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Abstract

This paper analyzes the evolution of CO2 emissions per capita in a sample of

141 countries during the period 1970-2014. The study extends the neoclassical

Green Solow Model to take into account technological externalities in the analysis

of CO2 emissions per capita growth rates. Spatial externalities are used to model

technological interdependence, which ultimately implies that the CO2 emissions

rate of a particular country is affected not only by its own degree of emissions but

also by the pollution generated by the remaining countries. In order to investigate

the empirical validity of this result, convergence in CO2 emissions is examined

by means of dynamic spatial panel econometric techniques. Estimates show the

existence of a negative and statistically significant relationship between initial levels

of CO2 emissions and subsequent growth rates. This finding is partly due to the role

played by spatial spillovers induced by neighboring economies. The observed link

is robust to the inclusion in the analysis of different explanatory variables that may

affect CO2 emissions growth rates. In a second step, combining recently developed

spatial-non parametric techniques with spatial bayesian model selection techniques

we identify three distinct clubs in the distribution of CO2 emissions per capita. The

estimation of the corresponding three-endogenous regime dynamic spatial model

with parameter heterogeneity reveals that in the context of CO2 emissions per

capita, the hypothesis of the spatial convergence clubs is more consistent with the

data than that of conditional convergence.
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1 Introduction

The relationship between economic growth and the environment has always been

controversial. On one side, optimistic researchers tend to highlight the progress made

in urban sanitation, improved living standards and resource use efficiency resulting

from technological change while others consider that economic growth leads to the

emergence of pollution problems which may have a destabilizing effect on the climate.

As a matter of fact, the limited natural resource base of the planet, viewed as the key

source of limits to growth, has promoted a long and heated debate among economists

and environmentalists (?; ?; ?). However, to a certain extent, there is now less concern

over the exhaustion of resources such as oil or uranium and far more concern on the

nature’s limited ability to act as a sink for human wastes.

Indeed, in recent years, the collective awareness about air pollution caused by

CO2 emissions, global warming and climate change have increased considerably. 1 As

explained by ?, if environment’s ability to reduce and dissipate wastes is exceeded,

environmental quality may fall and policy responses to this reduction consisting in

more intensive clean up or abatement efforts could lower the return to investment.

Others, focusing on the role of irreversible damage, have claimed that growth may

be limited when the ecosystem deteriorates and settles on a newer lower and less

productive steady state (?; Dechert, 2001).

This has been reflected in the literature analyzing the relationship between per

capita income and pollution. This strand of analysis has focused in the so-called envi-

ronmental Kuznets curve (EKC), which points to the existence of an inverted U-shaped

pollution-income relation-ship (?). That is, in underdeveloped economies, pollutant

emissions per capita tend to grow but once a threshold of income is reached they de-

crease leading to an improved environmental quality (?; ?). A closely related strand

of economic analysis linking growth and environment, which builds upon macroeco-

nomic growth models, is that of environmental convergence (?; ?). Importantly, this

modeling approach, exploiting the typical convergence properties of the neoclassical

model together with a natural regeneration function yield both (i) an EKC and (ii) a

prediction of absolute/conditional environmental convergence.

Empirical studies are crucial in this regard, given that they provide a deeper

1Concerns on the effects of CO2 emissions and other greenhouse gases have led the United Nations
held numerous conferences and summits aimed at signing international treaties to control emissions,
most notably Kyoto-1997 and Paris-2015. The reason is that the emission of carbon dioxide (CO2) into
the atmosphere as a result of human economic activities (IPCC, 2007, 2013) has been proved to have
effects on climate.
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understanding of the phenomenon of CO2 emissions by confronting the plausibility

of the theory and the explanatory power of the variables involved in it. The results

emerging from the studies of the EKC for CO2 are mixed as there are studies finding

an inverted U shape (Carson et al., 1997; Carson and Lundstrom, 2001) and studies

finding a monotonic relationship (Cole et al., 1997; Heil and Selden, 2001). Thus,

the issue of whether or not an EKC for CO2 exists is far from settled given that the

results tend to be sensitive to (i) the sample units and the period considered and to

(ii) the econometric methodology employed (see ? or ? for a more detailed review).

On the other hand, the observation of convergence/divergence in the evolution of CO2

emissions across countries is not conclusive as empirical studies employing parametric

and non parametric approaches virtually fit all possibilities. Using non-parametric

econometric analysis Ezcurra (2007) finds a slow process of convergence while Aldy

(2006) find global divergence. Similarly, while Nguyen Van (2005) using a panel data

model finds no evidence of convergence Brook and Taylor (2010) using a cross section

find evidence supporting conditional convergence.

As ? points out, most of the EKC research focuses on time-series issues such

as stationarity, co-integration, etc. Nevertheless, an important point that has been

over-looked by most of the EKC literature is the fact that CO2 emissions are not only

correlated in time but also in space. Likewise, both parametric and non-parametric

empirical analysis focusing on the issue of convergence did not take into account the

existence of spatial dependence. The omission of relevant spatial interaction terms in

econometric analysis is of major importance as it could lead to bias/inconsistent and

inefficient estimates ?. From the theoretical point of view, spatial interactions in CO2

emissions among economies may arise as a consequence of countries strategic response

to transboundary pollution flows as governments might strategically manipulate envi-

ronmental standards in an attempt to attract capital, or for trade purposes. This, in

turn, might result in countries mimicking each others’ environmental policies which

ultimately may lead to similar environmental quality along the spatial dimension.

Another argument to consider spatial interactions in the analysis of CO2 emissions,

which has been high-lightened by spatial growth models is that traditional growth

models omitting technological interdependence might be seriously miss-specified (?;

?; ?; ?).

Importantly, these observations regarding the relevance of space in the distribution

of CO2 emissions can be corroborated when looking at Figures (1) and (2). Figure

(1) provides a first insight on the role of space in the distribution of average CO2

emissions around the globe during 1990-2010. Direct observation of Figure (1) clearly

suggests there is a geographical component behind the evolution of the distribution of
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CO2 emissions. As a further check on the role played by spatial location of the vari-

ous countries in explaining CO2 emissions, Figure (2) displays the estimated spatially

conditioned stochastic kernel of relative CO2 emissions per capita following ?.2 The

results of the stochastic kernel in Figure (2) reveal that the probability mass tends

to be located parallel to the axis corresponding to the original distribution. Accord-

ingly, spatial effects are a relevant factor explaining the observed variability in CO2

emissions.

Figure 1: Spatial Distribution of CO2 Emissions per capita

To extend our understanding of the patterns of CO2 emissions the paper makes

several novel contributions to the literature.

First, following recent developments in spatial economics we expand the Green-

Solow model in order to account for spatial interactions. To that end, a spatially

augmented Green-Solow model with technological interdependence among economies

is developed. Spatial externalities are used to model technological interdependence,

which ultimately implies that the economic growth rate and the CO2 emissions of a

particular country is affected not only by its own factors but also by those of neigh-

bouring economies. Using numerical techniques we analyze the effects of different

structural parameter changes.

2The estimation of the stochastic kernel relies in Gaussian kernel smoothing functions developed by
? and it is performed by employing the L-stage Direct Plug-In estimator with an adaptative bandwith
that scales pilot estimates of the joint distribution by α = 0.5, as suggested by ?.

