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Abstract. In this work we present a novel post-processing effect that can be applicable for both edge detection 

visualization and for emulation of ambient shading. Unlike different classic shaders suitable for these tasks, our 

effect has single shader code and does both the effects simultaneously: with a certain settings, the same codebase 

works as the edge detector or an ambient occlusion effect or as both of them at the same time, that is why the 

shader is useful for rendering of industrial design, architectural works and engineering. The algorithm uses only 

depth texture without screenspace normal texture and without additional noise texture that is a key component of 

a rendering pipeline of most of known screenspace ambient occlusion algorithms.  The shader consist of 2 stages: 

standard render pass (that produces scene texture with no lights and shadows) + contours extraction and (or) 

ambient occlusion pass. Presented algorithm is relatively simpler in number of operations, being more amenable 

for mobile platforms. 
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1. INTRODUCTION 

In most cases in 3D rendering we need to select some 

objects to get user’s attention to it. The most obvious 

way to do such a highlighting it is to draw a set of 

lines around the “selected” object. These lines can 

show many different things, including various 

combinations of lighting, surface discontinuities and 

contour of the object. There are lot of approaches and 

methods to do non-photorealistic or photorealistic 

rendering, but no one of them can do combined task 

in one shader. Occluding contours critically depend 

on the surface normal: they are zeros of the dot 

product between the normal and the view direction. 

Ridges and valleys are defined as local maxima of 

curvature (Rusinkiewicz, 2004). “Brute-force” way 

is slow: it requires simplifications of geometry and 

spatial data structures to work in real time. Screen 

space ambient occlusion (Langer & Buelthoff, 2000) 

is also useful for producing both interior and exterior 

silhouettes, however, primarily it was developed as 

algorithm of shading (Fox, & Compton, 2008). Both 

these post-processing effects (Miller, 1994) have a 

deal with comparison of color of near-lying pixels. 

Basing on this, in present work we made universal 

screen post-processing shader that can work as edge-

detection filter and as an ambient-occlusion filter. 

2.  PREVIOUS RELATED WORK 

There are several algorithms for extracting most 

kinds of feature lines from 3D objects of the scene. 

A very simple way to produce occluding contours is 

to render the model with white direct lighting (but 

without color and textures), and then perform color 

thresholding (Burns,  Klawe & Rusinkiewicz, 2005). 

Any region darker than a threshold is set to black (or 

the line color), and anything above the threshold is 

set to the background color. To extract contours 

within faces of a 3D mesh, one can use interpolated 

values of n dot v (n is a face normal vector, v is view 

direction) (McGuire & Hughes, 2004). 

Unfortunately, this technique depends on 

geometrical complexity of the 3D scene. Real-time 

ambient occlusion techniques are often implemented 

as screen-space ambient occlusion (SSAO) and 

horizon-based ambient occlusion (HBAO) 

(Shanmugam, & Arikan, 2007) (Bavoil, & Sainz, 

2008). It uses data from the depth buffer (a color that 

depends on depth) instead of rendering n dot v. The 

main drawback is an overocclusion issue, which 

looks as dark halo artifacts in zones with large 

differences of depth buffer.  

None of known edge detection techniques can 

produce ambient occlusion effect using single shader 

codebase at the same time. Moreover, 

implementation of ambient occlusion effect runs 

slow on middle-grade mobile GPUs due to 

complexity of shader instructions. Our goal is to 

produce shader that does contour extraction and 

ambient occlusion simultaneously and is fast enough 

to work on mobile devices. 

3.  IMPLEMENTATION 

3.1 Basic idea 

The key idea of the algorithm is to average dot 

product of screen's normal vector and a tangent 

vector of all visible surfaces. To compute screen 

space tangents we use encoded depth texture. The 

screen z coordinate of each generated pixel of a 

scene is stored in a depth texture representing depth 

buffer (z-buffer). The depth buffer will allow the 

method to reproduce the real screen space 

coordinates of each rendered point of the scene.  

It can be done by commonly used Laplacian operator 

(Ritschel, Grosch & Seidel, 2009). Unfortunately, it 

cannot produce contours of individual object: it 

works for the whole scene. To select the object of 

interest (i.e. to draw its contours) we need to render 

it separately: 

 Initialize new screen texture. Let it be b/w. 

 Clear the whole screen by black solid color. 

 Render the object of interest filled by white 

solid color.   

 Apply the Laplacian operator to each pixel 

of the screen texture. Use finite difference 

approximation of Laplacian operator: L(x,y) = 

c(x,y+1) + c(x,y-1) + c(x+1,y) + c(x-1, y) - 4*c(x,y). 

