

QUID 2017, pp. 345-351, Special Issue N°1- ISSN: 1692-343X, Medellín-Colombia

HYBRID SHADER FOR SIMULTANEOUS EDGE DETECTION AND AMBIENT SHADING

(Recibido el 18-05-2017. Aprobado el 11-08-2017)

Ilya Vladimirovich

Tsivilskiy

Kazan Federal University,

Republic Tatarstan, Russian

Federation

 Ruslan Rinadovich Gaisin

Kazan Federal University,

Republic Tatarstan, Russian

Federation

Vlada Vladimirovna

Kugurakova

Kazan Federal University,
Republic Tatarstan, Russian

Federation

vlada.kugurakova@gmail.com

Abstract. In this work we present a novel post-processing effect that can be applicable for both edge detection

visualization and for emulation of ambient shading. Unlike different classic shaders suitable for these tasks, our

effect has single shader code and does both the effects simultaneously: with a certain settings, the same codebase

works as the edge detector or an ambient occlusion effect or as both of them at the same time, that is why the

shader is useful for rendering of industrial design, architectural works and engineering. The algorithm uses only

depth texture without screenspace normal texture and without additional noise texture that is a key component of

a rendering pipeline of most of known screenspace ambient occlusion algorithms. The shader consist of 2 stages:

standard render pass (that produces scene texture with no lights and shadows) + contours extraction and (or)

ambient occlusion pass. Presented algorithm is relatively simpler in number of operations, being more amenable

for mobile platforms.

Keywords: line extraction, ambient occlusion, shading, silhouette, post-processing

Citar, estilo APA: Tsivilskiy, I., Gaisin, R. & Kugurakova, V. (2017). Hybrid shader for simultaneous edge detection and ambient shading, Revista QUID (28),

345-351.

1. INTRODUCTION

In most cases in 3D rendering we need to select some

objects to get user’s attention to it. The most obvious

way to do such a highlighting it is to draw a set of

lines around the “selected” object. These lines can

show many different things, including various

combinations of lighting, surface discontinuities and

contour of the object. There are lot of approaches and

methods to do non-photorealistic or photorealistic

rendering, but no one of them can do combined task

in one shader. Occluding contours critically depend

on the surface normal: they are zeros of the dot

product between the normal and the view direction.

Ridges and valleys are defined as local maxima of

curvature (Rusinkiewicz, 2004). “Brute-force” way

is slow: it requires simplifications of geometry and

spatial data structures to work in real time. Screen

space ambient occlusion (Langer & Buelthoff, 2000)

is also useful for producing both interior and exterior

silhouettes, however, primarily it was developed as

algorithm of shading (Fox, & Compton, 2008). Both

these post-processing effects (Miller, 1994) have a

deal with comparison of color of near-lying pixels.

Basing on this, in present work we made universal

screen post-processing shader that can work as edge-

detection filter and as an ambient-occlusion filter.

2. PREVIOUS RELATED WORK

There are several algorithms for extracting most

kinds of feature lines from 3D objects of the scene.

A very simple way to produce occluding contours is

to render the model with white direct lighting (but

without color and textures), and then perform color

thresholding (Burns, Klawe & Rusinkiewicz, 2005).

Any region darker than a threshold is set to black (or

the line color), and anything above the threshold is

set to the background color. To extract contours

within faces of a 3D mesh, one can use interpolated

values of n dot v (n is a face normal vector, v is view

direction) (McGuire & Hughes, 2004).

Unfortunately, this technique depends on

geometrical complexity of the 3D scene. Real-time

ambient occlusion techniques are often implemented

as screen-space ambient occlusion (SSAO) and

horizon-based ambient occlusion (HBAO)

(Shanmugam, & Arikan, 2007) (Bavoil, & Sainz,

2008). It uses data from the depth buffer (a color that

depends on depth) instead of rendering n dot v. The

main drawback is an overocclusion issue, which

looks as dark halo artifacts in zones with large

differences of depth buffer.

None of known edge detection techniques can

produce ambient occlusion effect using single shader

codebase at the same time. Moreover,

implementation of ambient occlusion effect runs

slow on middle-grade mobile GPUs due to

complexity of shader instructions. Our goal is to

produce shader that does contour extraction and

ambient occlusion simultaneously and is fast enough

to work on mobile devices.