3



Figure 2: Conditional Stochastic Kernel of CO2 Emissions per capita

Second, starting from the theoretical model, a Dynamic Spatial Durbin Model

specification for CO2 emissions is derived and employed in the econometric exercise

using annual data for the period 1990-2010 for a sample of 123 countries. This gen-

eral spatial panel specification including country-fixed and time-period fixed effects

is estimated by means of the Bias-Corrected-Maximum-Likelihood (BCQML) devel-

oped of ? for dynamic spatial panels allowing us to test the different convergence

hypothesis for CO2 emissions. In this regard, a variety of econometric tests regarding

spatial co-integration, parameter identification and model selection which are relevant

to perform inference in the context of dynamic spatial panels are carried out. The

model selection in this context is particularly important as different models ultimately

imply different spillover processes ?. Therefore, instead of assuming a specific spa-

tial specification the present study carries out a Bayesian comparison procedure to

dynamic spatial panel models which helps to analyze jointly the probability of the

different spatial models and the spatial interaction matrices.

Finally, we augment the base-line convergence spatial panel data model by includ-

ing linear and quadratic GDP per capita terms in order to test the prediction of the

EKC in CO2 emissions which represents, as such, a novel application in the field of

environmental economics.
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The paper is organized as follows. After this introduction, Section 2 presents a

theoretical growth model to investigate the effect of spatial interactions on the path

of CO2 emissions and derives the empirical specification. Section 3 describes the data

and the econometric approach used in the analysis. The empirical findings of the

paper are discussed in Section 4. The final section offers the main conclusions from

this work and the policy implications of the research.

2 The Spatial Green Solow Model

This section develops a spatially augmented Green-Solow model which builds upon

previous work of?. In this model economy, technological progress in the production

of goods and technological progress in abatement are exogenous. The key distinct

feature of the model with respect ? is that includes technological externalities in the

production of goods, which implies interdependence among the n countries denoted

by i = 1, . . . , n. These economies have the same production possibilities but they

differ because of different savings rates, population growth rates, depreciation rates

and spatial locations.

2.1 The Model

Consider the labor-augmenting Cobb-Douglas production function:

Qit = Kα
it (BitLit)

1−α , 0 < α < 1 (1)

where Q is the level of output, K is the level of capital, L is the level of labor, B is the

level of technology and the subscript i and t denote the value of the above variables for

country i at period t. We further assume exogenous population growth and exogenous

technological progress in abatement such that:

Lit = Li0e
pt → L̇it

Lit
= p (2)

Ωit = Ωi0e
−gat → Ω̇it

Ωit
= −ga (3)
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where p is the population growth and ga > 0 is the technological progress in abatement.

We introduce spatial correlation across economies by means of technological spillovers

following ?. Hence, technological advances in one country are allowed to have spillover

effects on other economies. We specify the level of technology in the production of

goods as:

Bit = Bi0e
gbt

N∏
j 6=i

B
λwij
jt (4)

The technology level in economy i at period t, Bit, is determined not only by its own

initial level Bi0 but also by its neighbors Bjt which may spill over to economy i. The

magnitude of the spillover effect is measured by λ and wij specifies the connectivity

structures on whether and how much the technology is transmitted from j to i. We

assume Wn =
wij∑N
j 6=i wij

so that all weights are between 0 and 1. Additionally we assume

zero diagonal elements to exclude self-influence. Rewriting previous expression in log

form and stacking over i we get:

lnBt = lnB0 + gbtιn + λWn lnBt = [In − λWn]−1 lnB0 +
gbt

1− λ
ιn (5)

where ιn is anN×1 vector of ones and because ofWn is row-normalized [In − λWn]−1 ιn =
1

1−λ . Therefore, the growth rate of technology in country i is given by Ḃit
Bit

= gb
1−λ which

is greater than gb due to the spillover effect if 0 < λ < 1. Capital accumulates via

investments and depreciates at rate δ such that:

K̇it = Iit − δKit = siQit − δKit (6)

To model the effect of pollution we assume that every unit of economic output Qit

generates Ωit units of pollution at every point in time if this pollution is unabated.

However, the amount of pollution released to the atmosphere will differ from the

amount produced if there is abatement. In this framework, each economy devotes a

constant (and exogenous) fraction of output to abate pollution, 0 ≤ θ ≤ 1, where θ =

QA/Q. After abatement, a unit of output produces a (θ) Ωit units of pollution in period

t. We further assume the abatement function a (θ) satisfies the following properties:

(i) a (0) = 1, (ii) a
′
(θ) < 0 and (iii) a

′′
(θ) > 0 which implies that abatement has

a positive but diminishing marginal impact on pollution reduction. To combine our
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assumptions on pollution and abatement we follow ? and specify output available for

consumption or investment as Yit = (1− θ)Qit. Therefore, pollution is defined as:3

Eit = QitΩita (θ) (7)

Equation (??) requires a brief comment. First, note that aggregate pollution

emissions are determined by the scale of economic activity Qit and by the techniques

of production Ωita (θ). The second point to high-light is that it is the production

of output (and not the use of inputs) what determines pollution. Given that there

is only one good, “composition effects”, understood such as those that occur when

the economy specializes in relatively less pollution intensive services or relatively less

natural intensive industries, are zero.

Therefore, the main departures from the standard Solow model are: (i) the fact

that pollution is co-produced with every unit of output, (ii) the assumption of some

fraction of output devoted to abatement and (iii) the existence of technological inter-

dependence in the production of goods. However, none of these assumptions funda-

mentally alters the dynamics of the standard Solow model. Note that, indeed, in the

present framework, pollution does not feedback into the growth rate of output and that

abatement affects the level of output but not its long run growth rate. The model can

be solved like the standard Solow model by transforming our measures of disposable

output, capital and pollution into effective units ( yit = Yit/BitLit, kit = Kit/BitLit,

eit = Eit/BitLit):

yit = (1− θ) f (kit) (8)

k̇it = si (1− θ) f (kit)−
(
δ + p+

gb
1− λ

)
kit (9)

eit = a (θ) Ωitf (kit) (10)

As in the Solow model, starting for any ki0 > 0, the economy converges to a

unique steady state capital per effective worker level k∗i and a steady state income per

3Alternatively, we can write emissions at any time t as: Eit = Bi0Li0Ωi0a (θ) e [gEt] k
α where Bi0,

Li0, and Ωi0 are the initial conditions.
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effective worker level y∗i which are given by Equations (?? ) and (?? ) below:

k∗i =

[
si (1− θ)
gb

1−λ + p+ δ

] 1
1−α

(11)

y∗i =

[
si (1− θ)
gb

1−λ + p+ δ

] α
1−α

(12)

Note that k∗i and y∗i will be the same for all economies if θ, λ, s, p and δ are assumed

to be the same for all i. Importantly, when λ = 0 so that there are no spillover effects,

the steady state level of capital and income will be the same as ?. With a positive λ so

that 0 < λ < 1, the spillover effect will increase the overall growth rate of technology

and hence will decrease the steady state value of k∗i because the effective labor BitLit

increases. On the balanced growth path, aggregate GDP, consumption and capital all

grow at rate gY = gK = gC = gb
1−λ+p while their corresponding per capita magnitudes

grow at rate gy = gk = gc = gb
1−λ > 0. Finally, since kit approaches the constant k∗i we

can infer from Equation (??) the aggregate level of pollution emissions grows at rate:

gE =
gb

1− λ
+ p− gA (13)

which may be positive, negative or zero. Note that in the case where gb > 0 and

gA > gb
1−λ + n, the economy will display a sustainable growth path. Equation (??)

clearly shows how technological progress in goods production has a very different

environmental impact than does technological progress in abatement. Technological

progress in goods production creates a “scale effect” that raises emissions which is

captured in the first two terms in Equation (??) since aggregate output grows at

rate gb
1−λ + p along the balanced growth path. Thus, technological progress in goods

production is necessary to generate per capita income growth. On the other hand,

technological progress in abatement creates a “pure technique effect” driving emissions

downwards. Therefore, technological progress in abatement must exceed growth in

aggregate output in order for pollution to fall and improve environmental quality.

