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Abstract.- The spiny lobster Panulirus pascuensis stands out among the endemic species of Easter Island, due to its cultural and
economic importance. A total of 16 microsatellite loci were characterized in 18 individuals, 9 of which were polymorphic. The
mean number of alleles per locus was 3.44 (2-6) and the observed heterozygosity ranged from 0.11 to 0.93. None of the loci
exhibited significant linkage disequilibrium or departures from HWE. These new microsatellites will be used to obtain information
about migration, population structure and genetic diversity of P. pascuensis in order to improve the future sustainable management
and conservation plans.
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INTRODUCTION

Remote island systems are characterized by having a unique
fauna, since the high degree of isolation results in high
endemism (DeMartini & Friedlander 2004). Given the
particular characteristic of the remote islands, the study of
their biota allows research on metapopulation dynamics,
speciation processes and mechanisms underlying the
maintenance of biodiversity (Hixon & Webster 2002, Almany
et al. 2009, Friedlander et al. 2013). In the current context
of global change and increased anthropogenic pressure which
could have negative effects on the diversity and abundance of
the biota, the study of these systems has acquired importance
to anticipate possible effects, mainly due to their greater
susceptibility to environmental changes (Hanski 1999, Bell
2008).

Easter Island or Rapa Nui is considered one of the most
isolated inhabited islands in the world (Anderson 1995, Boyko
2003); it is located 4,130 km west of the Chilean coast and
2,415 km east of Ducie Island (Abbott & Santelices 1985).
Its levels of species diversity are relatively low but include
high endemism (Rehder 1980, Randall & Cea-Egaña 1984,

Roberts et al. 2002), which could be explained by its high
isolation level (Friedlander et al. 2013). One of the most
emblematic marine species of Easter Island is the endemic
spiny lobster Panulirus pascuensis Reed, 1954 (Order
Decapoda, Family Palinuridae); its main distribution includes
Easter Island and Salas y Gómez Island, but it has also been
reported in Pitcairn Island and the austral islands of French
Polynesia (Retamal 2004, Poupin 2008). This species
represents an important fishery resource for the Rapa Nui
population (Boyko 2003, Tapia 2010), and although its
exploitation is mainly for subsistence or handicrafts (Castilla
et al. 2014), historic data show a decrease in population sizes
as well as in the average size of individuals (CORFO 1978,
Castilla et al. 2014, Yáñez et al. 2014). There is not much
information about the biology and ecology of this species, for
example information about its ontogeny is lacking (Vereschaka
1990, 1995; Parin et al. 1997, Rivera & Mujica 2004).
Moreover, molecular markers to study the migration patterns,
population structure and the genetic diversity of this species
have not yet been developed. Massively parallel Next
Generation Sequencing (NGS) makes it possible to develop
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microsatellite markers in non-model species (e.g., Vega-Retter
et al. 2016). The objective of this study was to identify and
characterize microsatellite loci for P. pascuensis, in order to
perform future genetic studies for the design and
implementation of appropriate conservation and management
plans in fishery.

MATERIALS AND METHODS

Eighteen adult individuals of P. pascuensis were collected
in Easter Island (27°13’S, 109°22’W) between September
2013 and November 2015, and one pereiopod of each
individual was stored in 95% ethanol. A small piece of muscle
(approximately 1 mg) was used for DNA extraction using
the salt-extraction protocol (Aljanabi & Martinez 1997).
DNA concentrations were measured with a Nanodrop

Table 1. Primer sequences and characteristics for 16 microsatellite loci of Panulirus pascuensis from Easter Island. Ta= annealing
temperature, Na= number of alleles / Secuencia de los primers y características de los 16 loci microsatellites descritos para
Panulirus pascuensis de Isla de Pascua. Ta= temperatura de alineamiento, Na= número de alelos