3. IMPLEMENTATION

3.1 Basic idea

The key idea of the algorithm is to average dot

product of screen's normal vector and a tangent

vector of all visible surfaces. To compute screen

space tangents we use encoded depth texture. The

screen z coordinate of each generated pixel of a

scene is stored in a depth texture representing depth

buffer (z-buffer). The depth buffer will allow the

method to reproduce the real screen space

coordinates of each rendered point of the scene.

It can be done by commonly used Laplacian operator

(Ritschel, Grosch & Seidel, 2009). Unfortunately, it

cannot produce contours of individual object: it

works for the whole scene. To select the object of

interest (i.e. to draw its contours) we need to render

it separately:

 Initialize new screen texture. Let it be b/w.

 Clear the whole screen by black solid color.

 Render the object of interest filled by white

solid color.

 Apply the Laplacian operator to each pixel

of the screen texture. Use finite difference

approximation of Laplacian operator: L(x,y) =

c(x,y+1) + c(x,y-1) + c(x+1,y) + c(x-1, y) - 4*c(x,y).

Where c(x,y) is a color of a pixel of b/w screen

texture. Now one can see the outline of the object of

interest:

 Invert screen texture. Now object's edges

are black, and void space is white.

 Initialize new screen texture and render the

entire scene with textures, lighting, etc.

 Multiply b/w and scene texture. The object

of interest has black outline.

On the other hand, this algorithm is also applicable

for the whole scene after exclusion of the first three

steps.

3.2. Depth encoding

To encode z-values as RGB colors of the depth

texture, we use well-known approach described in

(Umbaugh, 2010). Fragment shader projects vertices

of a scene models to the normalized screen space by

means of perspective model-view-projection matrix.

We use Adobe Graphics Assembly Language

(AGAL) (Pharr & Fernando, 2005) to implement our

shader. In AGAL syntax, it looks the following way:

m44 op, vt0, vc0 // project vertex coords (vt0) by

MVP matrix (vc0)

m44 vt1, vt0, vc4 // project vertex (vt0) according to

scene transform matrix (vc4)

sub v0, vt1, vc5 // compute a vector (v0) from vertex

to camera position (vc5)

The "scene transform" matrix (vc4) transforms from

model to world space. To represent the 32-bit depth

buffer, we need to multiply interpolated squared

distance between camera and vertex to powers of

two. Let the distance from camera to the far plane of

the view frustum is “f”. As the value of expression

√𝑓2 + 𝑓2 is largest possible distance for any view

frustum, we need to divide by it to normalize

obtained distances. Finally, the AGAL pixel code

looks like:

dp3 ft0.z, v0.xyz, v0.xyz // get a squared distance

(ft0) by computing squared length of v0

mul oc, fc0, ft0.z // pack the depth (ft0) by

multiplying to powers of two (fc0)

In this code the register fc0 has the following values:

𝑓𝑐0. 𝑥𝑦𝑧𝑤 = (
1

2𝑓2 ,
28

2𝑓2 ,
216

2𝑓2 ,
224

2𝑓2)

 (1)

Here we took into account that the maximum depth

value can be approximated this way for the

simplicity of computations (no need to calculate

square root):

max 𝑑𝑒𝑝𝑡ℎ =
1

√𝑓2+𝑓2
≈

1

2𝑓2

 (2)

3.3. Neighbor pixels processing

Once the screenspace depth map is done, we can

compute tangent vectors. To make this we simply

sample depth values in adjacent pixels of the pixel in

processing. Texture coordinate (UV) offsets for

adjacent pixels are also known, that is why the

resulting tangent vector is described by expression:

𝑡 = (𝑑𝑥 − 0. 𝑥, 𝑑𝑦 − 0. 𝑦, 𝑧 − 0. 𝑧)
 (3)

Here “0” is a position vector of the processed pixel;

“dx” and “dy” are horizontal and vertical distances

between processed pixel and its neighbor pixel. Both

the “dx” and “dy” are specified in texture

coordinates and corresponds to standard “u” and “v”

components in range [0..1] for the whole screen. In

our case, we use normalized “dx” and “dy”

according to width and height of the screen texture:

𝑑𝑥 =
𝑑𝑢∗𝑟

𝑤𝑖𝑑𝑡ℎ
; 𝑑𝑦 =

𝑑𝑣∗𝑟

ℎ𝑒𝑖𝑔ℎ𝑡
;

 (4)

Here “r” is a sampling step in pixels, because we can

sample not only nearest neighbors, but skip them and

make a leap sampling. In figure 1 the processed pixel

is point “0” and its left and right neighbor pixels are

“L” and “R” respectively. Surface tangent vectors

are respectively: “0L” and “0R”.