Off the balanced growth path, the growth rate of economy and emissions depends

on the level of capital stock. In particular we have that:

k̇it
kit

= si (1− θ) kα−1
it −

(
δ + p+

gb
1− λ

)
(14)
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Ėit
Eit

= ge + α
k̇it
kit

=

(
gb

1− λ
+ p+ α

k̇it
kit

)
− ga (15)

Equation (??) implies that if the economy starts with a capital stock smaller than

the steady state level of capital given k∗i in Equation (??) such that 0 < k0,i <

k∗i , the economy will accumulate capital k̇it
kit

> 0 until it reaches the steady state

(limt→∞ kit = k∗i ) where it stops the accumulation
(

limt→∞
k̇it
kit

= 0
)

. If we assume

there exists a sustainable balanced growth path, such that in the long run gE,i < 0,

then, with low enough initial level of capital, there exists a point in time t∗ such that

for t < t∗ gE > 0 (i.e, total emissions rise because abatement is not enough to outweigh

extra pollution caused by faster growth of GDP), for t = t∗ gE = 0 (i.e, emissions

are exactly offset by the rate at which they are abated) and for for t > t∗, gE < 0

(i.e, improvements in emission intensity Ω outweigh additional production created by

production), which ultimately implies an Environmental Kuznets Curve profile, with

peak at time t∗. 4 The capital stock at this turning point (T) is given by k(iT ):

k(iT ) =

[
si (1− θ)

p+ gb
1−λ + δ − gE

α

] 1
1−α

(16)

T is defined by:

T : k(iT ) =
[
(k∗i )

1−α
(

1− e−φt
)

+ (ki,0)1−α e−φt
]

(17)

and re-arranging we find that:

T =
1

φ
ln

[
(k∗i )

1−α − (ki0)1−α

(k∗i )
1−α − (ki)

T (1−α)

]
(18)

Thus, the calendar time to reach the peak of emissions declines with the speed of

convergence of each economy: φ = (1− α)
(
p+ gb

1−λ − δ
)

. In order to investigate the

effect of introducing spatial interactions in the Green-Solow model we now conduct

a steady state analysis (see Figure (??)). In the numerical example the simulations

are carried using initial conditions Bi0 = 1, Li0 = 1, and Ωi0 = 1, population growth

p = 0.01, capital share α = 0.4, savings si = 0.25, capital depreciation δ = 0.025, a

4The emergence of a EKC follows primarily from the mechanics of convergence coupled with the
dynamics by a standard regeneration function.
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fraction of output for abatement θ = 0.05, technological growth in abatement ga =

0.05, technological growth rate in goods production gb = 0.01 and spatial interaction

parameter λ = 0.75. The introduction of a spatially correlated technology to produce

goods shifts the growth rate of technological progress from gb to gb
1−λ which generates

effects that are not clear cut and deserve some comments. First, spatial interactions

shifts the the T-line α (p+ gb + δ)−gE,i downward (equilibrium change from T to T’)

since α gb
1−λ −

gb
1−λ < 0, which means it increases the effective capital per worker in the

turning point k(iT ). This stems from the fact that (α− 1) gb is higher than (α− 1) gb
1−λ

in Equation (??). Similarly, by Equation (??), increased spatial interactions raise the

growth rate of emissions per capita at any kit via a “scale effect”. On the other

hand, both the growth rate of capital per worker falls and the steady state value of

capital per effective worker decreases (equilibrium change from B to B’). Although in

the numerical simulation presented increased technological interactions reduces T, the

effect on the calendar to achieve the peak of emissions is indeterminate as T could rise

or fall due to the fact that differencing T with respect to technology yields a complex

expression depending on a number of parameters. 5

In order to investigate how the other structural parameters of the model affect

the dynamics of pollutant emissions, Figure (??) displays a comparative steady state

analysis when changing (i) the initial conditions from Bi0 = 1, Li0 = 1, and Ωi0 = 1 to

Bi0 = 0.75, Li0 = 0.75, and Ωi0 = 0.75, (ii) the savings rate, from si = 0.25 to si = 0.4,

(iii) the intensity in abatement from θ = 0.05 to θ = 0.3 and (iv) the growth rate of

technological progress at abatement, from ga = 0.05 to ga = 0.1. As can be seen in

Panel (a) lower initial conditions in Bi0, Li0, Ωi0 and ki0 have a direct effect on Eit but

have no impact on the steady state magnitudes of k∗i nor on long run growth rates as

the T-line and the B-line are not affected. Panel (b) shows the effect of increasing the

savings rate si. This change accelerates the process of capital accumulation, increases

the steady state values of k∗i and the magnitudes k(iT ) needed for the turning point of

the EKC. However, the steady state growth rate of emissions and income per capita

remain unchanged (neither the B-line nor the T-line are shifted). Panel (c) shows

the effect of increasing abatement intensity θ due to a tighter environmental policy.

This type of policy slows down capital accumulation via smaller investment Iit which

decreases the magnitudes of k(iT ) needed for the turning point of the EKC and leaves

the steady state growth rate of emissions and income per capita unchanged (B-line

and T-line does not move). Although increasing θ has an impact on the pollution

path this type of policy does not affect ga which implies that in this setting, a tighter

5A similar result emerges from changes in population growth. On one hand, population growth
lowers the steady state capital per worker which lowers transitional growth for all k. On the other hand,
population raises emissions, the growth rate of emissions and the point at which emissions start to fall.
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Figure 3: Spatial vs Non Spatially Correlated Technology
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environmental policy cannot turn an unsustainable economy in a sustainable one.

This is because of in this model, emission reduction is obtained by a decrease in kit

and in yit, not because of increasingly effective abatement. Finally, Panel (d) plots

the effects of an increase in the technological progress at abatement. As it can be

observed, technological progress in abatement decreases the EKC turning point k(iT )

and the steady state growth rate of emissions while leaving the steady state levels of

capital and income per effective worker unaltered.

