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Abstract 
A fundamental part of the probabilistic forecasting of wind energy process is to take into account wind speed forecasts. To achieve accurate 
probabilistic forecast of wind output, it is developed a hybrid methodology using a nonparametric techniques known as SSA (Singular 
Spectrum Analysis) and (CKDE) Conditional Kernel Density Estimation. SSA is employed to forecast wind speed and CKDE to obtain 
probabilistic forecasts of wind energy, based on the fact that wind power generation has a nonlinear relation with the wind speed and both 
are random variables distributed according to a joint density function. A Brazilian hourly wind dataset including wind speed and wind 
power is used to illustrate the approach. Once the wind speed forecasts are obtained the corresponding probabilistic forecast of the wind 
power generation is estimated for a lead time of 24 hours ahead. The results obtained are compared with other existing methodologies. 

Keywords: Wind power generation; SSA; CKDE; time series; forecasting. 

Metodología híbrida para el modelado de la generación de energía 
eólica de corto plazo mediante la estimación de la densidad 

condicional por Kernel y análisis espectral singular 
Resumen 
Una parte fundamental del proceso de previsión probabilística de energía eólica es tener en cuenta las previsiones de la velocidad del viento. Para 
obtener pronósticos probabilísticos precisos de la producción eólica ha sido desarrollada una metodología híbrida utilizando técnicas no paramétricas 
conocidas como SSA (Análisis Singular Espectral) y Estimación Condicional de la Densidad por Kernel (CKDE). SSA es empleada para predecir la 
velocidad del viento y CKDE para obtener previsiones probabilísticas de la energía eólica, dado que la generación de la energía eólica tiene una 
relación no lineal con la velocidad del viento y ambas son variables aleatorias distribuidas que siguen una función de densidad conjunta. Haciendo 
uso de una base de datos brasilera horaria que incluye la velocidad del viento y la energía eólica es ilustrada dicha metodología. Una vez que las 
previsiones de la velocidad del viento son obtenidas, los correspondientes pronósticos probabilísticos de la generación de energía eólica son estimados 
para un horizonte de 24 horas. Los resultados obtenidos son comparados con otras metodologías existentes. 

Palabras clave: Generación de energía eólica; SSA; estimación condicional de la densidad por kernel; series temporales; previsión. 

1. Introduction

Wind energy is the fastest growing source of power
generation in Brazil as a result of the implementation of The 

How to cite: Aguilar-Vargas,  S., Castro-Souza, R., Pessanha, J. F., and Cyrino-Oliveira, F. L., Hybrid methodology for modeling short-term wind power generation using 
conditional Kernel density estimation and singular spectrum analysis. DYNA 84(201), pp. 145-154, 2017.

Brazilian government’s Decennial Energy Plan – PDE 2024 
[1], which indicates that the participation of wind energy in 
electricity generation matrix is expected to reach nearly 12% 
by 2024 with the expansion of at least 24 GW of installed 



Aguilar-Vargas et al / DYNA 84(201), pp. 145-154, June, 2017 

146 

wind farms. For this, the Brazilian wind industry should try 
to keep a steady 2 GW annual growth, as well as to guarantee 
a competitive wind energy price at the auctions. This way the 
industry, as a whole, should attract new investments. 

Forecasts of wind energy depend mainly on the wind 
speed, and given its stochastic nature, in order to include the 
wind speed into the optimal dispatch, reliable and accurate 
predictions are required. Therefore, the integration of the 
wind power into the Brazilian system is a rather difficult task. 
For operational purposes this kind of forecasts are based on 
short-term horizons, for example, up to 24 hours ahead.  

Different methods for hourly time series forecasting [2] 
could be employed, i.e., statistical methods (ARIMA, 
Kalman filter, probabilistic forecasting, etc.), computational 
intelligence methods (artificial neural networks, support 
vector machines, fuzzy logic and neuro-fuzzy systems) and 
hybrid methods that combine approaches based on statistical 
techniques and computational intelligence and other 
techniques. 

