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ABSTRACT 

This work presents the development of self-modifiable Intellectual Property (IP) modules for histogram calculation using the model-
based design technique provided by Xilinx System Generator. In this work, an analysis and a comparison among histogram calculation 
architectures are presented, selecting the best solution for the design flow used. Also, the paper emphasizes the use of generic 
architectures capable of been adjustable by a self-configurable procedure to ensure a processing flow adequate to the application 
requirements. In addition, the implementation of a configurable IP module for histogram calculation using a model-based design 
flow is described and some implementation results are shown over a Xilinx FPGA Spartan-6 LX45.
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RESUMEN

Este artículo presenta el desarrollo de módulos de propiedad intelectual modificables automáticamente para el cálculo de 
histogramas empleando el flujo de diseño basado en modelos provisto por Xilinx System Generator. En este artículo se realiza un 
análisis y comparación entre las arquitecturas para el cálculo de histogramas, seleccionando la mejor solución para el flujo de diseño 
empleado. También se hace énfasis en el uso de arquitecturas genéricas capaces de ajustarse a las necesidades del flujo de datos de 
la aplicación mediante un procedimiento de configuración automática. Además, se describe la implementación de un módulo de 
propiedad intelectual configurable para el cálculo de histogramas sobre el flujo de diseño basado en modelos, del cual se muestran 
algunos detalles de implementación para diferentes opciones de configuración sobre un FPGA Spartan-6 LX45 de Xilinx.

Palabras clave: Procesado Digital de imágenes, cálculo de histogramas, FPGA, sistema de generación Xilinx MATLAB®/Simulink®, 
configuración automática.
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Introduction

Digital Image Processing (DIP) tasks have, as their main 
objective, the application of certain mathematical 
operations over an image to obtain a desired result 
(González & Woods, 2007). To achieve this objective, 
many software-based (SW) solutions have been developed 
in recent decades, using sequential algorithms for 
General Purpose Processors (GPPs) (Bailey, 2011; Pulli, 
Baksheev, Kornyakov, & Eruhimov, 2012). On the other 
hand, hardware-based (HW) implementations - like 
Field Programmable Gates Arrays (FPGAs) – have been 
used to increase the operation frequency of DIP systems 
(Alsuwailem & Alshebeili, 2005; Bailey, 2011; Barranco, 
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Díaz, Gibaldi, Sabatini, & Ros, 2012; Hanumantharaju, 
Ravishankar, Rameshbabu, & Ramachandran, 2011). These 
devices are suitable for parallel computing systems that 
allow the implementation of elaborate functions.

Increasing computing power required by current DIP 
algorithms can be achieved by performing intensive 
computing tasks in HW, as well as by exploiting the 
parallelism of the devices and the partial independence of 
the algorithms (Bailey, 2011; Qasim, Abbasi, & Almashary, 
2009).

but makes difficult the modification of the internal 
architecture of the block. MATLAB®/Simulink® delivers 
some instructions for adding, deleting and interconnecting 
Simulink® blocks using a complex MATLAB® script, 
changing the architecture of the block and increasing 
its versatility (Popinchalk, 2008a, 2008b, 2008c). Those 
instructions are used to develop a new methodology to 
create self-configurable Image Processing blocks for XSG 
(Garcés-Socarrás et al., 2016).

Histogram processing is a frequent operation in DIP, 
showing the statistical distribution of gray or color levels 
of an image (Bailey, 2011; González & Woods, 2007). 
The correct manipulation of the histogram permits the 
equalization of the levels, to obtain a better image. This 
information is also used for segmentation and image 
compression (Blair, Robertson, & Hume, 2013; Cho, Jin, 
Pham, Kim, & Jeon, 2007; González & Woods, 2007; Gu, 
Noman, Aoyama, Takaki, & Ishii, 2013; Kelly, Siddiqui, 
Bardak, & Woods, 2014; Kokufuta & Maruyama, 2010; Ma, 
Najjar, & Roy-Chowdhury, 2014). 

