV. Additionally, the value for the 
squared correlation is of 0.9815 proving 
data to be strictly related.  Given that this 
trial corresponds to “normal pressure” then 
the theoretical value for the enthalpy of 
vaporization should correspond to this result. 
For such, relative error in comparison to the 

fi xed value, 732.2 kJ kg-1 will be calculated 
following /Equation 12): 

(12)

Giving 27% of relative error. The reasons 
behind the high percentage of error will 
be explained later. Yet, values appear to be 
accurate regarding the boiling point. Moving 
on, the remaining data was similarly processed 
and its graphs were analyzed as well. The 
results for the remaining data read as follows 
(Table 2):
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Where H (p)sat is Enthalpy of vaporization of the linearized graphs (Figure 3 and Figure 4) measured in (kJ kg-
1) and %Unc H(p) sat is measured in (kJ kg-1), proving the hypothesis true, as the enthalpy of vaporization is 
greater for lower initial values of pressure because the amount of energy for it to vaporize will be greater and 
thus its boiling point, which is just a reading for temperature will be greater as well. This can be elaborated 
noting that H and T are related in the Clausius Clapeyron equation (equation 10) in such way data is presented. 
Still, the amount of error present in the first processed data will equivalent be one of the next data (or greater) 
for error must be explained. The percentage uncertainty noted accounts for systematic errors in the measure-
ment, which will also be discussed in the error section. Lastly, graphs for data are depicted below (Figure 5), 
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Where H (p)sat is Enthalpy of vaporization of 
the linearized graphs (Figure 3 and Figure 4) 
measured in (kJ kg-1) and %Unc H(p) sat is 
measured in (kJ kg-1), proving the hypothesis 
true, as the enthalpy of vaporization is greater 
for lower initial values of pressure because 
the amount of energy for it to vaporize will 
be greater and thus its boiling point, which is 
just a reading for temperature will be greater 
as well. This can be elaborated noting that H 

and T are related in the Clausius Clapeyron 
equation (equation 10) in such way data is 
presented. Still, the amount of error present 
in the fi rst processed data will equivalent be 
one of the next data (or greater) for error must 
be explained. The percentage uncertainty 
noted accounts for systematic errors in the 
measurement, which will also be discussed in 
the error section. Lastly, graphs for data are 
depicted below (Figure 5),

Figure 5: Pressure against Temperature for all selected trials
Source: Authors, Microsoft Excel graph.
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Figure 5 shows the comparison of the vapor 
pressure curves obtained from which several 
conclusions can be drawn, reinforced by the 

information provided by the boiling point 
against internal pressure of the obtained 
samples shown below (Figure 6):
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Figure 6: Boiling Temperature against internal pressure of the selected samples
Source: Authors, Microsoft Excel graph.
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Figure 5 shows the comparison of the vapor pressure curves obtained from which several conclusions can be 
drawn, reinforced by the information provided by the boiling point against internal pressure of the obtained 
samples shown below (Figure 6): 

 
Figure 6: Boiling Temperature against internal pressure of the selected samples 

Source: Authors, Microsoft Excel graph. 
Where, as hypothesized, the relationship between internal pressure and boiling point of a volatile liquid is 
negatively proportional. Firstly, as mentioned before, that rate of growth of graphs which start at lower pres-
sures in Figure 5 (Run 11, 12, 13) is significantly greater for which the process will need more energy (added 
by the change of temperature) to reach a given value in both the x and y axis, given the boiling point (note 
curves are steeper). After calculating the difference on initial pressure over the difference on final temperature 
per each pair of graphs one gets results close to one as of 2, 1.8, 1,5, etc., indicating that graphs in Figure 5 are 
merely displaced and their slopes will be the only indicators of their difference. Another conclusion that can be 
drawn and is clearly evidenced in Figure 5 is the fact that as the processes proceed exponentially, the processes 
starting at lower internal pressures will reach its critical point in temperature at lower temperatures as heat 
cannot longer be added to neither the liquid (because its evaporated) nor its vapor (because its overly saturat-
ed). In fact, noting that isopropyl alcohol reaches its critical point at approximately 234.3 °C (508.7 K) only 
“normal” graphs (under normal pressure conditions as in Figure 2) will fulfil this parameter, displaced graphs 
as those in Figure 5 will reach it before, at lower temperatures. This happens because the heat needed to vapor-
ize the liquid is greater at lower pressures noting the liquid must additionally overcome fixed, lower pressures, 
a conclusion that fulfills the notation for enthalpy given it is a function of the internal energy plus an additional 
value which is the increased one. Further, if the equation of the total differential of U was known, one could 
determine the amount of extra energy added in order to successfully vaporize the liquid. Additionally, after 
enthalpy is obtained, Gibbs free energies can be obtained and compared, which, should be the same because 
they ultimately depend on the substance and are always constant and equal (between vapor and liquid). 