Nonetheless, almost all of these approaches provide a 
single expected value for each forecast horizon, i.e., a point 
forecast. The technical literature reports that point forecasts, 
which are also deterministic forecasts, are the major 
approaches employed [2]. Despite of that, point forecast has 
a relevant shortcoming, any information about the deviation 
from the predicted values is not provided, and therefore, the 
distribution of the forecasting errors is ignored, what limit its 
use in decision-making processes.  

Using point forecast could lead to not accurate predictions 
of wind power generation, making the power system 
unreliable. Underestimated forecasts of wind power might 
cause wind power curtailment or that conventional plants 
operate in part-load due to the system operator commit fewer 
wind power units than necessaries, and consequently, 
increase generation costs. Otherwise, if the forecast of the 
wind power is overestimated, the system will have a power 
supply shortage unless sufficient spinning reserve has been 
committed to the power system. 

The existing approaches for wind speed and wind power 
do not respond satisfactorily the accuracy required to be part 
of the optimal Brazilian hydro-thermal wind dispatch. 
Therefore, as an alternative to overcome this difficulty one 
could use probabilistic forecasting through the probability 
density function, instead of the point forecasts provided by 
the existing approaches to model the wind speed / wind 
energy.  

Indeed, the majority of the available methods are carried 
out in two stages: in the first a model (be it statistical, 
computational intelligence or even hybrid) is fitted to predict 
the wind speed in order to produce hourly wind speed point 
forecasts. On the second stage, these forecasts are taken to 
the wind turbine power curve that outputs the corresponding 
wind energy [3,4]. See also [5] for a state-of-the-art report on 
the subject. 

The main criticism to these approaches lies on the fact 
that there are other meteorological variables, besides the 
wind speed, that are not taken into account when using solely 
the power curve on the second stage to produce the wind 
energy forecast. Such one-to-one relationship is just a 
guideline. For the same wind speed there are different wind 

energy possibilities as can be checked on wind farm in 
operation. 

Also, instead of using conventional time series methods 
to model the wind speed, such forecast will be produced by 
SSA (Singular Spectrum Analysis) to extract the noise-free 
signal of the wind speed series [6,7] to produce more accurate 
wind speed forecasts. 

This article proposes a hybrid methodology for modeling 
the wind power generation, through three stages, to obtain the 
full probability density function of the wind energy. For this, in 
the first stage using SSA (Singular Spectrum Analysis) it is 
obtained the wind speed forecasts. In the second stage is 
calculated the estimation of the density function of the wind 
power employing Conditional Kernel Density Estimation; and 
in the third stage, for a given particular wind speed forecast is 
calculated the density forecast function of the wind power. The 
remainder of this paper is organized as follows: in section 2 
presents a brief literature review, and gives a description of SSA 
and kernel density estimation. Then, in section 3 the 
methodology to modelling wind speed and wind power is 
defined. Next, in section 4 it is shown the results based on 
kernel density estimators and wind speed forecast. The paper 
ends with some conclusions and remarks in section 5. 

 
2.  Literature review 

 
The wind speed forecasts for wind power generation and 

operation planning in power systems focuses mainly on 
short-term forecast, due to the power system operations, such 
as electricity market clearing, regulation actions, power 
system planning for unit commitment and dispatch are held 
within specified periods ranging from 1 to 24 hours ahead. 

Nonetheless, due to the fact that wind power generation 
depends on wind speed, several methods have been 
developed. Usually, these methods are classified into three 
categories: physical, statistical and hybrid approaches. The 
first are physical methods, which establishes a lot of 
considerations to predict the wind speed according to the 
physical description of the atmosphere. In this case, 
information provided by the weather service in most of the 
procedures transform the coarse grid of the wind speed and 
other climate variables to the characteristics of the terrain 
where is located the wind farm. The second are the statistical 
methods, which use approaches like ARIMA models, 
Artificial Neural Network (ANN) models or combination of 
both, to obtain the relationship of the measured power or 
wind speed data. The third are hybrid models, which can be 
considered as a combination of different approaches of 
physical and statistical models or combination of these 
models or combination of models for the short-term and for 
the medium-term, in order to improve overall performance 
forecasts. 