Figure 1. Idea of the shader. Left: side view of a depth

map. Right: we use the same notation for top view of a

depth map. “0” is a currently processing pixel. Then we

compute tangent vectors from its neighbor pixels of a

depth texture.

When the four tangents for the currently processed

pixel of the screen had calculated, we compute a dot

product of them and of the normal vector of the

screen: “N” = (0, 0, 1). According to the figure 1: the

lower the neighbor pixel is – the higher is the dot

product. Differences between high and low depths

finally will look like different intensity of a resulting

color: the most covered from the incident light places

of the 3d scene will be shady, especially if the

sampling step is greater than one pixel (r > 1).

Figure 2. Left: Output color depending on the angle

between surface tangents and screen normal. Angle is

specified in terms of dot product [and is in range [0..1].

Different rainbow colors correspond to the bleach factor.

Right: Result of the shader's work. Each number at the

right bottom corners of each frame points to the bleach

factor.

3.4. Fixing too dark or too bright zones

In case of using this algorithm as the edge detection

filter, it will look okay, but for effect of ambient

occlusion it produces improper results. To overcome

this unnecessary dark halo we add so-called bleach

factor that will make too dark color values lighter.

Then output color looks the following way:

𝑜𝑐 = 𝑑𝑝 ∗ (2 −
𝑑𝑝

𝐿
)

 (5)

Here “dp” is a dot product of tangent and screen

normal; “L” is the bleach factor which is in range

[0..1]. For low values of “L”, initially too dark zones

will be lighter, and for high values of “L” dark zones

stay dark. Then we simply accumulate these four

samples of corrected depth and divide by total count

of samples (=4) to set the output color in correct

range (see “Appendix A” of this paper). Pixel

Bender do not support loops, that's why all the four

depths of neighbor points were sampled step-by-step

by repeating key parts of a code. Note that in the

"Appendix A" we use depth map as an input image.

For clarity, this depth map is encoded as grayscale

texture, and its red, green and blue channels have the

same color values in range [0..127] or [0..1] in Pixel

Bender's notation. Pixel Bender's code illustrates the

algorithm well, but is not applicable for real-time

rendering, due to lack of performance. For practical

use, we also have translated the code to Adobe

Graphics Assembly Language. We used almost the

same approach to rendering of 3d meshes as in

previous work of our colleagues (Gaisin, Nikiforova,

Kashapov & Kashapov, 2014). But in this case we

should render the scene twice:

 Render the whole scene (mesh textures,

lights, etc.) to the BitmapData. BitmapData is a

standard class of the Action Script 3.0 programming

language. It stores color data of pixels inside

rectangular area.

 Render the packed 32-bit depth texture of

the scene (no textures for meshes, no lights) to the

BitmapData.

 Render the screen's rectangle, sample

previously stored BitmapData objects of the scene

and depth map and perform the final post processing:

a function creates two triangles in GPU’s memory to

render screen’s rectangle, then draws its triangles

with our post processing shader. This shader takes

screen texture and depth texture (fs0, fs1) as input

sources.

The AGAL version of the shader is supplemented by

new parameter “range”. For most cases the range

value 0.8 * camera.far produces the best result

(where camera.far is a far clipping plane of a

camera’s frustum). One can change this parameter to

make near-laying objects neater.

4. RESULTS

First, we have checked the output of our shader

written in Pixel Bender. We use grayscale depth map

representing the geometry of a hollow cube (figure

3). On the left side is the depth map that is used as

the input texture of a shader. Central part of the Fig.