Figure 4: Spatial Green-Solow Model: Sensitivity Analysis

(a) Initial Conditions (b) Savings

(c) Abatement (d) Tech Growth Abatement
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2.2 Derivation of the Estimation Equation

We now proceed to derive an estimation equation of the growth rate of emissions

per capita. To that end, we first use the fact that the growth rate of income per

effective worker can be expressed as: d ln yit
dt = −φ [ln yit − ln y∗i ]. Solving this first-

order differential equation and substracting the income per worker at some initial

date ln yit−τ we obtain:

ln yit2 = e−φτ ln yit1 +
(

1− e−φτ
)

ln y∗i (19)

where τ = t2 − t1. Using ln yit = ln ycit + lnAit where ycit is the output per capita, we

get:

ln ycit2 = e−φτ ln ycit1 +
(

lnAit2 − e−φτ lnAit1

)
+
(

1− e−φτ
)

ln y∗i (20)

Stacking the i observations and substituting
(
lnAt2 − e−φτ lnAt1

)
by (In − λW )−1 (1− e−φτ) lnA0+

gb
1−λ (t2 − e−φt1) ιn in Equation (??) we get:

lnyct2 (In − λW ) = (In − λW )
(
e−φτ

)
lnyct1 +

(
1− e−φτ

)
lnA0 (21)

+g
(
t2 − e−φt1

)
ιn + (In − λW )

(
1− e−φτ

)
lny∗

Equation (?? can be simplified to:

lnyct = λW lnyct + γ lnyct−1 + ζW lnyct−1 + ci + εit (22)

where γ =
(
−e−φτ

)
, ζ = −λ

(
e−φτ

)
, ci =

(
1− e−φτ

) (
lnAi0 + α

1−α lnXi + λα
1−αW lnXi

)
+

g
(
t2 − e−φτ t1

)
with Xi =

[
si

p+gb+δ

]
and εit are added transitory error terms that are

assumed to be i.i.d. Finally, we transform Equation (??) into the emissions per capita

counterpart using ecit = Ωita
(
θ̃
)
yit where a

(
θ̃
)

= a (θ) / [1− θ].

ln ect = λ̃W ln ect + γ̃ ln ect−1 + ζ̃W ln ect−1 + tildeci + ε̃it (23)

Equation (??) takes the form of a Dynamic Spatial Lag Model (DSLM) with

coefficient heterogeneity for emissions and the initial levels of emissions. However,
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note that if elements in ci such as the savings rate or the population growth rate are

assumed to be time-varying which is more realistic, one can express Equation (??) as

a Dynamic Spatial Durbin Model (DSDM):

ln ect = λ̃W ln ect + γ̃ ln ect−1 + ζ̃W ln ect−1 + β̃ lnXt + ψ̃W lnXt + c̃i + εit (24)

where Xt = sit
nt+gb+δt

. Furthermore, note that in the previous development we have

assumed homogeneous parameters (α, p, g, λ, δ) implying the convergence speed is ho-

mogeneous. Relaxation of the restrictions of p = pi and δ = deltai for i = 1, . . . , n

while assuming that phi = phii for all i = 1, . . . , n produces the unconstrained law of

motion estimated by ? and by ? in the context of growth regressions such that:6

ln ect = λ̃W ln ect + γ̃ ln ect−1 + ζ̃W ln ect−1 + β̃ lnXt + ψ̃W lnXt + c̃i + εit (25)

Using this model it is possible to examine the convergence speed of CO2 emissions

per capita given that if γ̃ = a
(
−e−φτ

)
> 0 (< 0) we may have a positive convergence

(divergence) process.7 Importantly, estimation of different versions of the previous

equation allows us to test different competing convergence hypothesis:

(i) The absolute convergence hypothesis claims per capita emissions of countries

converge to one another in the long-run independently of their initial conditions.

(ii) The conditional convergence hypothesis suggests that per capita emissions of

countries that are identical in their structural characteristics (i.e, savings, technologies,

population growth rates, etc) converge to one another in the long-run independently

of their initial conditions.

(iii) The club convergence hypothesis suggests that per capita incomes of countries

that are identical in their structural characteristics converge to one another in the

long run provided that their initial conditions are similar as well.

6In this context note that Xt = (sit, nit + gb + δit)
7The transformation employed above should not have effects in our estimates of convergence as long

as a = Ωi0a
(
θ̃
)

= Ωi0
(1−θ)ε

1−θ ≈ 1 with Ωi0 = 1 and ε very small as in ?
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As explained by ? and ?, ? in addition to γ > 0 in Equation (??) the absolute

convergence hypothesis constrains c = ci, γ̃ = γ̃i ↔ φ = φi for all i and
(
ζ̃, β̃, ψ̃ = 0

)
.

The conditional convergence hypothesis, relaxes the latter constraint but requires

parameter homogeneity c = ci, γ = γi, ζ̃ = ζ̃i , β̃ = β̃i , ψ̃ = ψ̃i while the club

convergence hypothesis allows cross-country variation in ci, λi γi, ζ̃i, β̃i and ψ̃i.
8

3 Econometric Approach

The empirical counterpart to the implicit model in Equation (??) including country

fixed is given by:

Yt = µ+ ρWYt + τYt−1 + ηWYt−1 +Xtβ +WXtθ + εt (26)

where Yt is a N × 1 vector consisting of observations for the average annual CO2

emissions per capita measured over 5 years windows for every country i = 1, . . . , N

at a particular point in time t = 1, . . . , T , Xt, is an N × K matrix of exogenous

aggregate socioeconomic and economic covariates with associated response parameters

β contained in a K × 1 vector that are assumed to influence CO2 emissions per

capita. τ , the response parameter of the lagged dependent variable Yt−1 is assumed

to be restricted to the interval (−1, 1) and εt = (ε1t, . . . , εNt)
′

is a N × 1 vector that

represents the corresponding disturbance term which is assumed to be i.i.d with zero

mean and finite variance σ2. The variables WYt and WYt−1 denote contemporaneous

and lagged endogenous interaction effects among the dependent variable. In turn, ρ is

called the spatial auto-regressive coefficient. W is a N×N matrix of known constants

describing the spatial arrangement of the countries in the sample. µ = (µ1, . . . , µN )
′

is a vector of country fixed effects. In this context country fixed effects control for all

country-specific time invariant variables whose omission could bias the estimates (?,

?). The control variables included in the analysis, the descriptive statistics and the

data sources are presented in Table (??) below:

The estimator employed in this research to explore the relationship between the

set of variables and CO2 emissions per capita is the BCQML developed by (? ?).

8The assumption of an heterogeneous λ suffices to generate diverse spatial regimes which allows for
different intensities in the interaction among economies depending on their concrete spatial location.
It is possible to generate multiple emission per capita spatial regimes allowing different degrees of
technological connectivity that depend on the spatial allocation such that λ = λi if country i belongs
to the steady state basins of attraction defined by Br (c(i)) = {i ∈M |d (i, c(i)) ≤ r} where d (i, c(i)) is
a function of the distance between country i and the center of the club c (i) and λ = λj otherwise.
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Table 1: Data: Descriptive Statistics

Variable Mean Standard Deviation Unit Source

Carbon Dioxide Emissions per capita 8.236 1.459 ln (mt/pop) WB
GDP per capita 8.263 1.569 ln (GDP/pop) PWT
GDP Squared per capita 70.742 26.130 ln (GDP/pop)2 PWT
Investment Share 19.19 11.56 PWT
Democracy 3.597 6.722 Index Polity IV
Trade Openess to GDP 79.369 43.819 Percentage WB
Industry VAB share in GDP 32.600 11.912 Percentage WB

Notes: (1) GDP per capita is PPP constant prices of 2011. (2) WB denotes World Bank and (3) PWT
denotes Penn World Tables.

As shown in ? ? the estimation of Equation (??) including both time effects and

individual effects will yield a bias of the order O
(
max

(
n−1, T−1

))
for the common

parameters. By providing an asymptotic theory on the distribution of this estimator,

they show how to introduce a bias correction procedure that will yield consistent

parameter estimates provided that the model is stable, (i.e, τ + ρ + η < 1). As ?

explain, the estimation of a dynamic spatial panel becomes more complex in the case

the condition τ + ρ+ η < 1 is not satisfied. If τ + ρ+ η turns out to be significantly

smaller than one the model is stable. On the contrary, if its greater than one, the model

is explosive and if the hypothesis τ + ρ + η = 1 cannot be statistically rejected, the

model is said to be spatially co-integrated. Under explosive or spatially co-integration

model scenarios, ?, propose to transform the model in spatial first differences to get

rid of possible unstable components in Yt. This important condition is verified when

the estimations are carried out.

