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Abstract

We analyse the overall cost efficiency in local governments in Spain during the crisis period
(2008–2013). For this, we first consider not only the most popular methods to evaluate local gov-
ernments’ efficiency, DEA (Data Envelopment Analysis) and FDH (Free Disposal Hull), but also
more recent proposals such as the order-m partial frontier as well as the nonparametric estimator
proposed by Kneip, Simar and Wilson (2008), which share their nonparametric flavour. Second, we
compare the methodologies employed to measure efficiency. Contrary to previous literature, where
there has been a regular comparison between techniques and several proposals of alternative tech-
niques, we follow the method employed in the study of Badunenko et al. (2012), with the aim to
compare the different methods used and choose the one which performs better with our particular
dataset, i.e., the one which is more appropriate to measure local government cost efficiency in Spain.
We carry out the experiment via Monte Carlo simulations and discuss the relative performance of
the efficiency scores under various scenarios. We find that the results of the experiment depend on
the value of Λ parameter, i.e., the relative sizes of the inefficiency and the error terms. Results sug-
gest that our particular sample of 1,574 Spanish local governments lies in scenario 6, where DEA
and FDH methodologies did the best job at estimating the efficiency scores given what we found in
our simulations. Accordingly, our results indicate that the average cost efficiency would have been
between 0.54 and 0.77 during the period 2008–2013
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1. Introduction

Managing the available resources efficiently at all levels of government (central, regional, and

municipal) is essential, even more if we consider the current international economic crisis

scenario (Balaguer-Coll et al., 2013). Given that increasing taxes as well as deficit is politically

costly (Doumpos and Cohen, 2014), a reasonable way to deal with this context is to improve

economic efficiency (De Witte and Geys, 2011), which in cost terms means that an entity

should produce a particular level of output in the cheapest way. In this setting, since local

regulators must provide the best possible local services at the lowest possible cost, developing

a system for evaluating local government performance that would allow to set benchmarks

over time could have practical relevance (Da Cruz and Marques, 2014). However, measuring

the performance of local governments is usually highly complex.

The study of local government efficiency has been a topic of high interest in the field of

public administration. In fact, we find a large body of literature that covers several countries

(such as Balaguer-Coll et al. (2007) in Spain, Geys et al. (2013) in Germany or Štastná and Gre-

gor (2015) in Czech Republic).1 However, despite the high number of empirical contributions,

an important problem shared by the studies which analyse local government performance is

the lack of a clear and standard methodology to perform efficiency analysis. This is not a

trivial question as previous literature has widely proposed different frontier techniques, both

parametric and nonparametric, to analyse technical, cost or other forms of efficiency in local

governments.

Despite this problem is a well-known issue on the efficiency measurement literature, only

a small number of studies has attempted to use two or more alternative approaches in a com-

parative way. For instance, De Borger and Kerstens (1996a) analysed local governments in

Belgium using five different reference technologies, two nonparametric (DEA and FDH) and

three parametric frontiers (one deterministic and two stochastic). They found large differences

in the efficiency scores for identical samples and, as a consequence, they suggested using dif-

ferent methods to control for the robustness of the results as long as the problem of choosing

the “best” reference technology is not solved. Other studies compared the efficiency estimates

1For a comprehensive literature review on efficiency measurement in local governments see Narbón-Perpiñá
and De Witte (2016a,b).
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between DEA and SFA,2 or between DEA and FDH or other nonparametric variants,3 leading

to similar conclusions.

Since there is no obvious way to choose an efficiency estimator, the method chosen may af-

fect the efficiency analysis (Geys and Moesen, 2009b) and could provide biased results. There-

fore, if the decision makers at the local governments’ level (based on an incorrect efficiency

score) set a benchmark, this could result in a non-negligible economic impact. Accordingly,

as indicated by Badunenko et al. (2012), if the selected method overestimates the efficiency

scores, some local governments may not be penalised and, as a result, their inefficiencies will

persist. In contrast, if the efficiency scores are underestimated some local governments would

be regarded as “low performers” and could be unnecessarily penalised. Hence, although we

note that each particular methodology leads to different cost efficiency results for each local

government, one should ideally report efficiency scores that will be more reliable, or closer, to

the truth (Badunenko et al., 2012).4

The present investigation pays attention to these issues by comparing different nonpara-

metric methodologies and uncovering which measures might be more appropriate to assess

local government cost efficiency in Spain. More specifically, the study contributes to the lit-

erature in three aspects. First, we seek to compare four nonparametric methodologies that

cover traditional and recently developed nonparametric framework, namely Data Envelop-

ment Analysis (DEA), Free Disposal Hull (FDH), order-m frontier and the bias corrected DEA

estimator proposed by Kneip et al. (2008), being the first two the most popular towards the

nonparametric field, and the last ones two more recent proposals.

Second, we attempt to determine which of these methods should be applied for cost effi-

ciency measurement in a given situation. In contrast to previous literature, where there has

been a regular comparison between techniques and several proposals of alternative ones, we

follow the method employed in the study of Badunenko et al. (2012), with the aim to compare

the different methods used and choose the ones which perform better in different settings. We

carry out the experiment via Monte Carlo simulations and we discuss the relative performance

of the efficiency estimators under various scenarios.

2Athanassopoulos and Triantis (1998); Worthington (2000); Geys and Moesen (2009b); Boetti et al. (2012);
Nikolov and Hrovatin (2013); Pevcin (2014)

3Balaguer-Coll et al. (2007); Fogarty and Mugera (2013); El Mehdi and Hafner (2014)
4We will elaborate further on this a priori ambitious expression.
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As a final contribution, we uncover which methodologies perform better with our particu-

lar dataset. From the simulation results, we determine in which scenario our data lies in, and

we follow the suggestions related to the performance of the estimators for this scenario. We

focus on a sample of 1,574 Spanish local governments between 1,000 and 50,000 inhabitants

for the period 2008–2013. While other studies based on Spanish data (as well as data from

other countries) focus on a specific region or year, our study examines a much larger sample of

Spanish municipalities comprising various regions for several years. Moreover, the relevance

of the sample is also related to the period under analysis. The economic and financial crisis

which started in 2007/2008 has had a huge impact on most of Spanish local governments’

revenues and finances in general. In addition, the budget constraints became stricter with the

law on budgetary stability5, which set up more control on public debt and public spending.