3 corresponds to the effect of ambient occlusion. The

most occluded parts of the cube are darker. This

image is produced with the following parameters:

contrast=64 (of 100), r=7 (of 10), bleach=0.05 (of

1.0), brightness=0.1 (of 2.0). Right side of the Fig. 3

shows the result of the same shader’s work, but with

modified parameters: contrast=26, r=1, bleach=1,

brightness=0. Now it works like the edge detection

filter. Here are some notes about the meaning of

these parameters:

 In physical world the contrast is the

difference in color that makes an object

distinguishable. In our case, we adjust the resulting

color by the following formula:

 𝑐𝑜𝑙𝑜𝑟 = 𝑐𝑜𝑙𝑜𝑟𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 .

 “r” is the distance (in pixels) between

currently processed pixel and its neighbors, where

we sample the depth. Reasonable range of “r” is

[1..10]. Low values of “r” produce narrow lines.

High values of “r” produce thick lines.

 Bleach factor makes too dark areas lighter

and is well described in previous section of this

paper.

 Brightness corresponds to uniform

brightness of the resulting picture. In our case its

inverted brightness, so zero value points to bright

picture and high values points to dark picture.

Figure 3. From left to right: initial 8-bit depth map; Pixel

Bender shader output working as ambient occlusion

effect; Pixel Bender shader output working as edge

detection filter. The same codebase for all cases.

Now, it is time to see the results of our shader written

in AGAL. Let us start with the edge detection (Fig.

4). The AGAL (Scabia, 2011) version of our shader

has the following parameters: contrast=30 (of 1000),

range=2000 (of 10000) for left part of Fig. 4 and

range=1000 (of 10000) for central part of Fig. 4,

radius=1.0 (of 5), bleach=0.2 (of 1.0),

brightness=0.5 (of 2.0). The “range” parameter

controls the contrast of small differences of a depth

of parts of three-dimensional model. If the parameter

is within the distance from the camera to the object,

then small details are better visible. To display only

the outer contour of the object, it is sufficient to set

this parameter times greater: the shader can display

both the outline of a model and its inner edges.

Figure 4. AGAL shader output for purposes of the edge

detection. Left: show just the outline of the model,

range=2000; Center: show the outline and other inner

features of the model, range=1000; Right: result of the

shader work – the scene texture is mixed with contours.

The shader can produce the effect of ambient

occlusion (Figure 5). Using the same code base and

the same scene, we increase the “r” parameter to

smooth inner features of the model. Then we slightly

increase the “bleach” and the “brightness”

parameters. Final parameters are the following:

contrast=30 (of 1000), range=1000 (of 100000),

radius=5 (of 5), bleach=0.3 (of 1.0), brightness=1.0

(of 2.0).

Figure 5. AGAL shader output for ambient occlusion.

Render of an individual mesh. Left: scene texture;

Center: scene texture and our filter with ambient

occlusion shading; Right: raw output of our filter

(without mixing with the scene texture).

For architectural and industrial rendering it is often

good to display not only the scene with ambient

occlusion and lighting, but also to make accent on

the edges. The shader can do these tasks

simultaneously. Fig. 5 shows how both the effect of

ambient occlusion and the edge detection filter look

together. As in previous cases, we use the scene

without any lighting (and no shadows), but final

image looks realistic. This effect can be achieved

with the same setting as for Fig. 5, but with low “r”

(r=1.5) and low overall brightness. It is also one of

possible applications of our algorithm: to emulate

direct lighting.

Figure 6. AGAL shader output for ambient occlusion and

for edge detection. Rendering of interior of a room. Left:

scene texture (no lights!); Center: scene texture and our

filter (AO+edges); Right: raw output of our filter.

5. CONCLUSIONS AND FUTURE WORK

We have presented real-time post-processing shader

that produces the effect of ambient occlusion and

edge detection at the same time. The shader is

written in two versions: in Pixel Bender 2.5 (for test

purposes) and in AGAL (for real-time rendering).

For screen resolution 1280x1024 we achieve 45-60

frames per second for scenes of one million polygons

on desktop system equipped with Intel HD graphics

3000. For resolution 1024x720 we achieve 25-30 fps

for the same 3d scene on reference mobile system

with Mali-400MP2 on Android OS.

 In comparison with modern techniques, the edge

detection quality is more like the one obtained by

reviewed screen-space algorithms of non-stylized

line extraction based on Laplacian operator.