Many empirical studies use point estimates of one or more spatial regression models

to test the hypothesis as to whether or not spatial spillover effects exist. However,

? have recently pointed out that this may lead to erroneous conclusions and that a

partial derivative interpretation of the impact from changes to the variables of different

model specifications provides a more valid basis for testing this hypothesis. Within

the context of the DSDM of equation (??), the matrix of partial derivatives of Yt

with respect the k-th explanatory variable of Xt in country 1 up to country N at a

particular point in time t is:

∂Yt

∂Xk
t

=
[
(I − ρW )−1

] [
µ+ ιNαt + β(k) + θ(k)W

]
(27)

Interestingly, in the previous model it is possible to compute own ∂Yit+T /∂X
k
it and

cross-partial derivatives ∂Yit+T /∂X
k
jt that trace the effects through time and space.
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Specifically, the cross-partial derivatives involving different time periods are referred

as diffusion effects, since diffusion takes time. Conditioning on the initial period

observation and assuming this period is only subject to spatial dependence (?) the

data generating process can be expressed as:

Yt =
K∑
k=1

Q−1
(
β(k) + θ(k)W

)
X

(k)
t +Q−1 (µ+ ιNαt + εt) (28)

where Q is a lower-triangular block matrix containing blocks with N ×N matrixes of

the form:

Q =



B 0 . . . 0

C B 0

0 C
. . .

...
...

. . .

0 . . . C B


(29)

with C = − (τ + ηW ) and B = (IN − ρW ). One implication of this, is that by

computing C and B−1 it is possible to analyze the -own and cross-partial derivative

impacts for any time horizon T . Generally, the T -period ahead (cumulative) impact

on CO2 emissions per capita from a permanent change at time t in k -th variable is

given by:

∂Yt+T

∂Xk
t

=

T∑
s=1

[
(−1)s

(
B−1C

)s
B−1

] [
µ+ ιNαt + β(k) + θ(k)W

]
(30)

When T goes to infinity, the previous expression collapses to the long run effect, which

is given by:

∂Yt

∂Xk
t

= [(1− τ) I − (ρ+ η)W ]−1
[
µ+ ιNαt + +β(k) + θ(k)W

]
(31)

According to ?, the properties of this partial derivatives are as follows. First, if

a particular explanatory variable in a particular region changes, CO2 emissions per

capita will change not only that country but also in other countries. Hence, a change

in a particular explanatory variable in country i has a direct effect on that country,

but also an indirect effect on the remaining countries. Finally, the total effect, which
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is object of main interest, is the sum of the direct and indirect impacts. Following

? the direct effect are measured by the average of the diagonal entries whereas the

indirect effect is measured by the average of non-diagonal elements.

The model in Equation (??) can be contrasted against alternative dynamic spatial

panel data model specifications such as the Dynamic Spatial Lag Model (DSLM), the

Dynamic Spatial Error Model (DSEM) and the Dynamic Spatial Durbin Error Model

(DSDEM). As can be checked, the DSDM can be simplified to the DSLM by shutting

down exogenous interactions θ = 0:

Yt = µ+ τYt−1 + ρWYt + ηWYt−1 +Xtβ + εt (32)

to the DSDEM if η = ρβ = 0

Yt = µ+ τYt−1 +Xtβ + θ + υt

υt = λWυt + εt
(33)

where εt ∼ i.i.d., and to the DSEM if η = θ + ρβ = 0

Yt = µ+Xtβ +WXtθ + υt

υt = λWυt + εt
(34)

In any case, the estimation of the above equations involves defining a spatial

weights matrix. Given that this is a critical issue in spatial econometric modeling

(?) a variety of row-standarized W geographical distance based matrices between the

sample regions are considered. The use of geographical distance matrices ensures the

exogeneity of the W , as recommended by ? and avoids the identification problems

raised by ?. Several matrices based on the k-nearest neighbours (k = 5, 6, . . . , 15)

computed from the great circle distance between the centroids of the various regions

are considered. Additionally, various inverse distance matrices with different cut-off

values above which spatial interactions are assumed negligible are employed. As an

alternative to these specifications, a set exponential distance decay matrices whose

off-diagonal elements are defined by wij = exp(−θdij) for θ = 0.005, . . . , 0.03 are

taken under consideration. The latter matrices, although assume spatial interactions

are continuous are characterized by faster decays.

In order to choose between DSDM, DSAR, DSDEM and DSEM specifications of

the CO2 emissions, and thus between a global-local, global, local or zero spillovers

18



specifications as well as to choose between different potential specifications of the spa-

tial weight matrix W , a Bayesian comparison approach is applied. Note that this

exercise is relevant as it helps to validate whether or not the spillovers and the nature

of interactions in the theoretical model are supported by the data. This approach

determines the Bayesian posterior model probabilities (PMP) of the alternative speci-

fications given a particular spatial weight matrix, as well as the PIP of different spatial

weight matrices given a particular model specification. These probabilities are based

on the log marginal likelihood of a model obtained by integrating out all parameters

of the model over the entire parameter space on which they are defined. If the log

marginal likelihood value of one model or of one W is higher than that of another

model or another W , the PMP is also higher. One advantage of Bayesian methods

over Wald and/or Lagrange multiplier statistics is that instead of comparing the per-

formance of one model against another model based on specific parameter estimates,

the Bayesian approach compares the performance of one model against another model

(in this case DSDM against DSDEM, DSLM and DSEM), on their entire parameter

space. Moreover, inferences drawn on the log marginal likelihood function values for

the models under consideration are further justified because they have the same set

of explanatory variables, X and WX, and are based on the same uniform prior for

ρ and λ. In this exercise, non-informative diffuse priors for the model parameters

(τ, η, β, θ, σ) are used following the recommendation of ?. In particular, the normal-

gamma conjugate prior for β, θ, τ, η and σ and a beta prior for ρ:9

In order to choose between DSDM, DSAR, DSDEM and DSEM specifications of

the CO2 emissions, and thus between a global-local, global, local or zero spillovers

specifications as well as to choose between different potential specifications of the spa-

tial weight matrix W , a Bayesian comparison approach is applied. Note that this

exercise is relevant as it helps to validate whether or not the spillovers and the nature

of interactions in the theoretical model are supported by the data. This approach

determines the Bayesian posterior model probabilities (PMP) of the alternative spec-

ifications given a particular spatial weight matrix, as well as the PMP of different

spatial weight matrices given a particular model specification. These probabilities are

based on the log marginal likelihood of a model obtained by integrating out all param-

eters of the model over the entire parameter space on which they are defined. If the

log marginal likelihood value of one model or of one W is higher than that of another

9Parameter c are set to zero and T to a very large number (1e+ 12) which results in a diffuse prior
for β, θ, τ , η while diffuse priors for σ are obtained by setting d = 0 and v = 0. Finally a0 = 1.01. As
noted by ?, pp. 142, the Beta (a0, a0) prior for ρ with a0 = 1.01 is highly non-informative and diffuse as
it takes the form of a relatively uniform distribution centered on a mean value of zero for the parameter
ρ. For a graphical illustration on how ρ values map into densities see Figure 5.3 pp. 143. Also, notice
that the expression of the Inverse Gamma distribution corresponds to that of Equation 5.13 pp.142.
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model or another W , the PMP is also higher. One advantage of Bayesian methods

over Wald and/or Lagrange multiplier statistics is that instead of comparing the per-

formance of one model against another model based on specific parameter estimates,

the Bayesian approach compares the performance of one model against another model