Under these circumstances, issues related to the efficiency of Spanish local governments gains

some relevance and momentum.

Our results suggest that our particular sample of 1,574 Spanish local governments lies in

scenario 6, where DEA and FDH methodologies did the best job at estimating the efficiency

scores given what we found in our simulations (DEA slightly underestimate efficiency while

FDH slightly overestimate it). Accordingly, our results indicate that the average cost efficiency

would have been between 0.54 and 0.77 during the period 2008–2013, suggesting that Spanish

local governments could have achieved the same level of local outputs with about 0.23 to 0.36

fewer resources. In addition, DEA and KSW methodologies did the best job at identifying the

ranks of the efficiency scores.

The paper is organised as follows: Section 2 gives an overview of the methodologies used

to determine the cost efficiency. Section 3 specifies the particularities of the data employed.

Section 4 shows the methodological comparison experiment and the results for the different

scenarios. Section 5 gives a suggestion of which methodology performs better with our partic-

ular dataset and presents and comments the most relevant efficiency results. Finally, section 6

summarizes the main conclusions.
5Ley General Presupuestaria (2007,2012), or General Law on the Budget.
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2. Methodologies

In the present study, we focus on the efficiency6 of the provision of public goods and services.

It is possible to distinguish different types of efficiency depending on the data available for

inputs and outputs. In this way, technical efficiency requires data on inputs and outputs quan-

tities, while allocative efficiency requires additional information on input prices. When these

two measures are combined, we obtain the economic efficiency, also called cost efficiency when

the economic objective is based on cost minimization. However, if data on costs is available,

but data on prices and physical units is not, cost efficiency can be measured but not decom-

posed (Balaguer-Coll et al., 2007). We must notice that public sector goods and services are

frequently unpriced, due to their non-market nature (Kalb et al., 2012). Within this context,

since there is no data available about input prices, in the present study we measure local

government cost efficiency using data on municipal budgets as input costs.

In addition, we consider four different nonparametric techniques to measure cost effi-

ciency, namely, Data Envelopment Analysis (DEA) (Charnes et al., 1978; Banker et al., 1984),

Free Disposal Hull (FDH) (Deprins et al., 1984), order-m (Cazals et al., 2002), and the bias

corrected DEA estimator of Kneip et al. (2008), which we will refer to as KSW, being the first

two the most popular within the nonparametric field and the others two relatively recent pro-

posals. We focus on nonparametric methodologies as opposed to the parametric ones, due

to their less restrictive assumptions and greater flexibility. For a detailed review of the main

differences between parametric and nonparametric frontier techniques, see Murillo-Zamorano

(2004) and Bogetoft and Otto (2010). In addition, the evolution of parametric and nonpara-

metric methodologies has not been parallel, and several proposals have leaned towards the

nonparametric field, overcoming most of their limits (Daraio and Simar, 2007; Bădin et al.,

2014).

2.1. Data Envelopment Analysis (DEA) and Free Disposal Hull (FDH)

DEA (Charnes et al., 1978; Banker et al., 1984) is a nonparametric methodology based on linear

programming to estimate and compare the relative efficiency of different units (DMUs). We

consider an input-oriented DEA model (Sampaio de Sousa and Stošić, 2005; Balaguer-Coll

6See Coelli et al. (2005) and Fried et al. (2008) for an introduction to efficiency measurement.
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et al., 2007) because in public sector outputs are established externally (the minimum services

that local governments must provide) and, consequently, it is more appropriate to evaluate

efficiency in terms of the minimization of inputs (Balaguer-Coll and Prior, 2009).

We introduce the mathematical formulation for the cost efficiency measurement (Färe et al.,

1994). The minimal cost efficiency can be calculated by solving the following program for each

local government and each sample year:

minθ,λθ

s.t. yri≤∑n
i=1 λiyri, r = 1, . . . , p

θxji≥∑n
i=1 λixji, j = 1, . . . , q

λi≥0, i = 1, . . . , n

∑n
i=1 λi = 1

(1)

where for n observations there are q inputs producing p outputs. The n× p output matrix, r,

and the n× q input matrix, j, represent the data for all n local governments. Specifically, for

each unit (municipality) under evaluation i we consider an input vector xji to produce outputs

yri. The last constraint (∑n
i=1 λi = 1) implies variable returns to scale (VRS), which assures that

each DMU is compared only with others of similar sizes.

A further extension of DEA model with variable returns to scale was proposed by Deprins

et al. (1984), called Free Disposal Hull (FDH). The main difference with DEA is that it drops

the convexity assumption. The FDH cost efficiency is defined as follows:

minθ,λθ

s.t. yri≤∑n
i=1 λiyri, r = 1, . . . , p

θxji≥∑n
i=1 λixji, j = 1, . . . , q

λi ∈ {0, 1}, i = 1, . . . , n

(2)

Finally, by solving linear programming problems (1) and (2) we obtain the cost efficiency

coefficient θ, i.e., the optimal (minimal) input quantities of producing yr. Local governments

with efficiency scores of θ < 1 are inefficient, while efficient units receive efficiency scores of

θ = 1.
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2.2. Robust variants of DEA and FDH

The traditional nonparametric techniques DEA and FDH have been widely applied in effi-

ciency analysis; however, they present several drawbacks. One limitation of both DEA and

FDH is that they are sensitive to outliers and extreme values. Since these techniques enve-

lope all data, the efficient frontier is determined by the observations which are extreme points

(Simar and Wilson, 2008) and, as a consequence, the presence of outliers strongly influence

the estimated frontier as well as the efficiency scores of all observations. This problem can

be addressed by using “partial” frontiers for being more robust to extremes or outliers in

data. Moreover, these “partial” estimators do not suffer from the “curse of dimensionality7”,

an important problem that generally affects efficiency scores obtained using DEA and FDH

(Daraio and Simar, 2007). Finally, another important drawback of traditional nonparametric

approaches is the difficulty of making statistical inference. Nevertheless, bootstrap methods

such as those proposed by Simar and Wilson (1998, 2000) made possible statistical inferences

(consistent analysis, bias correction, confidence intervals, test of hypothesis and so on) about

efficiency.