ACKNOWLEDGMENTS

This work was funded by the subsidy of the Russian

Government to support the Program of competitive

growth of Kazan Federal University among world

class academic centers and universities.

REFERENCES

Bavoil, L. & Sainz, M. (2008). Image-Space

Horizon-Based Ambient Occlusion.

SIGGRAPH.

Burns, M., Klawe. J. & Rusinkiewicz S., Finkelstein,

A., DeCarlo, D. (2005). Line Drawings from

Volume Data. SIGGRAPH 2005.

Fox, M. & Compton, S. (2008). Ambient Occlusive

Crease Shading. Game Developer Magazine.

 Gaisin, R., Nikiforova, A., Kashapov, N. &

Kashapov, R. (2014). Development of the method

of creation of the 3d model of topology of the

surface by means of the optical microscope. IOP

Conf. Ser. Mater. Sci. 69.

Langer, M. & Buelthoff H. (2000). Depth

discrimination from shading under diffuse

lighting. Perception, 29(6),649–660.

McGuire, M., & Hughes, J. F. (2004). Hardware-

determined Feature Edges. In Proceedings of the

3rd International Symposium on Non-

photorealistic Animation and Rendering (pp. 35–

47). New York, NY, USA: ACM.

Miller, G. (1994). Efficient algorithms for local and

global accessibility shading. Proceedings of the

21st annual conference on Computer graphics

and interactive technique, pp. 319–326.

Pharr, M. & Fernando, R. (2005). GPU Gems 2:

Programming Techniques for High-Performance

Graphics and General-Purpose Computation.

NY: Addison-Wesley Professional; 2005

Ritschel, T., Grosch, T. & Seidel, H.P. (2009).

Approximating Dynamic Global Illumination in

Screen Space. Proceedings ACM SIGRAPH

Symposium on Interactive 3D Graphics and

Games, Boston.

Rusinkiewicz, S. (2004). Estimating curvatures and

their derivatives on triangle meshes.

Proceedings - 2nd International Symposium on

3D Data Processing, Visualization, and

Transmission. 3DPVT 2004.

Scabia, M. (2011). Vertex and Fragment Shaders.

Retrieved from:

http://www.adobe.com/devnet/flashplayer/articl

es/vertex-fragment-shaders.html

Shanmugam, P. & Arikan, O. (2007). Hardware

accelerated ambient occlusion techniques on

GPUs. Proceedings of the 2007 symposium on

Interactive 3D graphics and games.

Umbaugh, S. (2010). Digital image processing and

analysis: human and computer vision

applications with CVIP tools. 2nd ed. Boca

Raton. FL: CRC Press.

APPENDIX

Appendix A - Implementation of fragment shader

code (pseudocode)

Input parameters: contrast = [0..100], r = [1..10],

bleach = [0..1], brightness = [0..2]

Input data: depth map stored in (src).

Output data: color of a processed pixel (dst).

// get UV coordinates of current pixel (oc)

// get depth value (z0) of currently processed pixel

of the depth map

pixel4 pix0 = sampleNearest(src, oc)

z0 = (pix0.r + pix0.g + pix0.b) / 3

For each 4 neigbour pixels:

// sample depth in neighbour pixel, sample color

with specific offset (dx, dy)

dx = [-r,r], dy = [-r,r]

// get depth of a pixel

tpix = sampleNearest(src, float2(oc.x + dx, oc.y +

dy))

tz = (tpix.r + tpix.g + tpix.b) / 3

// compute vector from a central pixel to neigbour

pixel (z0tz)

z0tz = float3(dx - oc.x, dy - oc.y, tz - z0);

// compute angle between the screen normal and

previous vector = (N * z0tz)

tdp = dot(float3(0, 0, 1), z0tz)

// make too dark zones bright and adjust overall

brightness, excluding negative values

tdp = tdp * (2 - (tdp / bleach))

tdp = 0.5 * max(tdp + brightness, 0)

// accumulate color

o = o + 1 / (1 + tdp2)

end

// normalize 4 passes

o = o / 4

// add contrast

o = pow(o, contrast)

// return output color

dst = pixel4(o, o, o, 1.0)