(in this case DSDM against DSDEM, DSLM and DSEM), on their entire parameter

space. Moreover, inferences drawn on the log marginal likelihood function values for

the models under consideration are further justified because they have the same set

of explanatory variables, X and WX, and are based on the same uniform prior for

ρ and λ. In this exercise, non-informative diffuse priors for the model parameters

(τ, η, β, θ, σ) are used following the recommendation of LeSage (2014). In particular,

the normal-gamma conjugate prior for β, θ, τ, η and σ and a beta prior for ρ:10

π(β) ∼ N (c, T )

π

(
1

σ2

)
∼ Γ (d, v)

π (ρ) ∼ 1

Beta (a0, a0)

(1 + ρ)a0−1 (1− ρ)a0−1

22a0−1

(35)

Columns 1 to 4, in Table (??) report the PMP for the different spatial specifications

including spatial fixed and time-period fixed effects given alternative specifications of

W which allows the comparison of the different models for each W . In columns 5 to

8 for a given spatial specification, PMP across spatial weight matrices are reported.

As shown in Table (??), for most of the spatial weight matrices the Spatial Durbin

appears to be best specification and for the DSDM specification the W matrix with

higher PMP is that of 15-nearest neighbors. Importantly, this finding supports the

DSDM specification derived from the theoretical model including endogenous and

exogenous interaction instead of other possible alternatives. The model comparison

also reveals that the DSEM/DSDEM process are never the best candidate to describe

CO2 emissions outcomes.

10Parameter c are set to zero and T to a very large number (1e+ 12) which results in a diffuse prior
for β, θ, τ , η while diffuse priors for σ are obtained by setting d = 0 and v = 0. Finally a0 = 1.01.
As noted by LeSage and Pace (2009), pp. 142, the Beta (a0, a0) prior for ρ with a0 = 1.01 is highly
non-informative and diffuse as it takes the form of a relatively uniform distribution centered on a mean
value of zero for the parameter ρ. For a graphical illustration on how ρ values map into densities see
Figure 5.3 pp. 143. Also, notice that the expression of the Inverse Gamma distribution corresponds to
that of Equation 5.13 pp.142.
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4 Results

4.1 Baseline Results

Table (??) shows estimation results of different dynamic (A, C and E) and spatial-

dynamic (B, D, F) panel data models explaining the evolution of CO2 emissions per

capita. Models A and B consist of functional specifications with a constant term

and where the only explanatory terms included in the regression are the level of CO2

emissions per capita in period t-1 and the CO2 emissions in period t-1 of neighboring

economies. Therefore, these specifications provide the benchmark of the absolute

convergence hypothesis. As can be seen, the time lag parameter of CO2 emissions

per capita in specifications A and B is positive and significant, but it implies very

low convergence rates of 0.6% and 0.7% respectively. Specifications C and D include

fixed effects and control for the relevant structural characteristics of the Spatial Green

Solow Model presented above (i.e, the level of investment and population growth). As

can be seen, in specification C the investment has a positive effect at the 1 % level,

while the population growth does not appear to be relevant. On the other hand, in

specification D both the investment and the investment in neighboring economies are

significant. The fact that the controls are meaningful explaining CO2 emissions per

capita provides evidence against the hypothesis of absolute convergence in favor of

the conditional convergence. However, it should be noted that the fixed effects are

statistically significant for both the model C (LR = 398.88, p = 0.00) and for the

D (LR = 471.25, p = 0.00) which suggests that the initial conditions of variables

captured in the fixed effects such as the initial level of technological development,

affect the evolution of CO2 emissions along the study period. This, in turn, provides

evidence for the hypothesis of convergence clubs. To further control for other factors

that literature has identified as possible determinants of the level of pollution, models

E and F include the level of democratic depth of the country, the degree of trade

openness and the share of the industrial sector in the productive structure. Given

that the effect of the industry share appears to be statistically relevant, it is likely

that prior specifications could be affected by the omitted variable bias. In this regard,

it is important also to stress that different measures of goodness of fit point to the

specification F as the best of the different alternatives. Finally, note that in this

specification the spatio-temporal terms are significant. The estimated time lag is

about 0.821, the space-time lag term is -0.293 and the spatial lag term is 0.044. This

result confirms that the dynamic spatial panel data modeling framework used in this

analysis is suitable for studying the evolution of CO2 emissions per capita and that
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CO2 emissions per capita in neighboring economies affect emissions per capita of any

country.

As mentioned in the previous section, correct interpretation of the parameter esti-

mates in the DSDM requires to take into account the direct, indirect and total effects

associated with changes in the regressors. Table (??) shows this information. Con-

sidering the average direct impacts of Table (??), it is important to notice that there

are some differences to the DSDM model coefficient estimates reported in Table (??).

Differences between these two measures are due to feedback effects passing through

the entire system and ultimately reaching the country of origin.

Focusing on the main aim of the paper, we now proceed to examine the issue

of CO2 emissions per capita convergence. To that end, we use the Error Correction

Model representation following ? to simulate the convergence direct, indirect and total

effects. Results reveal that the relationship between initial levels of emissions and

future emissions growth rates is negative and statistically significant, thus confirming

the empirical evidence provided by the previous analysis of ?. In particular, the

estimates show that a 1% increase the initial level of per capita emissions is associated

with a decrease in the average growth rate of around -0.25%. Nevertheless, this total

convergence effect is the sum of the direct and indirect impact of the initial level on

its growth rate. The direct effect, Table (??) indicates that an increase in the initial

level of emissions registered by a specific country exerts a negative and statistically

significant impact on its growth rate. In turn, the indirect effect shows that this

increase also influences negative and significantly on the growth rates of neighboring

countries. Overall, we find that the implied speed of convergence is 5.07% which is

higher than the 1.6% obtained by ? , which can be explained by the relevance of

spatio-temporal interactions.

Direct impact estimates in Table (??), disp lay interesting features which are

worth mentioning. First, as regards the investment there is evidence that an increase

in the investment in country i exerts increases emissions per capita in i. Second, it

is observed that higher population growth rates and higher shares of industry in the

sectoral composition affect positively emissions in i. On the other hand, the effect of

an increase in the democratic depth and in the trade openness in country i by itself

does not affect emissions per capita in i. Short run indirect effects are significant at

the 5% level for five out of six variables. Indirect effects amplify significantly direct

effects in the case of investment and democracy while go in the opposite direction

for the population growth rate and the industry share. The results show that the

amplification phenomenon is particularly pronounced as it indirect effects account
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for more than a half of the total effect. The interpretation of this result is that if

all countries j = 1, . . . , N other than i experiment a change in Xk, this will have

a stronger effect in i that if only i experiments a change in Xk even if i generate

spillover effects that go back to i. This is due to the fact that the DSDM contains a

global spillover multiplier. As mentioned above, the sum of direct and indirect effects

allows one to quantify the total effect on CO2 emissions per capita of the different

control variables. When direct and indirect effects are jointly taken into account,

Table (??) indicates that the total effect is statistically significant exclusively in the

case of investment, population growth and democracy.