Hence, in this study we consider some variants of DEA and FDH estimators that are able to

overcome some crucial drawbacks of the traditional nonparametric methods. On the one hand,

we will use order-m (Cazals et al., 2002), which is a partial frontier approach that mitigates

the influence of outliers, extreme values and the curse of dimensionality. On the other hand,

the bias corrected DEA estimator of Kneip et al. (2008) (KSW), which allows for consistent

statistical inference by applying bootstrap techniques.

2.2.1. Order-m

Order-m frontier (Cazals et al., 2002) is a robust alternative to DEA and FDH estimators which

involves the concept of partial frontier, opposed to the traditional full frontier. The order-

m estimator, for finite m units, does not envelope all data points and consequently, is less

extreme. In the input orientation case, this method uses as benchmark the expected minimum

input achievable among a fixed number of m units producing at least output level y. Hence,

7As indicated by Daraio and Simar (2007), the “curse of dimensionality” implies that an increase in the number
of inputs or outputs, or a decrease in the sample under analysis (i.e., the number of units for comparison), implies
higher efficiencies.
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the order-m input efficiency score (Daraio and Simar, 2007) is given by:

θ̂m(x, y) = E[(θ̂m(x, y)|Y > y)] (3)

The value m represents the number of potential units against we benchmark the analysed

unit (i.e., how efficient is a local government compared with m local governments.). If m

goes to infinity, the order-m estimator converges to FDH. As suggested by Daraio and Simar

(2005), the most reasonable value of m is determined as the value for which the super-efficient

observations becomes constant.

Note that order-m scores are not bounded by 1. A value greater than 1 indicates super-

efficiency, showing that the unit operating at the level (x, y) is more efficient than the average

of m peers randomly drawn from the population of units producing more output than y

(Daraio and Simar, 2007).

2.2.2. Bias corrected DEA estimator of Kneip et al. (2008) (KSW)

The KSW (Kneip et al., 2008) is a bias corrected DEA estimator which derives the asymptotic

distribution of DEA via bootstrapping techniques. As indicated by Simar and Wilson (2008),

DEA and FDH estimators are biased by construction, implying that the true frontier would be

located under the DEA-estimated frontier. As a consequence, DEA scores (i.e., relative to the

estimated frontier) are too “optimistic”. The bootstrap procedure to correct this bias, based

on sub-sampling, uses the idea that the known distribution of the difference between esti-

mated and bootstrapped efficiency scores mimics the unknown distribution of the difference

between the true and the estimated efficiency scores (Badunenko et al., 2012). In addition, the

KSW procedure allows for consistent statistical inference of efficiency estimates (i.e., bias and

confidence intervals for the estimated efficiency scores.).

Therefore, in order to implement the bootstrap procedure (based on sub-sampling), first let

s = nd for some d ∈ (0, 1), where n and s are the sample and sub-sample size, respectively. The

optimal d depends on the dimensionality of the problem. Following, the bootstrap considers

the following scheme:

1. First, a bootstrap sample S∗s = (X∗i , Y∗i )
s
i=1 is generated by drawing (independently,

uniformly and with replacement) s observations from the original sample, Sn.
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2. DEA estimator is applied, where the technology set is constructed with the sub-sample

drawn in step (1), to construct the bootstrap estimates θ̂∗(x, y).

3. Steps (1) and (2) are repeated B times, using the resulting bootstrap values to approxi-

mate the conditional distribution of s2/(p+q+1)( θ̂∗(x,y)
θ∗(x,y) − 1), which allows to approximate

the unknown distribution of n2/(p+q+1)( θ̂∗(x,y)
θ∗(x,y) − 1). The values p and q are the output

and input quantities, respectively. The bias-corrected DEA efficiency score, which is

adjusted by the s subsample size, is given by:

θbc(x, y) = θ∗(x, y)− Bias∗ (4)

where the bias is adjusted by employing the s sub-sample size.

Bias∗ =
( s

n

)2/(p+q+1)
[

1
B

B

∑
b=1

θ̂∗b (x, y)− θ∗(x, y)

]
(5)

4. Finally, for a given α ∈ (0, 1), the bootstrap values are used to find the quantiles δα/2,s,

δ1−α/2,s in order to compute a symmetric 1− α confidence interval for θ(x, y)

[
θ̂(x, y)

1 + n−2/(p+q+1)δ1−α/2,s
,

θ̂(x, y)
1 + n−2/(p+q+1)δα/2,s

]
(6)

3. Sample, data and variables

We consider a sample of Spanish local governments between 1,000 and 50,000 inhabitants for

the 2008–2013 period. The information on inputs and outputs was obtained from the Spanish

Ministry of the Treasury and Public Administrations (Ministerio de Hacienda y Administraciones

Públicas). In particular, outputs were obtained from a survey on local infrastructures and facil-

ities (Encuesta de Infraestructuras y Equipamientos Locales). Information on inputs was obtained

from local governments’ budget expenditures. The final sample contains 1,574 Spanish mu-

nicipalities for every year, after removing all the observations for which information on inputs

or outputs was not available for the sample period (2008–2013). Specifically, there was no
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information for the Basque Country, Navarre,8 the regions of Catalonia and Madrid, as well

as the provinces of Burgos, Huesca, Guadalajara and Huelva.

Inputs are derived from the local governments’ budget expenditures, and are representa-

tive of the cost of the municipal services provided. Using budget expenditures as inputs is

consistent with the literature (e.g., Balaguer-Coll et al., 2007, 2010; Zafra-Gómez and Muñiz-

Pérez, 2010; Fogarty and Mugera, 2013; Da Cruz and Marques, 2014). We construct an input

measure, which represents the total local governments’ costs (X1), by including different

municipal expenditures as personnel expenses, expenditures on goods and services, current

transfers, capital investments and capital transfers.

Outputs are related to the minimum specific services and facilities provided by each mu-

nicipality. Our selection is based on the article 26 of the Spanish law which regulates the local

system (Ley reguladora de Bases de Régimen Local), which establishes the minimum services and

facilities that each municipality must provide compulsorily—depending on their size. Specif-

ically, all governments must provide public street lighting, cemeteries, waste collection and

street cleaning services, drinking water to households, sewage system, access to population

centres, paving of public roads, and regulation of food and drink. The selection of outputs

is consistent with the literature (e.g., Balaguer-Coll et al., 2007; Balaguer-Coll and Prior, 2009;

Zafra-Gómez and Muñiz-Pérez, 2010; Bosch-Roca et al., 2012). Note that differently from

previous studies in other European countries, Spanish local governments do not have any

responsibility in the area of education, care for elderly and health services.