Where c(x,y) is a color of a pixel of b/w screen 

texture. Now one can see the outline of the object of 

interest: 

 Invert screen texture. Now object's edges 

are black, and void space is white. 

 Initialize new screen texture and render the 

entire scene with textures, lighting, etc. 

 Multiply b/w and scene texture. The object 

of interest has black outline. 



 

 

On the other hand, this algorithm is also applicable 

for the whole scene after exclusion of the first three 

steps.  

3.2. Depth encoding 

To encode z-values as RGB colors of the depth 

texture, we use well-known approach described in 

(Umbaugh, 2010). Fragment shader projects vertices 

of a scene models to the normalized screen space by 

means of perspective model-view-projection matrix. 

We use Adobe Graphics Assembly Language 

(AGAL) (Pharr & Fernando, 2005) to implement our 

shader. In AGAL syntax, it looks the following way: 

m44 op, vt0, vc0 // project vertex coords (vt0) by 

MVP matrix (vc0) 

m44 vt1, vt0, vc4 // project vertex (vt0) according to 

scene transform matrix (vc4)   

sub v0, vt1, vc5 // compute a vector (v0) from vertex 

to camera position (vc5) 

The "scene transform" matrix (vc4) transforms from 

model to world space. To represent the 32-bit depth 

buffer, we need to multiply interpolated squared 

distance between camera and vertex to powers of 

two. Let the distance from camera to the far plane of 

the view frustum is “f”. As the value of expression 

√𝑓2 + 𝑓2 is largest possible distance for any view 

frustum, we need to divide by it to normalize 

obtained distances. Finally, the AGAL pixel code 

looks like: 

dp3 ft0.z, v0.xyz, v0.xyz // get a squared distance 

(ft0) by computing squared length of v0 

mul oc, fc0, ft0.z // pack the depth (ft0) by 

multiplying to powers of two (fc0) 

In this code the register fc0 has the following values: 

𝑓𝑐0. 𝑥𝑦𝑧𝑤 = (
1

2𝑓2 ,
28

2𝑓2 ,
216

2𝑓2 ,
224

2𝑓2 )  

  (1) 

Here we took into account that the maximum depth 

value can be approximated this way for the 

simplicity of computations (no need to calculate 

square root): 

max 𝑑𝑒𝑝𝑡ℎ =
1

√𝑓2+𝑓2
≈

1

2𝑓2  

   (2) 

3.3. Neighbor pixels processing 

Once the screenspace depth map is done, we can 

compute tangent vectors. To make this we simply 

sample depth values in adjacent pixels of the pixel in 

processing. Texture coordinate (UV) offsets for 

adjacent pixels are also known, that is why the 

resulting tangent vector is described by expression: 

𝑡 = (𝑑𝑥 − 0. 𝑥, 𝑑𝑦 − 0. 𝑦, 𝑧 − 0. 𝑧)  
   (3) 

Here “0” is a position vector of the processed pixel; 

“dx” and “dy” are horizontal and vertical distances 

between processed pixel and its neighbor pixel. Both 

the “dx” and “dy” are specified in texture 

coordinates and corresponds to standard “u” and “v” 

components in range [0..1] for the whole screen. In 

our case, we use normalized “dx” and “dy” 

according to width and height of the screen texture: 

𝑑𝑥 =
𝑑𝑢∗𝑟

𝑤𝑖𝑑𝑡ℎ
; 𝑑𝑦 =

𝑑𝑣∗𝑟

ℎ𝑒𝑖𝑔ℎ𝑡
;    

  (4) 

Here “r” is a sampling step in pixels, because we can 

sample not only nearest neighbors, but skip them and 

make a leap sampling. In figure 1 the processed pixel 

is point “0” and its left and right neighbor pixels are 

“L” and “R” respectively. Surface tangent vectors 

are respectively: “0L” and “0R”. 

  

Figure 1. Idea of the shader. Left: side view of a depth 

map. Right: we use the same notation for top view of a 

depth map. “0” is a currently processing pixel. Then we 

compute tangent vectors from its neighbor pixels of a 

depth texture. 

When the four tangents for the currently processed 

pixel of the screen had calculated, we compute a dot 

product of them and of the normal vector of the 

screen: “N” = (0, 0, 1). According to the figure 1: the 

lower the neighbor pixel is – the higher is the dot 

product. Differences between high and low depths 

finally will look like different intensity of a resulting 

color: the most covered from the incident light places 

of the 3d scene will be shady, especially if the 

sampling step is greater than one pixel (r > 1). 



 

 

 

 

Figure 2.  Left: Output color depending on the angle 

between surface tangents and screen normal. Angle is 

specified in terms of dot product [and is in range [0..1]. 