Spectrophotometer (Thermo Fisher)1. One individual was
chosen for sequencing, and its quality was checked with the
Bioanalyzer Agilent Model 2100. The library was built using
the GS Rapid Library Preparation kit in OMICS-Solutions,
Chile. In order to maximize sequencing, 4 different species
were barcoded for the same run in a 454 GS Junior system
(Roche); thus 1/4 of the reads were for P. pascuensis. After
sequencing, repeated motifs (di and tetra) were searched
for with MISA software and primers were designed using
Primer3. Fifty loci (LAN1 to LAN50) were tested in 4
individuals with a 12 µl polymerase chain reaction containing
100 ng template DNA, 0.5 µl each primer (0.25 µM), 2.4 µl
dNTP (100 µM dNTP) (Applied Biosystems), 0.5 µl MgCl2
(2 mM), 1.3 µl 10x PCR buffer (0.96x), 0.12 µl Taq
Polymerase (0.5 U) (Invitrogen) and 4.68 µl H2O. Cycling
conditions consisted of an initial denaturing step of 2 min at
95°C, followed by 35 cycles of 30 s at 95°C, 1 min at the1Thermo Fisher Scientific Inc. <www.thermofisher.com>
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annealing temperature, 1 min at 72°C and a final elongation
step at 72°C for 3 min. Sixteen of the 50 loci showed reliable
amplifications using agarose gel electrophoresis. To evaluate
polymorphism in an automatic sequencer, the 18 individuals
collected were analyzed for these 16 loci. PCR products
were genotyped in the sequencing core at the Pontificia
Universidad Católica, Chile, using the internal size standard
LIZ 500 (Applied Biosystems) and with the reverse primers
of each microsatellite locus marked with a fluorescent dye.
Sequences were published in GenBank with accession
numbers KX553880-KX553895 (Table 1). The Micro-
Checker software (van Oosterhout et al. 2004) was used
to detect potential genotyping errors and the presence of
null alleles in the microsatellite data. Allele frequencies and
parameter estimates were calculated using the GENETIX
software (Belkhir et al. 1996-2004). Linkage disequilibrium
was estimated for all pairs of loci, and deviations from Hardy-
Weinberg expectations (HWE) were calculated using the
permutation test associated with the FIS calculation in the
GENETIX software.

RESULTS AND DISCUSSION

Of the 16 characterized microsatellite loci, 7 showed a tetra-
and 9 a dinucleotide motif. Nine out of 16 microsatellites
were polymorphic (Table 1). There was no evidence of null
alleles or stuttering errors in the polymorphic microsatellites.
No significant deviations from HWE were detected and
significant linkage disequilibrium was not detected among
pairs of loci, indicating that the loci are probably not closely
linked on chromosomes. These microsatellites showed allele
sizes ranging from 147 bp (LAN37) to 441 (LAN26), and
numbers of alleles from one (LAN2, LAN12, LAN16,
LAN19, LAN21, LAN26, LAN33) to 6 (LAN28). The 9
polymorphic loci showed an average of 3.44 alleles per locus
with observed heterozygosity ranging from 0.29 (LAN17)
to 0.93 (LAN28) (Table 2). While 7 of the loci described in
this work presented only one allele, it is important to consider
that a small sample size was used from one island. It is
probable that these loci may exhibit more than one allele in a
more extensive sample including different islands.

Considering that direct approaches are difficult to perform
in marine environments (Levin 2006, Gawarkiewicz et al.
2007), the molecular tools here characterized will be helpful
to investigate the connectivity of the spiny lobster
populations. Moreover, these microsatellite loci will allow
information about the population structure and genetic
diversity of this species, which together with the connectivity
pattern is a fundamental information to build appropriate
conservation and management plans of this important lobster
species in Easter Island.

Table 2. Characteristics of the 9 polymorphic microsatellite loci of
Palinurus pascuensis. N= number of analyzed individuals, Na= number
of alleles, Ho/He= observed and expected heterozygosity. FIS individual
F-statistic accounting for deviations in the observed number of
heterozygotes. No significant departures from HWE were observed,
tested using 5,000 permutations / Características de los 9 loci
microsatélites polimórficos de Palinurus pascuensis. N= número de
individuos analizados, Na= número de alelos, Ho/He= heterocigosidad
observada y esperada. El índice FIS relaciona las heterocigosidades
para determinar posibles desviaciones al Equilibrio Hardy-Weinberg
(EHW). El análisis de permutaciones (5.000 permutaciones) no
detectó desviaciones estadísticamente significativas al EHW
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