As a result, in an attempt to generate a balanced set of outputs, we have chosen 6 output

variables to measure services and facilities that municipalities provide. Due to the difficulties

in measuring public sector outputs, in some cases it is necessary to use proxy variables, an

assumption which has been widely applied in the literature. Based on the studies by De Borger

and Kerstens (1996a,b), many of these output variables should be considered as crude proxies

for the services delivered by municipalities, due to the unavailability of more direct outputs.

Table 1 reports the minimum services that all local government must provide for the 2008–

2013 period, as well as the different output indicators used to evaluate the services, whereas

table 2 reports descriptive statistics for inputs and outputs for the same period. We include

8The Basque Country and Navarre do not have to present this information to the Spanish Ministry of the
Treasury and Public Administrations because they have its own autonomous system and, consequently, they are
not included in the State Economic Cooperation.
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the median instead of the mean with the intention of avoiding the outliers’ distortion.

4. Methodological comparison

Differently to previous literature, in this section we compare DEA, FDH, order-m and KSW

approaches following the method proposed by Badunenko et al. (2012). Our aim is to uncover

which measures perform better with our particular dataset, i.e., the ones which are more

appropriate to measure local governments’ efficiency in Spain.

Therefore, we carry out the experiment via Monte Carlo simulations. We first define the

data generating process, the parameters and the distributional assumptions on data. Second,

we consider the different methodologies and we take several standard measures to compare

their behaviour. Next, after running the simulations, we discuss the relative performance of

the efficiency estimators under the various scenarios. Finally, we decide which methods are

more appropriate to measure local governments’ efficiency in Spain.

4.1. Simulations

Most previous studies which analysed local governments’ cost efficiency with parametric tech-

niques used the Stochastic Frontier Approach (SFA) developed by Aigner et al. (1977) and

Meeusen and Van den Broeck (1977) as a model to estimate cost frontiers.9 They considered

the input-oriented efficiency where the dependent variable is the level of spending or cost, and

the independent variables are output levels. As a parametric approach, SFA establishes the

best practice frontier on the basis of a specific functional form, most commonly Cobb-Douglas

or Translog. Moreover, it allows to distinguish between measurement error and inefficiency

term.

Following this scheme, we conduct simulations for a production process with one input or

cost (c) and two outputs (y1 and y2).10 We consider a Cobb-Douglas cost function (CD). For

the baseline case, we assume constant returns to scale (CRS) (γ = 1).11 We establish α = 1/3

and β = γ− α.

9See, for instance, the studies of Worthington (2000), De Borger and Kerstens (1996a), Geys (2006), Ibrahim and
Salleh (2006), Geys and Moesen (2009b,a), Kalb (2010), Geys et al. (2010), Kalb et al. (2012) or Štastná and Gregor
(2015), Lampe et al. (2015), among others.

10For simplicity, we use a multi-output model with two outputs instead of six.
11In subsection 4.4, we consider robustness checks with increasing and decreasing returns to scale to make sure

that our simulations accurately represent the performance of our methods.
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We simulate observations for outputs y1 and y2, which are distributed uniformly on the

[1, 2] interval. Moreover, we assume that the true error term (υ) is normally distributed

N(0, σ2
υ) and the true cost efficiency is TCE = exp(−u), where u is half-normally distributed

N(0, σ2
u) and independent from υ. We introduce the true error and inefficiency terms in the

frontier formulation, which takes the following expression:

c = yα
1 · y

β
2 · exp(υ + u), (7)

where c are total costs and y1 and y2 are output indicators. For reasons previously explained

in section 2, there are no observable variation on input prices, so that input prices are ignored

(see, for instance, the studies of Kalb (2012), Pacheco et al. (2014)).

We simulate six different combinations for the error and inefficiency terms, in order to

model various real scenarios. Table 3 contains the matrix of the different scenarios. It shows

the combinations when συ takes values 0.01 and 0.05 and σu takes values 0.01, 0.05 and 0.1.

The rows in the table represent the variation of the error term, while the columns represent

the variation of the inefficiency term. The first row is the case where the variation of the error

term is relatively small, while the second row shows a large variation. The first column is

the case where the inefficiency term is relatively small, while the second and third columns

represent the cases where the inefficiency variation are relatively larger. Λ parameter, which

sets each scenario, is the ratio between of σu and συ.

Within this context, scenario 1 is the case when the error and the inefficiency terms are

relatively small (σu = 0.01, συ = 0.01, Λ = 1.0), which means that the data has been measured

with little noise and the units are relatively efficient, while scenario 6 is the case when the error

and the inefficiency terms are relatively large (σu = 0.1, συ = 0.05, Λ = 2.0), which means

that the data is relatively noisy and the units are relatively inefficient. For all simulations

we consider 2,000 Monte Carlo trials, and we analyse two different sample sizes, n= 100 and

200.12

12To ease the computational process, we use n= 100 and 200 sample size to conduct simulations. In subsection
4.4, we consider a robustness check with a bigger sample size (n = 500) to make sure that our simulations
accurately represent the performance of our data.
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4.2. Measures to compare the estimators’ performance

In order to compare the relative performance of the methodologies, we consider the following

median measures, over the 2,000 simulations. We use median values instead of the average,

since it is more robust to skewed distributions.

• Bias(TCE) = 1
n ∑n

i=1(T̂CEi − TCEi)

• RMSE(TCE) = [ 1
n ∑n

i=1(T̂CEi − TCEi)
2]1/2

• UpwardBias(TCE) = 1
n ∑n

i=1 1 · (T̂CEi > TCEi)

• Kendall’s τ (TCE)= nc−nd
0.5n(n−1)

where T̂CEi is the estimated cost efficiency of municipality i in a given Monte Carlo replication

(by a given method) and TCEi is the true efficiency score. The Bias reports the difference

between the estimated and true efficiency scores. When it is negative (positive), the estimators

are underestimating (overestimating) the true efficiency. The RMSE (Root Mean Squared

Error) measures the standard deviation or error from the true efficiency. The Upward Bias is

the proportion of T̂CE larger than the true ones. It measures the percentage of overestimated

or underestimated cost efficiencies. Finally, the Kendall’s τ test represents the correlation

between the predicted and true cost efficiencies, being nc and nd the number of concordant

and discordant pairs in the data set, respectively. It identifies the differences in the ranking

distributions of the true and the estimated ranks.