8. Error evaluation 
1. The first error to be considered is the rubber stopper error, which would not fit in neither the definition 

of systematic and random error and is an unavoidable error in the experiment if Vernier products are 

Where, as hypothesized, the relationship 
between internal pressure and boiling point 
of a volatile liquid is negatively proportional. 
Firstly, as mentioned before, that rate of 
growth of graphs which start at lower 
pressures in Figure 5 (Run 11, 12, 13) is 
significantly greater for which the process 
will need more energy (added by the change 
of temperature) to reach a given value in 
both the x and y axis, given the boiling point 
(note curves are steeper). After calculating 
the difference on initial pressure over the 
difference on final temperature per each pair 
of graphs one gets results close to one as of 2, 
1.8, 1,5, etc., indicating that graphs in Figure 
5 are merely displaced and their slopes will be 
the only indicators of their difference. Another 
conclusion that can be drawn and is clearly 
evidenced in Figure 5 is the fact that as the 
processes proceed exponentially, the processes 
starting at lower internal pressures will reach 
its critical point in temperature at lower 
temperatures as heat cannot longer be added 
to neither the liquid (because its evaporated) 

nor its vapor (because its overly saturated). 
In fact, noting that isopropyl alcohol reaches 
its critical point at approximately 234.3 
°C (508.7 K) only “normal” graphs (under 
normal pressure conditions as in Figure 2) 
will fulfil this parameter, displaced graphs as 
those in Figure 5 will reach it before, at lower 
temperatures. This happens because the heat 
needed to vaporize the liquid is greater at lower 
pressures noting the liquid must additionally 
overcome fixed, lower pressures, a conclusion 
that fulfills the notation for enthalpy given it 
is a function of the internal energy plus an 
additional value which is the increased one. 
Further, if the equation of the total differential 
of U was known, one could determine the 
amount of extra energy added in order to 
successfully vaporize the liquid. Additionally, 
after enthalpy is obtained, Gibbs free energies 
can be obtained and compared, which, should 
be the same because they ultimately depend 
on the substance and are always constant and 
equal (between vapor and liquid).
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8. Error evaluation

1.	 The first error to be considered is the 
rubber stopper error, which would not fit 
in neither the definition of systematic and 
random error and is an unavoidable error 
in the experiment if Vernier products are 
used for the experiment. The volume of 
the fluid inside the flask was measured in 
such way its expansion would not pop out 
the stopper before pressure reached and 
equalized one atm of pressure, however 
it is set to pop out and popping out the 
stopper requires an additional effort. 
In fact, popping out the stopper would 
mean that the volume of vapor must 
increase breaking the thermodynamic 
partial equilibrium of the two phases 
inside the flask. A considerable solution 
would be, for instance, to choose a bigger 
Erlenmeyer flask and thus a bigger heat 
bath as the gas could have expanded 
without popping the stopper out, and the 
curve for the graph which as hypothesized 
to be linear (Figure 3) would be corrected. 
Still, the stopper that is part of the kit for 
the gas pressure Vernier sensor solely fits 
the tip of a 50mL Erlenmeyer flask and 
gas sensors are not widely available for 
school researched. Similarly, reducing the 
liquid would have proven to be a failure 
as the liquid would vaporize faster and 
noting that heat cannot be transferred to 
the liquid if there is no liquid, glass would 
break or the stopper would pop out faster.

2.	 The second error to be considered is the 
relative error in function to the theorized 
value for the enthalpy of vaporization 
of a liquid starting a normal pressure. 
The concentration of the liquid studied 
in this experiment, for safety and legal 
reasons, has a concentration lower than 
80%, which means the substance closely 
resembles a pure substance (specially at 
such small volumes) but still isn’t a pure 
substance. Equations for pure substances 
can still be applied as in this experiment 

because, again, difference is minimal. The 
percentage of error, in fact, corresponds 
to the percentage of concentration 
which isn’t part of the pure substance. 
As the substance used was dissolved 
with water and water vaporizes at higher 
temperatures, the amount of substance 
vaporized is smaller. Observing that the 
concentration of the substance used was 
of 70%, the remaining percentage, 30%, 
is equivalent to the error which is of 27%. 
This error can either be ignored or fixed 
via the application of Raoul’s law for 
pressure of fugacity and repeat the entire 
experiment. 