Traditionally, the most widely used model for prediction 
has been ARIMA, although there had been previous attempts 
to predict the wind speed. The first work considering wind 
power forecasts was proposed by [8], in which it is fitted an 
autoregressive process (AR) to wind speed data transformed 
to make their distribution approximately Gaussian and 
standardized to remove diurnal nonstationarity. Despite the 
wind speed time series and wind energy present a highly 
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nonlinear dynamic, different works have opted for linear 
approaches, such as in [9-12].  

Similarly, for wind speed prediction it was used the Kalman 
filter to estimate the parameters of AR and ARMA models, as 
indicated in [13,14]. In [15] it is also used a state-space model 
to be optimized with a Kalman filter to predict the wind speed 
over the North Atlantic Ocean. Other approaches like ARFIMA 
in [16] and ARFIMA-FIGARCH in [17] are employed for the 
same purpose. In the case of non-linear statistical models, 
STAR and SETAR are applied in [18].  

Different Artificial Neural Network models architecture 
such as feed-forward neural networks (FNNs), multi-layer 
perceptrons (MLP), recurrent neural networks (RNNs), radial 
basis function (RBf) NNs, Adaline networks, have been used 
not only for wind speed forecast, but also for wind power 
generation [18-20], where its performance is improved. In 
[21] is used Adaptive Neuro-Fuzzy Interface System 
(ANFIS), to forecast wind speed and wind power through a 
training set that includes wind speed and direction data. 

In the case of physical models, most of the physical 
approaches used to forecast wind speed is known as a 
Numerical Weather Prediction (NWP), which solves 
complex mathematical models, i.e., conservation equations 
numerically using current weather conditions like 
temperature, direction, pressure, surface roughness and 
obstacles at the given site. These methods increase the real 
resolution of NWP model in order to achieve accurate 
prediction of the weather [22]; however, they are not 
effective for short-term forecasting due to their 
computational costs, see [23]. 

All of these described approaches offer a point forecast, 
while methods like quantile regression, copulas or 
conditional density kernel estimation give a probabilistic 
forecast; specifically, different kernel estimators have been 
used to compute the conditional density of the wind power 
output. In [27] it was employed an adaptation of the classic 
Nadaraya-Watson kernel density, while in [28] it was applied 
the two-step CKD estimator of [30] and the Parzen-
Rossenblatt estimator [30,31], in which the two-step CKD 
estimator led them to results slightly more accurate than those 
produced by Parzen-Rosenblantt estimator. In [32] the 
estimator used was Nadaraya-Watson with time adaptive. 
Following the same approach of those works this paper will 
be focused on Nadaraya-Watson estimator. 

 
2.1.  Singular Spectrum Analysis (SSA) 

 
SSA is a non-parametric technique for analyzing and 

forecasting time series, which relies exclusively on data [24]. 
Furthermore, the SSA does not require the stationary 
assumption of time series, and allows the decomposition of a 
time series into various additive components [7]. 

Basically, the implementation of SSA involves three 
stages: decomposition, reconstruction and forecasting. These 
three stages are described in the following subsections. 

 
2.1.1.  Decomposition 

 
The decomposition stage has two steps: embedding and 

singular value decomposition (SVD). 

2.1.1.1.  Embedding 
 
Embedding consists of a moving window of length L that 

runs through the time series YT = (𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑇𝑇), obtaining in 
each step a column of the trajectory matrix as eq. (1), whose 
total number of columns is equal to K = T – L + 1. 

 

𝐗𝐗 =  

⎣
⎢
⎢
⎢
⎡
y1 y2 y3
y2 y3 y4
y3
⋮

yL

y4
⋮

yL+1

y5
⋮

yL+2

⋯
⋯
⋯

yK
yK+1
yK+2

⋱ ⋮
⋯ yT ⎦

⎥
⎥
⎥
⎤
  (1) 

 
The number of components L extracted from the time 

series is determined by the window length. The parameter L 
is a sufficiently large integer value, but no greater than T/2, 
i.e., 2≤ L≤ T/2[6,7]. 