Additionally, we also compare the densities of cost efficiency across all Monte Carlo sim-

ulations, in order to report a more comprehensive description of the results, and not only

restrict them to a single summary statistic—the median. For each draw, we sort the data by

the relative value of true efficiency. Since we are interested in comparing the true distribution

for different percentiles of our sample, we show violin plots for 5%, 50% and 95% percentiles.

4.3. Relative performance of the estimators

Tables 4 provides baseline results for the performance measures of the cost efficiency with the

CD cost function. First, looking at the bias of the cost efficiency scores, we observe that the

median bias is always negative in DEA and KSW. This implies that DEA and KSW estimators
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tend to underestimate the true cost efficiency in all scenarios. FDH and order-m present

positive median bias except for scenario 2 in FDH. This implies that FDH and order-m tend to

overestimate the true efficiency. Bias for all methodologies tend to increase with the sample

size when the bias is negative and decrease when the bias is positive, except for order-m in

scenarios 1, 3 and 5. Focusing on RMSE, it is smaller when συ is small, except for FDH in

scenario 5 and order-m in scenarios 3 and 5. Moreover, we can see that the RMSE of the cost

efficiency estimates increase with the sample size for all cases except for FDH in scenarios 1,

3, 5 and 6 and order-m in scenarios 5 and 6.

We also consider the Upward Bias. It shows the percentage of observations for which cost

efficiency is larger than the true value (returning a value of 1). The desired value is 0.5. The

values less (greater) than 0.5 indicates underestimation (overestimation) of cost efficiencies.

In this setting, DEA and KSW systematically underestimate the true efficiency. Moreover, as

the sample size goes up the percentage of underestimated results increases. On the contrary,

FDH and order-m tend to overestimate the true efficiency but, as the sample size goes up over-

estimated results go down. Finally, we analyse Kendall’s τ for the efficiency ranks between

true and estimated efficiency scores. In each scenario and sample size, DEA and KSW have a

larger Kendall’s τ, so they do a better job at identifying the ranks.

We also analyse other percentiles of the efficiency distribution, since it is difficult to con-

clude from the table which methods perform better. Figures 1 to 3 show results for the 5th, 50th

and 95th percentiles of true and the estimated cost efficiencies. We compare the distribution

of each method with the TCE. For visual simplicity, we show only the case when n = 100.

Figures with sample size n = 200 are not much different and are available upon request.

Figures indicate that results depend on the value of Λ parameter. As expected, when

the variance of the error term increase our results are less accurate (note that nonparamet-

ric methodologies assume the absence of noise). On the contrary, when the variance of the

inefficiency term increase, our results are more precise.

Under scenario 1 (see Figures 1a, 1c and 1e), when both error and inefficiency terms are

relatively small, DEA and KSW methodologies consistently underestimate efficiency (their

distributions are below the true efficiency in all percentiles). If we consider median values

and density modes, order-m tends to overestimate efficiency in all percentiles, while FDH also

tends to overestimate efficiency at the 5th and 50th percentiles. Moreover, we observe that FDH
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does a good job at estimating the efficiency units when looking at the 95th percentile.

Although scenario 4 (see Figures 2b, 2d and 2f) is the opposite case to scenario 1, when

both error and inefficiency terms are relatively large, they have the same value of Λ. As in

scenario 1, DEA and KSW methodologies consistently underestimate efficiency. Otherwise,

when looking at the 5th percentile, both FDH and order-m tend to overestimate efficiency.

However, at the 50th and 95th percentiles both methods do a better job at estimating the

efficiency units since their median values and density modes are closer to the TCE distribution.

Similarly, in scenario 2 (see Figures 1b, 1d and 1f), when the error term is relatively large

while the inefficiency term is relatively small, DEA and KSW tend to underestimate the true

efficiency scores, while FDH and order-m appear to be close to the TCE distribution (in terms

of median values and mode). This scenario yields to the worst results since the dispersion of

TCE is much squeezed compared to the estimators’ distributions. Therefore, when Λ is small,

all methodologies do a poorer job at predicting the efficiency scores.

Scenario 3 (see Figures 2a, 2c and 2e) is the case when the error term is relatively small

while the inefficiency term is relatively large. Since Λ value increase, all methodologies do

a better job at predicting the efficiency scores. At the 5th and 50th percentiles, we observe

that DEA and KSW underestimate efficiency, while order-m and FDH tend to overestimate

it. However, if we consider the median and density modes, DEA (followed by KSW) is closer

to the TCE distribution in both percentiles. At the 95th percentile FDH does a better job

at estimating the efficient units, while DEA and KSW slightly underestimate efficiency and

order-m slightly overestimate it.

Otherwise, scenario 5 (see Figures 2a, 2c and 2e) is the case when the error variation is

relatively small while the inefficiency variation is very large. This scenario shows the most

favourable results because the dispersion of the TCE distribution is much scattered and, as

a consequence, it represents better the performance of the estimators. At the 5th and 50th

percentiles DEA and KSW densities are very close to the true distribution of efficiency, while

FDH and order-m overestimate it. Otherwise, at the 95th percentile FDH seems to be closer to

the TCE although it slightly overestimates the true efficiency.

Finally, scenario 6 (see Figures 3b, 3d and 3f) is the case when the error term is relatively

large and the inefficiency term is even larger. Again, we observe that when the variation of

the inefficiency term increases (compared with scenario 2 and 4), all the estimators perform
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better. At the 5th and 50th percentiles, DEA and KSW slightly underestimate efficiency and

FDH and order-m slightly overestimate it. However, despite all methods are quite close to the

TCE distribution, DEA underestimates less than KSW and FDH overestimates less than order-

m. Finally, at the 95th percentile FDH (followed by order-m) is the best method to determine

a higher number of efficient units because its mode and median values are closer to the true

efficiency.