Applications of this technique are mostly software-based 
sequential solutions with limited parallelism, depending 
on the processing capabilities of the processor and the 
characteristics of the code executed on it (González & 
Woods, 2007). Hardware solutions need some modifications 
to improve resource utilization and exploit HW parallelism. 
Some histogram calculation architectures for FPGAs use 
different variations described in the bibliography, which 
allow choosing an adequate tradeoff between resources 
consumption and operation frequency (Bailey, 2011; Jamro, 
Wielgosz, & Wiatr, 2007; Muller, 1995; Shahbahrami, Hur, 
Juurlink, & Wong, 2008).

The present article describes the implementation of a 
self-configurable IP module for histogram calculation 
that could change its internal architecture using a System 
Generator model-based design flow. This module is part 
of the image processing toolbox XIL XSGImgLib designed 
for the development of computer vision systems using 
XSG (Garcés-Socarrás, Sánchez-Solano, Brox Jiménez, 
& Cabrera Sarmiento, 2013). First, some theoretical 
concepts about image histogram techniques are presented, 
analyzing the architectures of the histogram calculation 
methods, choosing the most adequate for the selected 
design flow. Then, the implementation of a modifiable IP 
module by a self-configurable procedure is performed, 
comparing and evaluating the resource consumption and 
operating frequency for different configurations. Finally, 
main conclusions of this work are presented, exposing the 
advantages of the implementations of highly configurable 
modules, adaptable to different applications.

Images histogram

A histogram represents a variable in a bar graph, where the 
height of each bar is proportional to the number of times that 

b.

Figure 1. Histogram calculation. a) Image under test (256 × 256 × 8-bits). 
b) Histogram graph.
Source: MATLAB® Software.

The integration of Electronic Design Automation (EDA) 
tools (Sangiovanni-Vincentelli, 2005) and model-based 
development frameworks such as MATLAB®/Simulink® 
has motivated the development of new design techniques 
for autonomous and modular processing systems, 
reducing the global design time. System Generator tool 
(XSG), developed by Xilinx, uses a schematic description 
to create and parameterize the components of the design, 

a.
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appears each specific value or group of values. For a digital 
image, the histogram provides a graphical representation 
of the tonal distribution. The histogram function (H(i )) of 
a gray scale image is the quantity of pixels (ti ) for each 
gray level (i ) in the image (González & Woods, 2007). 
Mathematically, the histogram function (l ) is defined as the 
summatory of the number of pixels with the same gray level 
(l ). Each pixel at the coordinates x and y is denoted as f( x,y) 
and the image size contains m × n pixels (Bailey, 2011).

 H (i)=
1,   f (x, y)= i
0,  f (x, y)≠ i

⎧
⎨
⎪⎪

⎩⎪⎪x=0,y=0

m−1,n−1

∑  (1)

The total number of histogram levels (L) can be reduced 
by grouping consecutive pixel values in the same interval 
(Alsuwailem & Alshebeili, 2005; Jamro et al., 2007). In this 
case, the counting of histogram values in (l) is increased 

when f x,y( )×G / L⎡
⎣⎢

⎤
⎦⎥ = i  , being G the new number of 

histogram levels. Figure 1 shows an 8-bit gray scale image 
and its respective histogram graph. The abscissa (horizontal 
axis) of the graph represents the possible gray levels in the 
image (L = G =28 =256) while the ordinate (vertical axis) 
denotes the quantification for each gray level.

Architectures for histogram calculation

According to its mathematical definition, histogram 
calculation requires counting the pixels of each color or 
gray level to access this information in the processing step. 
Before the quantification process, an initialization stage 
is needed because all histogram level records should be 
reset to zero before analyzing a new image. Two different 
architectures for histogram calculation are applicable for 
hardware device implementations, where the base for the 
pixel level accumulation is counter blocks (Figure 2a) or 
memory blocks (Figure 2b), respectively.

The architecture shown in Figure 2a uses counter blocks to 
increase calculation speed and to perform the initialization 
stage on a single clock cycle. With the arrival of a new 
pixel (f( x,y)) at the histogram calculation block, the 
respective level counter (Counteri, where 0 ≤ i ≤ G − 1) is 

selected and its value is incremented. Once the image is 
fully analyzed, values of the index signal are appropriately 
swept so that the count output sequentially provides the 
cumulative values for each color or gray level in the image. 
This operation requires as many clock cycles as the number 
of levels considered in the histogram. At the end of the 
processing cycle, a control system activates the clear signal 
that simultaneously returns all counters to zero, performing 
the initialization stage of the block.