Different rainbow colors correspond to the bleach factor. 

Right: Result of the shader's work. Each number at the 

right bottom corners of each frame points to the bleach 

factor. 

3.4. Fixing too dark or too bright zones 

In case of using this algorithm as the edge detection 

filter, it will look okay, but for effect of ambient 

occlusion it produces improper results. To overcome 

this unnecessary dark halo we add so-called bleach 

factor that will make too dark color values lighter. 

Then output color looks the following way: 

𝑜𝑐 = 𝑑𝑝 ∗ (2 −
𝑑𝑝

𝐿
)    

  (5) 

Here “dp” is a dot product of tangent and screen 

normal; “L” is the bleach factor which is in range 

[0..1]. For low values of “L”, initially too dark zones 

will be lighter, and for high values of “L” dark zones 

stay dark.  Then we simply accumulate these four 

samples of corrected depth and divide by total count 

of samples (=4) to set the output color in correct 

range (see “Appendix A” of this paper). Pixel 

Bender do not support loops, that's why all the four 

depths of neighbor points were sampled step-by-step 

by repeating key parts of a code. Note that in the 

"Appendix A" we use depth map as an input image. 

For clarity, this depth map is encoded as grayscale 

texture, and its red, green and blue channels have the 

same color values in range [0..127] or [0..1] in Pixel 

Bender's notation. Pixel Bender's code illustrates the 

algorithm well, but is not applicable for real-time 

rendering, due to lack of performance. For practical 

use, we also have translated the code to Adobe 

Graphics Assembly Language. We used almost the 

same approach to rendering of 3d meshes as in 

previous work of our colleagues (Gaisin, Nikiforova, 

Kashapov & Kashapov, 2014). But in this case we 

should render the scene twice: 

 Render the whole scene (mesh textures, 

lights, etc.) to the BitmapData. BitmapData is a 

standard class of the Action Script 3.0 programming 

language. It stores color data of pixels inside 

rectangular area. 

 Render the packed 32-bit depth texture of 

the scene (no textures for meshes, no lights) to the 

BitmapData. 

 Render the screen's rectangle, sample 

previously stored BitmapData objects of the scene 

and depth map and perform the final post processing: 

a function creates two triangles in GPU’s memory to 

render screen’s rectangle, then draws its triangles 

with our post processing shader. This shader takes 

screen texture and depth texture (fs0, fs1) as input 

sources.  

The AGAL version of the shader is supplemented by 

new parameter “range”. For most cases the range 

value 0.8 * camera.far produces the best result 

(where camera.far is a far clipping plane of a 

camera’s frustum). One can change this parameter to 

make near-laying objects neater.   

4.  RESULTS 

First, we have checked the output of our shader 

written in Pixel Bender. We use grayscale depth map 

representing the geometry of a hollow cube (figure 

3). On the left side is the depth map that is used as 

the input texture of a shader. Central part of the Fig. 

3 corresponds to the effect of ambient occlusion. The 

most occluded parts of the cube are darker. This 

image is produced with the following parameters: 

contrast=64 (of 100), r=7 (of 10), bleach=0.05 (of 

1.0), brightness=0.1 (of 2.0). Right side of the Fig. 3 

shows the result of the same shader’s work, but with 

modified parameters: contrast=26, r=1, bleach=1, 

brightness=0. Now it works like the edge detection 

filter. Here are some notes about the meaning of 

these parameters: 

 In physical world the contrast is the 

difference in color that makes an object 

distinguishable. In our case, we adjust the resulting 

color by the following formula:   

 𝑐𝑜𝑙𝑜𝑟 = 𝑐𝑜𝑙𝑜𝑟𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 . 

 “r” is the distance (in pixels) between 

currently processed pixel and its neighbors, where 

we sample the depth. Reasonable range of “r” is 

[1..10]. Low values of “r” produce narrow lines. 

High values of “r” produce thick lines. 



 

 

 Bleach factor makes too dark areas lighter 

and is well described in previous section of this 

paper. 

 Brightness corresponds to uniform 

brightness of the resulting picture. In our case its 

inverted brightness, so zero value points to bright 

picture and high values points to dark picture. 

 

Figure 3. From left to right: initial 8-bit depth map; Pixel 

Bender shader output working as ambient occlusion 

effect; Pixel Bender shader output working as edge 

detection filter. The same codebase for all cases. 

Now, it is time to see the results of our shader written 

in AGAL. Let us start with the edge detection (Fig. 