4.4. Robustness checks

We consider a number of robustness checks to verify that our baseline experiment represent

the performance of our estimators. Results for each robustness are given in Appendices A-D.

• No noise: All our nonparametric estimators assume the absence of noise. However, in

the baseline experiment we include noise in each scenario. In this situation, we consider

the case where there is no noise in the data generating process. Results show that DEA,

and KSW perform better at predicting the efficiency scores, while FDH and order-m

remain slightly worse to the baseline experiment. Moreover, all methods do a better job

at estimating the true ranks, except order-m in scenario 1. In short, we find that when

the absence of noise exists, DEA and KSW perform better.

• Changes in sample size: The baseline experiment analyses two different sample sizes,

n= 100 and 200. We also consider the case where the sample size is very large, that is,

the case where n= 500. There exist a little deterioration in DEA and KSW performance,

while FDH and order-m vary depending on the scenario. However, the results only

differed slightly. We do not see any qualitative changes from the baseline results.

• Returns to scale: The baseline experiment assumes CRS technology. We also consider the

case where the technology assumes decreasing and increasing returns to scale (γ = 0.8

and γ = 1.2). We find the performance of DEA and KSW estimators slightly dete-

riorated. Performance for order-m is improved with decreasing returns to scale and

deteriorated with increasing returns to scale, while FDH varies depending on the sce-

nario. However, despite these minor quantitative differences, the qualitative results do

not change.
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• Different m values for order-m: As suggested by Daraio and Simar (2007), in order

to choose the most reasonable value of m, we have considered different m sizes (m =

20, 30 and 40). In our application, the baseline experiment sets m = 30. In general,

when comparing with the other m values we observe some quantitative changes (i.e.,

performance with m = 20 gets worse, while with m = 40 slightly improves), however

the qualitative results from the baseline case seem to hold.

4.5. Which estimator in each scenario

Based on the prior analysis on the relative performance of the different methodologies, we

sum up which and when they must be used, assuming that the simulations remain true

for different data generating processes. Table 5 suggests which estimators to use for each

scenario when taking into account the efficiency scores. The first row in each scenario shows

the relative size of the median estimates, while the rest of the rows suggest which estimators

use depending on the percentile (5th, 50th or 95th). In some cases different methodologies are

relatively similar in terms of identifying the efficiency scores.

As the study of Badunenko et al. (2012) concludes, if Λ value is small, as in scenario 2

(Λ = 0.2), the efficiency scores and ranks will be poorly estimated13. This scenario yields

to the worst results, since the estimators are far from the “truth”. Despite in table 5 we

have suggestions for scenario 2, we do not recommend efficiency analysis for this particular

scenario, since it would be inaccurate.

Although scenario 1 and 4 present better results than scenario 2 (when Λ = 1), estimators

also do a poor job at predicting the true efficiency scores. In scenario 1, FDH seems to be the

best method to estimate efficiency in all percentiles, however, also DEA should be considered

at the 5th percentile (the TCE remains between DEA and FDH at this percentile). Similarly, in

scenario 4 FDH is the dominant method at the 5th percentile, however, DEA also should be

considered. Otherwise, both FDH and order-m perform better at the 50th and 95th percentiles.

When looking at the efficiency rankings, DEA and KSW methodologies do a fair job at ranking

the observations in both scenarios.

Similarly, scenario 6 performs better than scenario 1 and 4, since the variation of the in-

efficiency term increases and, as a consequence, the value of Λ also increases (Λ = 2). In

13It is difficult to obtain the inefficiency from a relatively large noise component.
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this scenario seems that the methodologies which estimate better the true efficiency scores are

DEA and FDH at the 5th and 50th percentiles, and FDH (followed by order-m) at the 95th per-

centile. Otherwise, when focusing on the rankings, DEA and KSW methodology do a better

job at ranking the observations.

In scenario 3, the value of Λ increases again (Λ = 5), and all methodologies do a better job

at predicting the efficiency scores. When looking at the 5th and 50th percentiles, DEA (followed

by KSW) seems to be the estimator closer to the true efficiency. At the 95th percentile FDH

is the method which does the best job. Otherwise, when considering the rankings, DEA and

KSW are the methods which estimate the efficiency rankings better.

Finally, scenario 5 is the case where the value of Λ is larger (Λ = 10). Here, the estimators

do a good job at estimating efficiency and ranks. DEA (followed by KSW) performs better

when looking at the 5th and 50th percentiles and FDH at the 95th percentile. In addition, DEA

and KSW do a really good job at estimating the efficiency rankings.

5. Which estimator performs better with Spanish local governments’

Finally, in this section we define which methodologies are more appropriate to measure local

governments’ efficiency in Spain. First, we estimate Λ values for our particular dataset via the

nonparametric kernel estimator of Fan et al. (1996), hereafter FLW14. The estimated Λ value

helps to determine the scenario in which our data lies in. Second, we have to refer to table

5 and choose the appropriate estimators for our particular needs. Therefore, table 6 reports

results of Λ parameters for our sample of 1,574 Spanish local governments between 1,000 and

50,000 inhabitants for the 2008–2013 period.

As we can observe, results of Λ estimates are closer to 2, which corresponds to scenario 6.

We see that the goodness-of-fit measure (R2) of our empirical data remains around 0.8. The

summary statistics for the overall cost-efficiency results averaged over all municipalities for

each year can be found in table 7. Moreover, figure 4 provide the violin plots of the estimated

cost efficiencies to show further interpretation of results15.

In scenario 6, DEA and FDH were the methods which performed better at the 5th and 50th

14In the appendix we describe how to obtain Λ measures via FLW derived from a cost function.
15For visual simplicity, we plot together years 2008–2013, however they do not differ much and individual plots

are available upon request.
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percentiles of the distribution (the former slightly underestimates efficiency while the latter

slightly overestimates it), and FDH was the method which performed better at the the 95th

percentile. Therefore, the true efficiency would remain between DEA and FDH results, given

what we found in our simulations. In this context, DEA results indicate that the average cost

efficiency during the period 2008–2013 is 0.54, while the average in FDH is 0.77, so we expect

that the true cost efficiency scores are found between 0.54 and 0.77. Moreover, looking at the

lower quartile (Q1), average scores are 0.42 in DEA and 0.61 in FDH, so we expect that the

true efficiency scores at the lower end of the distribution are between 0.42 and 0.61. Similarly,

looking at the upper quartile (Q3), FDH average scores are 0.99, and we expect that these

estimated efficiencies are similar to the true ones.