 
2.1.1.2.  Singular value decomposition (SVD) 

 
Using the SVD the trajectory matrix 𝐗𝐗 in eq. (1) can be 

expressed by a sum of the elementary matrices and represents a 
sum of rank-one bi-orthogonal elementary matrices as follow: 

 
𝐗𝐗 = 𝐗𝐗𝟏𝟏 + 𝐗𝐗𝟐𝟐 + ⋯+ 𝐗𝐗𝒅𝒅  (2) 

 
where each component in eq. (2) is expressed by 𝐗𝐗𝑖𝑖 =

�𝜆𝜆𝑖𝑖𝑈𝑈𝑖𝑖𝑉𝑉𝑖𝑖𝑇𝑇, d is the number of nonzero eigenvalues, of the 
matrix 𝐗𝐗𝐗𝐗T, denoted by 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿 in decreasing order of 
magnitude (λ1 ≥ ... λL ≥ 0). 𝑈𝑈𝑖𝑖 and 𝑉𝑉𝑖𝑖 denote the left and right 
eigenvectors of the trajectory matrix, and 𝑈𝑈1, … , 𝑈𝑈𝐿𝐿 is an 
orthonormal system, i.e., (𝑈𝑈𝑖𝑖, 𝑈𝑈𝑗𝑗)  =  0 for 𝑖𝑖 ≠  𝑗𝑗 and ‖𝑈𝑈𝑖𝑖‖ =
1, and corresponds to the eigenvectors of the matrix 𝐗𝐗𝐗𝐗T. The 
set {𝑈𝑈𝑖𝑖, Vi, 𝜆𝜆𝑖𝑖} corresponds to an eigentriple ∀ i = 1,...,d.  

 
2.1.2.  Reconstruction 

 
The reconstruction stage is composed of two steps: grouping 

and diagonal averaging. In the grouping step the d elementary 
matrices obtained from the SVD step are grouped into mutually 
exclusive groups (clusters). Furthermore, the matrices are 
converted into time series through the so-called average diagonal 
procedure and, at the end it is obtained the additive components 
that make up the time series. 

 
2.1.2.1. Grouping of the eigentriples 

 
In this step, the elementary matrices 𝐗𝐗𝑖𝑖  are split into 

several groups and summed within each group. For this, the 
indexes {1,...,d} are segmented into m (m <d) disjoint subsets 
{I1,...,Im}, such that the corresponding elementary matrices 
𝐗𝐗𝑖𝑖  indices, in the same group, are classified into the same 
cluster and added in this sequence. Thus, the trajectory 
matrix can be expressed by the sum of m matrices: 

 
𝐗𝐗 = 𝐗𝐗𝐼𝐼1 + 𝐗𝐗𝐼𝐼2 + ⋯+ 𝐗𝐗𝐼𝐼𝑚𝑚  (3) 

 
For example, if d = 6 and m = 3, the six elementary 

matrices are grouped into three clusters, as illustrated in Fig.  
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Figure 1. Grouping of elementary matrices.  
Source: The authors. 

 
 
1. The procedure of choosing the sets  I1,...,Im is called the 

eigentriple grouping. 
 

2.1.2.2.  Diagonal averaging 
 
In this stage, each matrix obtained by clustering process 

is transformed into a time series of length T [25]. Consider a 
matrix 𝐗𝐗𝐼𝐼𝑠𝑠 ∀ s =1,..,m with elements 𝒙𝒙𝑖𝑖𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝐿𝐿,   1 ≤ 𝑗𝑗 ≤
𝐾𝐾. Let be 𝐿𝐿∗ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿, 𝐾𝐾), 𝐾𝐾∗ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿, 𝐾𝐾) and T = L + K 
– 1. Additionally, let be 𝑥𝑥𝑖𝑖𝑖𝑖∗  = 𝑥𝑥𝑖𝑖𝑖𝑖, if L < K and 𝑥𝑥𝑖𝑖𝑖𝑖∗  =
𝑥𝑥𝑗𝑗𝑗𝑗, otherwise. Thus, the matrix 𝐗𝐗𝐼𝐼𝑠𝑠 is transform into the 
series 𝑥𝑥�1, . . . , 𝑥𝑥�𝑇𝑇  as follows: 