Table 4: Effects Decomposition

Variables Direct Indirect Total
Effects Effects Effects

Convergence effect

Initial Emissions -0.146*** -0.108** -0.253***
(-7.44) (-1.97) (-4.79)

Implied φ 0.0291 0.0216 0.0507

Short term

Investment 0.007*** 0.032*** 0.039***
(4.13) (5.14) (6.02)

Population growth 0.031*** -0.132*** -0.101***
(3.58) (-3.67) (-2.72)

Democracy -0.001 -0.024*** -0.026***
(-0.58) (-4.82) (-5.30)

Trade Openess 0.000 0.001 0.001
(0.83) (0.84) (1.09)

Industry share 0.009** -0.015*** -0.006
(6.22) (-2.77) (-1.08)

Long term

Investment 0.042*** 0.118** 0.161***
(3.17) (2.53) (3.34)

Population growth 0.252*** -0.658*** -0.406***
(3.01) (-4.04) (-2.71)

Democracy -0.004 -0.103*** -0.107***
(-0.25) (-2.75) (-3.01)

Trade Openess 0.002 0.003 0.005
(0.75) ( 0.56) (1.03)

Industry share 0.068*** -0.093*** -0.025
(4.68) (-3.26) (-0.99)

Notes: Inferences regarding the statistical significance of these effects are based on
the variation of 1000 simulated parameter combinations drawn from the variance-
covariance matrix implied by the BCML estimates of Equation (??). To compute
the speed of convergence we use the error correction model (ECM) representation of
Equation (??) following ? pp 300. t-statistics in parentheses. * Significant at 10%
level, ** significant at 5% level, *** significant at 1% level.
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To study the dynamic responses of CO2 emissions per capita to changes in the

different regressors, the model is used to perform impulse-response analysis using

Equation (??). Impulse-response functions in a dynamic spatial panel context con-

tain both, temporal dynamic effects and spatial diffusion effects which correspond to

exogenous changes that propagate across space. Figure (??) decomposes the dynamic

trajectory of CO2 emissions per capita after a transitory change in a regressor into di-

rect (a), indirect (c) and total responses (e) and after a permanent change (subfigures

b, d, and f) which in the infinite is exactly the long-run effect reported in the last rows

of Table (??). In Figure (??) we plot the trade openness and the industry share with

dashed lines and in the right y-axis to differenciate with respect investment, popula-

tion and democracy which are statistically significant in both the short and the long

run. We find that with the time, direct cumulative effects of investment increase its

share with respect the total long run effect while on the contrary, democracy and pop-

ulation growth direct effects decrease its relevance which implies that spatio-temporal

diffusion is particularly relevant for the later. Exploration of the propagation pattern

reveals that simultaneous effects occurring in the period of impact of the shock are

around the 23% of the long-run effect. Importantly, three periods after the shock, the

cumulative effect accounted for a 65% of the long run impact. Focusing on the long

run we find that after five periods (25 years) the figure is around the 80% and that

ten periods later (50 years) the cumulative effect amounts to a 95%. These results

suggest that, the full effect on CO2 emissions per capita resulting from changes in the

model regressors takes time to materialize and the short run analysis may considerable

under-estimate the final effects.

4.2 An analysis of the Convergence Club Dynamics

In the previous analysis we have seen that: (i) the economic surrounding of a coun-

try seems to influence the CO2 Emissions per capita perspectives for that country,

which is also reflected in the fact that initial CO2 emissions of neighboring economies

have a statistically significant effect in the process of convergence and that (ii) the

fixed effects are significant, providing evidence supporting the hypothesis of club rather

than that of conditional convergence. In this regard, it should be stressed that the

club convergence hypothesis is consistent with heterogeneous parameter and multiple

regime processes, while the analysis we carried out so far so only explored the het-

erogeneity in the parameters through a DSDM homogeneous model with fixed effects.

Moreover, it is important to note that in the field of spatial econometrics and growth,

some studies linked the concept of spatial heterogeneity with that of the convergence
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Figure 5: CO2 Emissions Dynamic Diffusion Effects

(a) Transitory Direct Effects (b) Permanent Direct Effects

(c) Transitory Indirect Effects (d) Permanent Indirect Effects

(e) Transitory Total Effects (f) Permanent Total Effects
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spatial clubs. 11.

To investigate the presence of spatial clubs in CO2 emissions and the possible

existence of heterogeneous dynamics due to different spatial regimes we employ a new

methodology based on a dynamic version of the Moran Scatterplot. Therefore, in

this context, spatial clubs should be meant as clusters of countries with similar levels

both of CO2 and spatially lagged CO2 at the beginning of the sample. We follow the

methodology applied in ? to identify the spatial clubs. In particular, we apply the

k-median algorithm for k = 2, 3 and 4 and compute Posterior Model Probabilities and

perform likelihood ratio tests to identify which club classification is more consistent

with the data. 12

Table 5: Heterogeneous Regime Selection

Homogenous Two Clubs Three Clubs Four Clubs
DSDM DSDM DSDM DSDM

Log Like 209.45 274.41 301.26 309.10
PMP 0.02 0.12 0.70 0.16

Notes: To compute the likelihood and the posterior of the various models we extend
the variance-covariance matrix derived in Elhorst and Freret (2009) for the case of
two-regime fixed effects spatial lag model, pp 940.

The results of Table (??) show that the model with highest probability is that of

three spatial clubs (PMP = 0.7). This result is confirmed by iterative likelihood-ratio

tests of against the homogeneous DSDM and the two-regime DSDM. While the model

characterizing the process of CO2 emissions per capita can not be simplified from 4

clubs to 1 (LR = 141.88, p = 0.00) or to 4 to 2 clubs (LR = 69.37, p = 0.00 ) and

while the model of 3 clubs can not be reduced to 1 (LR 126.21, p=0.00) or to 2 clubs

(LR=53.69, p=0.00) the model with 4 clubs describes the data worse than that of 3

clubs (LR 15.67, p = 0.26). The evidence stemming from the Local Directional Moran

Scatterplot suggests the persistence of three clubs where Club 2 tends to converge to

Club 3 while Club 3 seems fairly stable in its relative position. For more details on

the dynamic evolution of the identified clubs see the Appendix.

The estimation results of the heterogeneous DSDM are shown in Table ( ). The

first three columns display the estimated parameters for regressors in each of the

clubs while the last three columns report the differences. As can be seen the results

11Some studies have employed heterogeneous X parameter models (Baumont et al., 2004; Ertur and
Koch, 2007) while others considered heterogeneous spatial regimes for Y (Elhorst and Freret, 2009) but
not both

12The k-median algorithm is a variation of k-means algorithm where instead of calculating the mean
for each cluster to determine its centroid, it is use its median. The use of median should minimize the
impact of possible outliers, (see ? for more details on k-median algorithm).
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obtained suggest the need to consider heterogeneity in the modeling process as for

many regressors disparities are highly relevant. Similarly, w
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4.3 The Spatial Environmental Kuznets Curve

Finally we check one of the main regularities emerging from our theoretical model,

the EKC. Table () reports the main results of the EKC. The first column of Table

() presents the results obtained in the estimation of the DSDM when employing the

BCML estimator. Importantly, the results regarding the direct effects of the GDP

and the GDP squared seem to indicate the existence of EKC relationship as emissions

increase with the GDP but decrease with the squared GDP. In turn, the indirect

effect shows that changes in the GDP and the GDP squared also influence significantly

emission levels of neighbouring countries. Indeed, the indirect effect accounts for more

than half of the overall total impact caused by changes in GDP and GDP squared,

thus corroborating the empirical relevance of spatial spillovers in this context. The

analysis of the total effects displays interesting features that are consistent with the

empirical literature of environmental economics (Yandle et al., 2002; Dinda, 2004).