Looking at the efficiency scores shown by KSW, they are smaller than those reported

by DEA and FDH (the average efficiency scores in KSW for the period 2008–2013 is 0.48).

Our belief, based on our Monte Carlo simulations, is that KSW methodology consistently

underestimates the true efficiency scores. On the contrary, all the statistics estimated by order-

m methodology are bigger than those shown in DEA and FDH (the average efficiency scores

in order-m for the period 2008–2013 is 0.83). Therefore, given what we have seen in the

experiment, we believe that order-m method overestimates the true efficiency scores.

Otherwise, when looking at the rank estimates we must note that in scenario 6, DEA and

KSW methodologies did the best job at identifying the ranks of the efficiency scores. Table 8

shows the rank correlation between the cost efficiency estimates of the different methodolo-

gies. As we observed in our Monte Carlo experiment, DEA and KSW have a high correlation

between their rank estimates since they have a similar distribution of the rankings. Moreover,

despite the fact that there exists a relatively high correlation between order-m and FDH rank

estimates with DEA and KSW, these last two outperform order-m and FDH.

6. Conclusion

Over the last years, there have been many empirical research studies that have focused on the

evaluation of efficiency in local governments. However, despite the high number of empirical

contributions, there is still a lack of a clear and standard methodology to perform efficiency

analysis. Since there is no obvious way to choose an estimator, the method chosen may affect
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the efficiency results, and could provide "unfair" or biased results. Therefore, we note that each

particular methodology leads to different cost efficiency results for each local government, but

one must provide efficiency scores that will be more reliable or closer to the truth (Badunenko

et al., 2012).

In this setting, the current paper has attempted to compare four different nonparametric

estimators, which are DEA, FDH, order-m and KSW. All these approaches are well studied

in previous literature, but little is known about their performance related to each other. In

contrast to previous literature, where there has been a regular comparison between techniques

and several proposals of alternative ones, we have followed the method employed in the study

of Badunenko et al. (2012), with the aim to compare the different methods used and choose

the ones which performed better with our particular dataset, i.e., the ones which are more

appropriate to measure local government cost efficiency in Spain.

We have found that the results of the experiment depend on the value of Λ parameter, i.e.,

the relative sizes of συ and σu. Our results are more precise when the ratios of the inefficiency

term to the error term are larger, while they are less accurate when the ratio is smaller.

We estimate Λ values for our sample of Spanish local governments for the 2008–2013

period. The results suggest that our particular dataset lies in scenario 6. In this scenario, DEA

and FDH methodologies did the best job at estimating the efficiency scores given what we

found in our simulations. Accordingly, our results indicate that the average true cost efficiency

would be between 0.54 and 0.77 during the period 2008–2013, suggesting that Spanish local

governments could achieve the same level of local outputs with about 0.23 to 0.36 fewer

resources. In addition, when looking at the rank estimates in scenario 6, DEA and KSW

methodologies did the best job at identifying the ranks of the efficiency scores.
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Estimation of Λ

We use the following semi-parametric stochastic cost frontier model:

Ci = g(yi) + ε i, i = 1, ....., n, (8)

where yi is a p× 1 vector of random regressors (outputs), g(.) is the unknown smooth function

and ε i is a composed error term which has two components: (1) υi, the two-sided random error

term which is assumed to be normally distributed N(0, σ2
υ ), and (2) ui, the cost efficiency term

which is half-normally distributed (ui ≥ 0). These two error components are assumed to be

independent.

We use available data on cost (municipal budgets) due to the difficulty to use market prices

to measure public services. Hence the assumption allows us to omit the factor prices from the

model.

We derive the concentrated log-likelihood function ln l(Λ) and maximize it over the single

parameter Λ:

max
Λ

ln l(Λ) = max
Λ

{
− n ln σ̂ +

n

∑
i=1

ln
[

1 + Φ
(

ε̂i

σ̂
Λ
)]
− 1

2σ̂2

n

∑
i=1

ε̂i
2

}
, (9)

with ε̂i = Ci − Ê(Ci|yi) + µ(σ̂2, Λ) and

σ2 =

{
1
n

n

∑
i=1

[Ci − Ê(Ci|yi)]
2

/[
1− 2Λ2

π(1 + Λ2)

]}1/2

, (10)

where Ê(Ci|yi) is the kernel estimator of the conditional expectation E(Ci|yi) and it is given

as:

Ê(Ci|yi) =
n

∑
j=1

Cj · K
(

yi − yj

h

)/ n

∑
j=1

K
(

yi − yj

h

)
, (11)

where K(.) is the kernel function and h = hn is the smoothing parameter. For further details

about the estimation procedure see Fan et al. (1996).
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Table 1: Minimum services provided by all local governments and output variables

Minimum services Output indicators

In all municipalities:

Public street lighting Number of lighting points
Cemetery Total population
Waste collection Waste collected
Street cleaning Street infrastructure surface area
Supply of drinking water to households Length water distribution networks (m)
Sewage system Length sewerage networks (m)
Access to population centres Street infrastructure surface area
Paving of public roads Street infrastructure surface area
Regulation of food and drink Total population
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Table 2: Descriptive statistics for data in inputs and outputs, period 2008-2013

Mean S.d.
INPUTS1

Total costs (X1) 6,856,864.55 7,990,865.20

OUTPUTS
Total population (Y1) 7,555.36 8,460.33
Street infrastructure surface area2(Y2) 336,673.55 325,808.07
Number of lighting points (Y3) 1,519.78 1,567.02
Tons of waste collected (Y4) 4,216.73 19,720.07
Length water distribution networks2 (Y5) 50,503.12 93,877.89
Length sewerage networks2 (Y6) 29,650.29 32,424.83

[1]: In thousands of e.

[2]: In square meters.
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Table 3: Combinations of error and inefficiency in Monte Carlo simulations to model scenarios

We simulate six different combinations for the error (συ) and inefficiency (σu) terms, in order to model various
real scenarios. The rows represent the variation of the error term, while the columns represent the variation of the
inefficiency term. Λ parameter is the ratio between of σu and συ, which sets each scenario.