 

𝑥𝑥�𝑘𝑘
(𝑠𝑠) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 1

𝑘𝑘
� 𝑥𝑥𝑚𝑚,𝑘𝑘−𝑚𝑚+1

∗
𝑘𝑘

𝑚𝑚=1

1
𝐿𝐿∗
� 𝑥𝑥𝑚𝑚,𝑘𝑘−𝑚𝑚+1

∗
𝐿𝐿∗

𝑚𝑚=1

1
𝑇𝑇 − 𝑘𝑘 + 1

� 𝑥𝑥𝑚𝑚,𝑘𝑘−𝑚𝑚+1
∗

𝑇𝑇−𝐾𝐾∗+1

𝑚𝑚=𝑘𝑘−𝐾𝐾∗+1

 

para 1 ≤ 𝑘𝑘 <
𝐿𝐿∗, 

(4) para 𝐿𝐿∗ ≤ 𝑘𝑘
≤ 𝐾𝐾∗, 

para 𝐾𝐾∗ < 𝑘𝑘 ≤
𝑇𝑇. 

 
The diagonal average of the matrix 𝐗𝐗𝐼𝐼𝑠𝑠  ∀ s=1,...,m builds 

the series 𝑋𝑋�(𝑠𝑠) = (𝑥𝑥�1
(𝑠𝑠), . . . , 𝑥𝑥�𝑇𝑇

(𝑠𝑠)). Therefore, the initial series 
y1,..., yT  is decomposed into a sum of m series: 

 

𝑦𝑦𝑡𝑡 = �𝑥𝑥�𝑡𝑡
(𝑗𝑗)

𝑚𝑚

𝑗𝑗=1

;    ∀ 𝑡𝑡 = 1, … , T (5) 

 
2.1.3.  Forecasting 

 
To obtain forecasts using SSA the basic requirement is 

that the time series satisfies the relations Linear Recurrent 
Formula (LRF), as indicated in [25]. The serie YT = 
(𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑇𝑇) satisfies the LRF order L – 1 if: 

𝑦𝑦𝑖𝑖 = �𝑎𝑎𝑗𝑗𝑦𝑦𝑖𝑖−𝑗𝑗

𝐿𝐿−1

𝑗𝑗=1

;     𝑖𝑖 = T + 1, … , T + 𝑀𝑀 (6) 

 
The main assumption is that the window length L is 

chosen in such way to separate the signal from noise. The 
predictions are performed using the r chosen eigentriples as 
follows: 

 

𝑦𝑦�𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧
𝑥𝑥�𝑖𝑖,             

�𝑎𝑎𝑗𝑗𝑦𝑦�𝑖𝑖−𝑗𝑗 ,
𝐿𝐿−1

𝑗𝑗=1

 

𝑖𝑖 = 1, … , 𝑇𝑇 
 
 

𝑖𝑖
= 𝑇𝑇 + 1, … , 𝑇𝑇 + 𝑀𝑀 

(7) 

 
where 𝑥𝑥�1,⋯ , 𝑥𝑥�T are the values obtained from the 

reconstructed series in eq. (4), while 𝑦𝑦�T+1, … , 𝑦𝑦�T+𝑀𝑀 indicate 
the forecasts M steps ahead.  

Also in eq. (7), the coefficients form the vector 𝑅𝑅 =
 (𝑎𝑎1, … , 𝑎𝑎𝐿𝐿−1)𝑇𝑇 are determined as follows [26]: 

 

𝑅𝑅 =
1

1 − 𝑣𝑣2
�𝜋𝜋𝑗𝑗

𝑟𝑟

𝑗𝑗=1

𝑈𝑈𝑗𝑗𝛻𝛻, (8) 

 
where the vector 𝑈𝑈𝑗𝑗∇ denotes the first L – 1 components of 

the eigenvector 𝑈𝑈𝑗𝑗, 𝜋𝜋𝑗𝑗 is the last element of 𝑈𝑈𝑗𝑗 (𝑗𝑗 = 1, … , 𝑟𝑟) 
and 𝑣𝑣2 = ∑ 𝜋𝜋𝑗𝑗2𝑟𝑟

𝑗𝑗=1 . 
 