The main problem in this architecture is the use of many 
logic resources for the counters array, whose size is equal 
to the number of color or gray levels selected for the image 
histogram calculation. Also the counters value width is set, 
for each counter, to the worst case (when the hole image 
only has one color or gray level) which is equal to the 
image size (m × n-pixels). The utilization of the schematic 
description provided by XSG needs a self-configuration 
methodology and a generic architecture, explained in 
(Garcés-Socarrás et al., 2016), for the parameterization of 
the number of levels for the histogram, meanwhile, the use 
of HDL techniques is more common in this task.

The dual-port memory solution, as shown in Figure 2b, 
reduces the logic resources consumption, substituting them 
by memory blocks, which can be easily parameterized. 
When a new pixel (f( x,y)) from the image arrives at the 
histogram calculation block, its value is used to address the 
corresponding color or gray level cell in the memory. Then, 
the accumulated value of the pixel level is obtained by 
reading the active memory location using Port 1. This value 
is incremented by one and stored at the same memory 
location using Port 2. Taking into account the hardware 
perspective, a delayed writing operation at Port 2 is needed 
because the cumulative value for this pixel level is read by 
Port 1 in the next clock cycle, and it needs to be updated 
and re-written before a new pixel arrives and another 
memory location is selected (Bailey, 2011). Once the 
image is completely analyzed, the control system reads all 
memory locations for the pixel level accumulation through 
Port 1 output, using as many read cycles as color or gray 
levels were configured for the histogram calculation, at the 
same time the initialization stage of the memory cells is 
performed.

a. b.

Figure 2. Architectures for histogram calculation. a) Using counters; b) Using dual-port memories (Bailey, 2011).
Source: Authors
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In this architecture, a simultaneous access to the same 
memory cell could occur, and then, the value read is not 
valid in this clock cycle. E. Jamro presented a solution in 
Jamro et al. (2007) where the value of the histogram level 
for the pixel under test is active during two clock cycles. 
At the first cycle, the operations of memory reading and 
the increment of the quantification value are performed 
and, at the second cycle, the updated quantification value 
is written in the same memory cell. This solution does 
not work when the next pixel to analyze has the same 
color or gray level as the previous pixel. D. Bailey solved 
this problem in (Bailey, 2011) using a comparator block 
with two inputs (the previous and the actual pixels); if 
the previous and the actual pixels are equals, the read 
operation of the accumulation at Port 1 is discarded and 
a new update operation is performed to the previous 
accumulation value. This solution prevents a read/write 
operation in the same memory cell when continuous 
pixels have the same color or gray level, which often 
occurs in many regions of an image.

Basic histogram calculation architectures use a simple data-
flow of pixels where only one histogram counter module is 
needed (HistCell1), as shown in Figure 3a. This architecture 
works in two steps. In the first step, the whole image is 
analyzed calculating the histogram, for obtaining the results 
in the second step. This architecture causes a delay in the 
processing flow equal to as many clock cycles as pixels in 
the image, obtaining a new histogram every two images. 
To solve this issue some authors propose the use of a dual 
flow architecture (Figure 3b) with two counter modules 
(Gorgon & Tadeusiewicz, 2000; Maggiani, Salvadori, 
Petracca, Pagano, & Saletti, 2014). While the first module 
is active for histogram calculation (HistCell1), the second 
one (HistCell2) delivers the result of the histogram of the 
previous image. Once this process is finished the switches 
SW1 and SW2 commute positions swapping functions of 
the counter modules, generating a continuous data flow.

The development of a modifiable processing block for 
simple and dual data-flow requires a self-configurable 
methodology where the redistribution of Simulink® 
modules in the architecture is possible (Garcés-Socarrás et 
al., 2016).