σu = 0.01 σu = 0.05 σu = 0.1
συ = 0.01 s1: Λ = 1.0 s3: Λ = 5.0 s5: Λ = 10.0
συ = 0.05 s2: Λ = 0.2 s4: Λ = 1.0 s6: Λ = 2.0
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Table 6: Estimates for Λ value for Spanish local governments

This table contains the results of the Λ parameters of our sample of 1,574 Spanish local governments for the period
2008–2013. Λ values help to determine the scenario in which our data lies in. We also report the goodness-of-fit
measure (R2) of our empirical data.

2008 2009 2010 2011 2012 2013
Λ 2.0596 2.2143 1.7256 1.5953 1.8283 1.8371
R2 0.7980 0.8331 0.8250 0.8244 0.8209 0.8478
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Table 7: Summary statistics for efficiency results in Spanish local governments

DEA
Mean Median Min Max S.d. Q1 Q3

2008 0.4943 0.4689 0.0437 1.0000 0.1876 0.3611 0.6038
2009 0.5843 0.5740 0.1257 1.0000 0.1677 0.4633 0.6830
2010 0.5212 0.4953 0.1312 1.0000 0.1718 0.4017 0.6135
2011 0.5314 0.5092 0.1359 1.0000 0.1728 0.4104 0.6237
2012 0.5316 0.5128 0.1079 1.0000 0.1749 0.4077 0.6429
2013 0.5712 0.5591 0.1138 1.0000 0.1817 0.4458 0.6823
2008–2013 0.5390 0.5199 0.1097 1.0000 0.1761 0.4150 0.6415

FDH
Mean Median Min Max S.d. Q1 Q3

2008 0.7444 0.7678 0.0808 1.0000 0.2276 0.5644 1.0000
2009 0.8186 0.8563 0.2045 1.0000 0.1841 0.6821 1.0000
2010 0.7761 0.7848 0.1559 1.0000 0.1961 0.6251 1.0000
2011 0.7453 0.7434 0.2037 1.0000 0.2108 0.5808 0.9892
2012 0.7630 0.7737 0.1497 1.0000 0.2076 0.6104 1.0000
2013 0.7619 0.7721 0.1497 1.0000 0.2055 0.6104 0.9999
2008–2013 0.7682 0.7830 0.1574 1.0000 0.2053 0.6122 0.9982

Order-m
Mean Median Min Max S.d. Q1 Q3

2008 0.8089 0.8255 0.0834 1.9813 0.2353 0.6312 1.0000
2009 0.8691 0.8926 0.2122 1.7369 0.2005 0.7318 1.0013
2010 0.8385 0.8515 0.2172 1.8080 0.2032 0.6938 1.0000
2011 0.8088 0.8100 0.2368 2.0281 0.2197 0.6497 1.0000
2012 0.8222 0.8358 0.1797 1.8914 0.2169 0.6644 1.0000
2013 0.8209 0.8328 0.1785 1.9204 0.2175 0.6609 1.0000
2008–2013 0.8281 0.8414 0.1846 1.8944 0.2155 0.6720 1.0002

KSW
Mean Median Min Max S.d. Q1 Q3

2008 0.4421 0.4239 0.0400 1.0000 0.1720 0.3183 0.5454
2009 0.5384 0.5297 0.1179 1.0000 0.1575 0.4250 0.6370
2010 0.4541 0.4294 0.0563 1.0000 0.1603 0.3420 0.5399
2011 0.4752 0.4558 0.1178 1.0000 0.1572 0.3697 0.5558
2012 0.4677 0.4477 0.0134 1.0000 0.1650 0.3503 0.5687
2013 0.4846 0.4711 0.0118 1.0000 0.1619 0.3678 0.5848
2008–2013 0.4770 0.4596 0.0595 1.0000 0.1623 0.3622 0.5719
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Table 8: Rank correlation Kendall coefficients between the cost efficiency estimates of the dif-
ferent methodologies

2008
DEA FDH Order-m KSW

DEA 1.0000 0.6035 0.5976 0.9264
FDH 0.6035 1.0000 0.8114 0.5958
Order-m 0.5976 0.8114 1.0000 0.5661
KSW 0.9264 0.5958 0.5661 1.0000

2009
DEA FDH Order-m KSW

DEA 1.0000 0.4736 0.5589 0.9300
FDH 0.4736 1.0000 0.7305 0.4506
Order-m 0.5589 0.7305 1.0000 0.5208
KSW 0.9300 0.4506 0.5208 1.0000

2010
DEA FDH Order-m KSW

DEA 1.0000 0.4959 0.5817 0.9030
FDH 0.4959 1.0000 0.6964 0.4636
Order-m 0.5817 0.6964 1.0000 0.5314
KSW 0.9030 0.4636 0.5314 1.0000

2011
DEA FDH Order-m KSW

DEA 1.0000 0.5931 0.5925 0.9098
FDH 0.5931 1.0000 0.8014 0.5456
Order-m 0.5925 0.8014 1.0000 0.5343
KSW 0.9098 0.5456 0.5343 1.0000

2012
DEA FDH Order-m KSW

DEA 1.0000 0.6140 0.5652 0.9136
FDH 0.6140 1.0000 0.8093 0.5813
Order-m 0.5652 0.8093 1.0000 0.5121
KSW 0.9136 0.5813 0.5121 1.0000

2013
DEA FDH Order-m KSW

DEA 1.0000 0.5237 0.5555 0.9128
FDH 0.5237 1.0000 0.7105 0.4817
Order-m 0.5555 0.7105 1.0000 0.4996
KSW 0.9128 0.4817 0.4996 1.0000
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Figure 1: Violin plots in scenario 1 and 2 for 5th, for 5th, 50th and 95th percentiles of cost
efficiency estimates under a Cobb-Douglas cost function.
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Figure 2: Violin plots in scenario 3 and 4 for 5th, for 5th, 50th and 95th percentiles of cost
efficiency estimates under a Cobb-Douglas cost function.
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Figure 3: Violin plots in scenario 5 and 6 for 5th, for 5th, 50th and 95th percentiles of cost
efficiency estimates under a Cobb-Douglas cost function.
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Figure 4: Violin plots of cost efficiency estimates in Spanish local governments
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