4). The AGAL (Scabia, 2011) version of our shader 

has the following parameters: contrast=30 (of 1000), 

range=2000 (of 10000) for left part of Fig. 4 and 

range=1000 (of 10000) for central part of Fig. 4, 

radius=1.0 (of 5), bleach=0.2 (of 1.0), 

brightness=0.5 (of 2.0). The “range” parameter 

controls the contrast of small differences of a depth 

of parts of three-dimensional model. If the parameter 

is within the distance from the camera to the object, 

then small details are better visible. To display only 

the outer contour of the object, it is sufficient to set 

this parameter times greater: the shader can display 

both the outline of a model and its inner edges. 

 

 

Figure 4. AGAL shader output for purposes of the edge 

detection. Left: show just the outline of the model, 

range=2000; Center: show the outline and other inner 

features of the model, range=1000; Right: result of the 

shader work – the scene texture is mixed with contours. 

The shader can produce the effect of ambient 

occlusion (Figure 5). Using the same code base and 

the same scene, we increase the “r” parameter to 

smooth inner features of the model. Then we slightly 

increase the “bleach” and the “brightness” 

parameters. Final parameters are the following: 

contrast=30 (of 1000), range=1000 (of 100000), 

radius=5 (of 5), bleach=0.3 (of 1.0), brightness=1.0 

(of 2.0). 

 

Figure 5. AGAL shader output for ambient occlusion. 

Render of an individual mesh. Left: scene texture; 

Center: scene texture and our filter with ambient 

occlusion shading; Right: raw output of our filter 

(without mixing with the scene texture). 

For architectural and industrial rendering it is often 

good to display not only the scene with ambient 

occlusion and lighting, but also to make accent on 

the edges. The shader can do these tasks 

simultaneously. Fig. 5 shows how both the effect of 

ambient occlusion and the edge detection filter look 

together. As in previous cases, we use the scene 

without any lighting (and no shadows), but final 

image looks realistic. This effect can be achieved 

with the same setting as for Fig. 5, but with low “r” 

(r=1.5) and low overall brightness. It is also one of 

possible applications of our algorithm: to emulate 

direct lighting. 

 

Figure 6. AGAL shader output for ambient occlusion and 

for edge detection. Rendering of interior of a room. Left: 

scene texture (no lights!); Center: scene texture and our 

filter (AO+edges); Right: raw output of our filter. 

 

5. CONCLUSIONS AND FUTURE WORK 

We have presented real-time post-processing shader 

that produces the effect of ambient occlusion and 

edge detection at the same time. The shader is 

written in two versions: in Pixel Bender 2.5 (for test 

purposes) and in AGAL (for real-time rendering). 

For screen resolution 1280x1024 we achieve 45-60 

frames per second for scenes of one million polygons 

on desktop system equipped with Intel HD graphics 

3000. For resolution 1024x720 we achieve 25-30 fps 

for the same 3d scene on reference mobile system 

with Mali-400MP2 on Android OS.  



 

 

 In comparison with modern techniques, the edge 

detection quality is more like the one obtained by 

reviewed screen-space algorithms of non-stylized 

line extraction based on Laplacian operator.  
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APPENDIX 

Appendix A - Implementation of fragment shader 

code (pseudocode) 

 

Input parameters: contrast = [0..100], r = [1..10], 

bleach = [0..1], brightness = [0..2] 

Input data: depth map stored in (src).  

Output data: color of a processed pixel (dst). 

 

// get UV coordinates of current pixel (oc) 

// get depth value (z0) of currently processed pixel 

of the depth map 

pixel4 pix0 = sampleNearest(src, oc) 

z0 = (pix0.r + pix0.g + pix0.b) / 3 

For each 4 neigbour pixels: 

// sample depth in neighbour pixel, sample color 

with specific offset (dx, dy) 

dx = [-r,r], dy = [-r,r] 

         

// get depth of a pixel 

tpix = sampleNearest(src, float2(oc.x + dx, oc.y + 

dy)) 

tz = (tpix.r + tpix.g + tpix.b) / 3 



 

 

// compute vector from a central pixel to neigbour 

pixel (z0tz) 

z0tz = float3(dx - oc.x, dy - oc.y, tz - z0); 

// compute angle between the screen normal and 

previous vector = (N * z0tz) 

tdp = dot(float3(0, 0, 1), z0tz) 

// make too dark zones bright and adjust overall 

brightness, excluding negative values  

tdp = tdp * (2 - (tdp / bleach)) 

tdp = 0.5 * max(tdp + brightness, 0) 

// accumulate color 

o = o + 1 / (1 + tdp2) 

end 

// normalize 4 passes 

o = o / 4 

         

// add contrast 

o = pow(o, contrast)        

// return output color 

dst = pixel4(o, o, o, 1.0) 

 

 

 