3.	 The third error to be discussed is the 
error proper of the measuring apparatus. 
Although it was stated in Table 1 and its 
propagation was calculated, it did not 
appear relevant for both the original graph 
(Figure 2) and the fit line (Figure 3 and 4). 
For said reason, a sample of the calculations 
will be made. The uncertainty for p and 
T was previously given and using a rule 
of three, the absolute uncertainty for T in 
Kelvin was calculated. For the percentage 
uncertainties, the absolute value for the 
uncertainty corresponding to each data 
point of each variable was divided by 
the corresponding experimental data 
point and multiplied by one hundred. As 
uncertainties for one or a pair of variables 
when operated mathematically will be 
calculated by adding its percentages unless 
the operation is a sum or a difference, the 
uncertainty for the inverse temperature 
was obtained simply operating for the 
fractional uncertainty of each point as 
being a divisor of 1 any other calculation 
is canceled. For the natural logarithm, the 
fractional uncertainty for each point was 
added to the value for natural logarithm 
of pressure. The propagation of error was 
minimal, changing 1 kPa for the natural 
logarithm and 0.000001 K for the inverse 
temperature.

Luisa. Valencia, Christian Aguirre

PP: 87-101



100

Respuestas

Cúcuta-Colombia

Vol. 22

No. 2

Julio - Dic. 2017

ISSN 0122-820X

E-ISSN 2422-5053

4.	  The fourth error to be considered is a 
human error regarding data processing. 
Graphs appear to have gaps (appear to 
be functions by parts) when they are 
perfectly continuous functions, as in the 
case of Run 7, 9, 10, 11, 12 and 13 from 
Figure 5. This error took place because 
the Vernier logger pro data reader and 
collector was set to collect data until 
900s, but many processes in fact lasted 
twice or thrice as long. When I realized, 
the sensor had stopped taking data, the 
continued data taking was appended 
and the function appears to have holes 
in them. Let it be clear that being more 
careful would have avoided the error and 
that it is not a fallacy of the experiment 
or the background. Nevertheless, graphs 
(Figure 2, 3, 4 and 5) could still be studied 
and results were not affected beyond this 
discontinuity issue. 

5.	 The last error to be considered encompasses 
every approximation to a value for boiling 
point. After doing an extensive research 
it was effectively found that the proper 
amount of alcohol to be used to determine 
the temperature at which the substance 
boils as being the same temperature at 
which the rubber stopper jumps out was 
used in this laboratory based on several 
calculations on the expansion of the 
gas, the volume of the flask and the heat 
source. This approximation, however, 
has a large potential amount of error. 
Still, by indicating the uncertainty of the 
measurements and of the final processed 
results as demonstrated in table 2.0, one 
can give an approximated range of values 
in which the boiling point took place. 
Nevertheless, the results of this experiment 
are still coherent and necessary for the 
relationship between the variables was 
obtained properly. The understanding of 
this error, as well as the understanding 
of the error regarding the work done 
to pop the rubber stopper out, aids the 
comprehension of the drastic change in 

data towards the end of their recordings 
for which the experiment changed from 
doing no work into doing an additional 
effort to pop the rubber stopper off and 
thus making an account of the boiling 
point before gas accumulated to make the 
additional effort.

9. Additional conclusions and 
improvements

1.	 In general, the experiment worked as 
expected. How discussed before in the 
error section, the first and most important 
improvement would be to change the 
volume of the system that contains the 
substance into one that is significantly 
larger. 

2.	 Another improvement would be to use 
a substance with a hundred percent 
of concentration. Although error can 
be explained and justified, a perfect 
experiment can be effectively done with a 
perfectly volatile and pure substance. Still, 
these tend to be flammable and dangerous 
for people inside school laboratories (ex. 
gasoline, ethanol, etc.)

3.	 Another improvement would be to get a 
scientific heat bath so that the amount of 
reversible heat lost when heating water 
inside the beaker is minimal, as discussed 
in the uncertainty section. Although almost 
impossible to measure, this variation of 
the increase in temperature can be seen 
in the graph (Figure 2) given that for 
very short intervals of time temperature 
decreases and increases. The latter, whilst 
can make the analysis of specific points of 
the process hard, is, however, insignificant 
for equilibrium thermodynamics as 
only equilibrium states are studied and 
necessary. Even if the process is said to 
be a reversible process with infinitesimal 
equilibrium points, the main purpose was 
to evaluate the first and last data of the 
process for which boiling pressure and 
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initial pressure reading where the data 
compared. 

10. Proposals

1.	 To process the data further into extracting 
the enthalpy at ending of the process as 
well as the free enthalpy and reaching far 
more interesting conclusions.
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