Higher levels of democracy and industry are related to lower levels of CO2 emissions

while a higher level of trade openness does not affect CO2 emissions.

5 Conclusions

This paper analyzes the evolution of CO2 emissions per capita in a sample of

141 countries during the period 1970-2014. The study extends the neoclassical Green

Solow Model to take into account technological externalities in the analysis of CO2

emissions per capita growth rates. Spatial externalities are used to model techno-

logical interdependence, which ultimately implies that the CO2 emissions rate of a

particular country is affected not only by its own degree of emissions but also by

the pollution generated by the remaining countries. In order to investigate the em-

pirical validity of this result, convergence in CO2 emissions is examined by means

of dynamic spatial panel econometric techniques. Estimates show the existence of a

negative and statistically significant relationship between initial levels of CO2 emis-

sions and subsequent growth rates. This finding is partly due to the role played by

spatial spillovers induced by neighboring economies. The observed link is robust to

the inclusion in the analysis of different explanatory variables that may affect CO2

emissions growth rates. In a second step, combining recently developed spatial-non

parametric techniques with spatial bayesian model selection techniques we identify

three distinct clubs in the distribution of CO2 emissions per capita. The estimation

of the corresponding three-endogenous regime dynamic spatial model with parameter
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Table 7: Propagation of Short Run Effects Across Convergence Clubs

Origin Variable Club1 Response Club 2 Response Club 3 Response

Investment 0.016*** 0.019*** 0.026***
Population growth -0.002 0.000 -0.003

Club1 Democracy -0.006** -0.008** -0.010**
Shock Trade Openess 0.002** 0.002** 0.003

Industry 0.002 0.003 0.004

Investment 0.008** 0.010** 0.013*
Population growth 0.024 0.031* 0.039

Club 2 Democracy 0.001 0.001 0.002
Shock Trade Openess 0.001 0.001 0.001

Industry -0.004* -0.004 -0.006*

Investment 0.009** 0.011*** 0.015***
Population growth 0.002 0.002 0.003

Club 3 Democracy -0.006** -0.007** -0.010**
Shock Trade Openess -0.001** -0.001** -0.001**

Industry -0.005* -0.004 -0.008*

Notes: Inferences regarding the statistical significance of the total effects in CO2 emissions per capita are
based on the variation of 1000 simulated parameter combinations drawn from the variance-covariance ma-
trix implied by the BCML estimates of the Three-Regime DSDM. * Significant at 10% level, ** significant
at 5% level, *** significant at 1% level.

heterogeneity reveals that in the context of CO2 emissions per capita, the hypothesis

of the spatial convergence clubs is more consistent with the data than that of condi-

tional convergence. Finally, we estimated a model of the EKC finding the U shaped

predicted by the Spatial Green Solow Model.
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Appendix: Spatial Clubs and Convergence Dynamics

Figure (1) shows a clear spatial distribution of the CO2 emission among countries.

A classical way to analysis the spatial clusterization of the economies for different

level of CO2 emission is thought the Moran Scatter Plot. The advantage of Moran
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scatter plot is its easy interpretation giving a graphical representation of the relation

of the variable (in our case the (relative) CO2 emission) in one country with respect

the values of that variable in the neighbouring countries, i.e the spatial lag variable

W × CO2.

Figure (6) shows the Moran scatter plot for different sub-period, 1970-75, 1076-

80, 1981-85, 1986-90, 1991-95, 1996-00, 2001-05, 2006-10 and 2011-15. In all the

sub-periods the distribution of the CO2 appears clusterized in three different groups,

suggesting the formation of three different clubs, indicated by three yellow circles: a

first club C1 characterized by countries with lower level of CO2, a second one C2

with medium level and, C3 which higher level of emission.

We follow the methodology applied in ? to indentify the spatial clubs. Precisely,

we apply the k-median algorithm. The k-median algorithm is a variation of k-means

algorithm where instead of calculating the mean for each cluster to determine its

centroid, it is use its median. The use of median should minimize the impact of

possible outliers, (see ? for more details on k-median algorithm). In this contest,

spatial clubs should be meant as clusters of country with similar levels both of CO2

and spatially lagged CO2.

The evidence from the Moran scatter plot in different sub periods suggests the

persistence of three clubs. However we observe some little movements among clubs.

In particular we observe a process of clusterization inside all of them (moving closer

to the bisector) and (i) a process of divergence for C1 (it tends to move toward lower

level of CO2 along the bisector), and (ii) a convergence process between C2 and C3.

The overall impression is that club C2 tends to converge to C3, while the club C1

seems fairly stable as (relative) position.

However, the comparison among the Moran scatter plot in different periods of time

in Figures (6) does not provide any information on the dynamics of these three spatial

clubs. To fill this gap, the evolution in time and space of the three spatial clubs is

analyzed through the Local Directional Moran Scatter Plot developed by (?).13

Precisely, the spatial dynamics of the clubs in the Moran space is represented by a

random vector field (RVF), which measure for each point in the lattice (defined in the

y and W × y space) the expected movement calculated on the base of the distribution

of probabilities of the observed movement of the real observed data.

In particular, given a subset L of the possible realization of (y,Wy) (i.e. a lattice

13For a detailed explanation of the methodology see (?)
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in the Moran space), a RVF is represented by a random variable ∆τzi, where ∆τzi ≡
(∆τyi,∆τWyi) ≡ (yit+τ − yit,Wyit+τ −Wyit), indicating the spatial dynamics (i.e.

the dynamics from period t to period t+ τ represented by a movement vector) at zi ≡
(yi,Wyi) ∈ L. For each point in the lattice zi we estimate the τ -period ahead expected

movement µ∆τ zi ≡ E [∆τzi|zi] using a local mean estimator, where the observations

are weighted by the probabilities ω
(
zi, z

OBS
jt

)
derived from the kernel function, i.e.:

µ̂∆τ zi =
T−τ∑
t=1

N∑
j=1

ω
(
zi, z

OBS
jt

)
∆τz

OBS
jt = ̂Pr (∆τz|zi)∆τz

OBS . (36)

where,

ω
(
zi, z

OBS
jt

)
=

K

(
(zi−zOBSjt )TS−1(zi−zOBSjt )

h2

)
det(S)−

1
2

2h2∑T−τ
t=1

∑N
j=1K

(
(zi−zOBSjt )TS−1(zi−zOBSjt )

h2

)
det(S)−

1
2

2h2

(37)

The probabilities ω
(
zi, z

OBS
jt

)
are estimate via a kernel function (K)14 which allow

us to measure the distance between zi (a point in the lattice L) and zOBSjt (which is

the corresponding point in the lattice of a given observation in the space y and Wy).

Graphically, Equation (??) is the RVF, represented by a red arrows. In the esti-

mation we set τ = 45 that corresponds to the last period available, so that, starting

from the information of the period 1970 we obtain the expected dynamics τ -period

ahead.

Figure (7) reports the estimated expected value of the 45-year ahead directions.

The three spatial clubs present in 1970 are still there in 2015, but the expected dy-

namics of convergence between club C2 and C3 and the divergence for C1 is now much

clear.

14In the estimation we use a multivariate Epanechnikov kernel (see ?)
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Figure 6: Convergence Clubs Dynamics
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Figure 7: Local Directional Moran Scatter
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