Implementation of histogram calculation IP

Xilinx System Generator is a development tool for the 
design and implementation of embedded systems with 
basics IP modules and a model-based design technique 
that speeds up the elaboration of complex systems. The 
tool performs the process of synthesis and implementation 
of the design, and the process of configuring the target 
device automatically from a Simulink® model. This 
development tool was used to design the IP modules of the 
image processing toolbox XIL XSGImgLib, which provides 
parameterizable blocks for basic image processing tasks 
and allows the implementation of advanced DIP technique 
over FPGAs (Garcés-Socarrás et al., 2013). The IP module 
presented in this article is part of this image processing 
toolbox.

IP module for histogram calculation

As mentioned previously, the development of IP modules 
for histogram calculation based on counters use several 
logic resources. For this reason, the design based on dual-
port memories is the solution selected for implementing 
this block. The modifications to the initial architecture 
proposed in (Bailey, 2011) are applied to solve read/write 
accesses to memory cells at the same time. Also, the use 
of simple or dual data-flow architecture is selected in the 
configuration of the block, to choose the appropriate data 
flow for the final application. 

Figure 4a shows the generic architecture of the proposed IP 
module for histogram calculation, which is composed by 
four main blocks: the histogram controller, two histogram 
memories (Hist. DP Memx) and the output multiplexer 
(MUX). This architecture, saved in a Simulink® file 
(.mdl / slx), is analyzed by a MATLAB® script (.m) saving the 
position and orientation of all modules in the architecture 
into a MATLAB  file (.mat) (Figure 5), making a SW 
description of a graphical architecture (Garcés-Socarrás et 
al., 2016).

a. b.

Figure 3. Architectures for histogram calculation. a) Simple data-flow. b) Dual data-flow.
Source: Authors
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b.

a.

Figure 4. Architectures of histogram calculation. a) Histogram calculation IP Block. b) Dual-port histogram module.
Source: Authors

Figure 5.  Analysis of a generic architecture.
Source: Authors

When the designer, using the configuration mask of the 
processing block (Figure 6), selects a different memory 
architecture, a configuration script analyses the structure 
of the Simulink® file, detecting which modules have to be 
erased and which have to be added, and creates a modified 
Simulink® file (MOD File.mdl / slx) using the data previously 
stored in MATLAB® workspace (Block.mat).

Figure 6. Modification of an architecture.
Source: Authors

In a simple data-flow (1 − Way), only one histogram memory 
module is needed (Hist. DP Mem1), deleting the second 
one (Hist. DP Mem2) and the output multiplexer (MUX) by 
the configuration script, while, when a dual data-flow is 
selected (2 − Way) by the designer those modules are added 
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automatically into the architecture reducing the processing 
delay between images.

The first block (Histogram Controller) receives the input 
pixel (pxl), as well as the enable (en) and the initialization 
(rst) signals to handle the flow of image pixels into the 
module. Once the image is being processed (en = ‘1‘), the 
control block classifies the pixels according to the number 
of histogram levels chosen by the designer. It generates 
the address signal of each pixel (addrsig) for the writing 
operation, the counter signal (countsig) for mapping the 
histogram levels in the reading operation, and the write 
enable signal (wesig) to switch the histogram dual-port 
memory blocks operation and commute the histogram 
outputs (histxsig). The control block also generates the 
validation signal (activesig) to indicate a valid histogram 
value, which allows to synchronize other modules in the 
image processing system.

Dual-port histogram memory block (Figure 4b) is 
composed by a multiplexer (MUX), a dual-port memory, 
a pixel analysis unit and an update counter module. The 
multiplexer selects the input of the memory from the 
address signal (addrsig) or the counter signal (countsig ), both 
coming from the controller module. When the memory is 
set for write operation (wesig = ‘1‘), port A of the memory 
is used to obtain the current value of the histogram for the 
input pixel (addrsig), and port B to update this value when 
the next pixel arrives. The pixel analysis compares the 
current (pxl0 ) and the previous (pxl1 ) pixels to ensure the 
correct delayed writing for continuous pixels values, and 
produces a control signal (S) to the update module. This 
signal has one clock cycle delay, in order to synchronize 
the system with the memory access, and it is high when 
the current pixel is equal to the previous one, indicating 
that the update module has to reject the value read from 
the memory and the update module has to increase the 
value of the previous operation. This block redirects the 
result (newhist) to port B data input (dinB) to refresh the 
previous value. 

When the memory is set for reading operation (wesig = ‘0‘), 
the memory receives the counter signal (countsig ) to sweep 
all locations, obtaining the histogram values (storedhist ) 
from port A. At the same time, the initialization process 
of the memory cells is performed, writing a zero value to 
each cell. 

The configuration mask of the IP is shown in Figure 7, 
using basic and advanced parameters. Basic parameters 
allow to define the input pixel precision, the image size 
and optional control signals to the module, while advanced 
parameters configure the memory architecture and the 
overflow method used when a pixel is greater than the 
pixel precision defined in the basic parameters. The size 
of the image under test determines the maximum value 
that could be stored in the memory cells, which should be 

configured for the worse case (when the images only have 
one color or grey level). To reduce the quantity of memory 
cells used for the histogram calculation, this IP also allows 
the parameterization of the number of levels considered for 
the histogram (Level Size) being usually power of 2 factor. 

Table 1 shows the resource consumption for this IP 
module with different numbers of histogram levels for 
simple and dual-flow over a Spartan-6 LX45 FPGA and 
a 512×384-pixels image. The first column displays the 
resource type and in parenthesis the total available of 
each one in the FPGA. Look-up tables (LUTs) and flip-
flops (FFs) consumption are reduced when the levels for 
histogram quantification are lower and also when the 
architecture changes from dual data-flow to simple data-
flow. The use of memory blocks (BRAM16) is constant for 
each data-flow, because the maximum amount of memory 
needed for the gray scale image under test is 26-bits 
(obtained from the quantity of block cells and the width 
of each one for a 512×384-pixels image), which does not 
fulfill one memory block that contains 18-kbits per block 
(Xilinx, 2010). The operating frequency for the IP module 
is 165,262 MHz for the worst case in the dual data-flow, 
which allows performing real-time operations over high 
definition images. Comparing dual data-flow and simple 
data-flow frequencies, dual-memory architecture provides 
little increment of the processing speed and also requires 
two times more memory. The most important goal of dual-
flow architecture is the continuous output flow that allows 
to process video sequences.

a.

b.

Figure 7. Configuration or the histogram calculation IP. a) Basic 
parameters; b) Advanced parameters.
Source: Authors
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Table 1. Resource consumption for Histogram calculation IP 
module: analysis of data-flow and histogram levels

Resources Dual flow Simple Flow

XC6SLX45 Full Half Sixteenth Full

FFs (54,576) 92 89 80 61

LUTs (27,288) 141 139 135 85

BRAM16 (116) 2 2 2 1

Frequency (MHz) 171,174 171,174 165,262 167,280

Source: Authors 

Conclusions

In this article a modifiable histogram calculation IP module 
using System Generator model-based design flow and a 
self-configuration procedure are presented, compatible 
with XIL XSGImgLib toolbox (available on https://www.
researchgate.net/project/XIL-XSGImgLib-Biblioteca-de-
procesado-de-imagenes-y-videos-para-System-Generator) 
for Xilinx FPGAs. This IP allows to speed up the design 
process of complex computer vision systems, adjusting the 
resource consumption for the application requirements.

Counter-based architectures for histogram calculation 
require several logic resources. On the contrary, memory-
based architectures allow the reduction of logic resources, 
but several modifications are needed to avoid simultaneous 
access at the same memory cells. Dual-flow architecture is 
an advantage over simple-flow for video processing because 
it provides a continuous output flow, even when it uses two 
times more BRAM blocks, and simple-flow architecture is 
a better solution for a static image processing. So, a self-
modifiable processing block is a versatile improvement 
to adjust the resource consumption according to the 
application. The selection of the histogram levels allows 
the reduction of the quantity of memory cells used for 
the implementation of the histogram calculation block, 
with a compromise between the number of levels and the 
variations obtained in the processing blocks connected 
to this one, like histogram equalization and threshold 
calculation. This difference is caused by the grouping of 
levels in the histogram calculation that are reflected in the 
next processing step. 
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