2.2.  Conditional Kernel density forecast methodology 
 
The basic idea of the conditional kernel estimation is to 

provide a density (pdf) of a random variable Y given a 
random variable X = x. This technique is classified as non-
parametric, and presents an advantage over other approaches 
because it estimates the underlying distribution from the data, 
without supposing a family distribution. The kernel density 
estimator computes a smooth density estimation from the 
data sample by placing to each sample point a function 
representing its contribution to the density. The distribution 
is obtained by summing all these contributions. 

 
2.2.1.  The Nadaraya-Watson estimator 

 
Conditional density estimation provides the assessment 

of the pdf of a random variable Y, given an explanatory 
variable X with the value of x known as follows: 

 

𝑓𝑓𝑌𝑌(𝑌𝑌|𝑋𝑋 = 𝑥𝑥) =
𝑓𝑓𝑌𝑌,𝑋𝑋(𝑦𝑦, 𝑥𝑥)
𝑓𝑓𝑋𝑋(𝑥𝑥)  (9) 

 
The expressions in (9) is unknown, for this reason, this 

density function is estimated from the data, i.e., with the 
sample available and using the non-parametric estimator 
known as Nadaraya-Watson. According to [29], the 
conditional density estimation is given by 
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𝑓𝑓(𝑦𝑦|𝑥𝑥) = �𝒲𝒲𝑗𝑗(𝑥𝑥)𝐾𝐾ℎ𝑦𝑦�𝑦𝑦 − Y𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

, (10) 

 
where 
 

𝒲𝒲𝑗𝑗(𝑥𝑥) =
𝐾𝐾ℎ𝑥𝑥�𝑥𝑥 − X𝑗𝑗�

∑ 𝐾𝐾ℎ𝑥𝑥(𝑥𝑥 − X𝑖𝑖)𝑛𝑛
𝑖𝑖=1

.. (11) 

 
and where N is the length of the sample, Kh(·) = K(·/h)/h 

is a kernel function and h the bandwidth parameter. This 
estimator has two bandwidth, hx and hy, that controls the 
amount of smoothing; i.e., hy controls the smoothing of each 
conditional density and hx controls the smoothing of the 
explanatory variable. 

It is possible to observe that the Nadaraya-Watson 
estimator requires double kernel estimation, i.e., kernel 
density estimation in the 𝑦𝑦 direction as indicated in eq. (10) 
and the other in the 𝑥𝑥 direction as in eq. (11). For a given 𝑥𝑥, 
the density function of the random variable 𝑌𝑌 at the value 𝑦𝑦 
is built up by applying kernel density estimation to the 
sample of values of 𝑌𝑌, weighting each 𝑌𝑌 value according with 
the contribution of 𝑋𝑋 given by the value 𝑥𝑥. 

 
3.  Methodology 

 
This session brings an overview of the non-parametric 

proposal to obtain probabilistic short-term forecasts of wind 
power. This methodology is based on the non-parametric 
techniques SSA and CDKE described previously. The overall 
methodological strategy of probabilistic forecasts of wind 
generation used in this paper is an adaptation of the two 
stages of point forecast approach of wind power generation, 
whose structure is shown in Fig. 2 and is detailed as follows: 

• First stage: use SSA sequentially to generate hourly 
forecasts of wind speed h steps ahead. 

• Second stage: based on historical data of wind speed 
and wind power estimate the stochastic power curve, 
i.e., the conditional density of  
𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 |𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) through the kernel 
estimator Nadaya-Watson, which is, basically, the 
conditional probability density of power at a certain 
wind speed value. 

• Third stage: use the wind speed predicted values at the 
first stage in combination with the stochastic power 
curve estimated at the second stage to generate the 
wind energy density forecasting. 

 
4.  Results 

 
4.1.  The wind power and wind speed data 

 
To illustrate the application of the described method it 

was considered a Brazilian wind farm, but for confidentiality 
reasons it is not possible to publish its name and the location 
of the park. The dataset is composed of observations ranging 
from January 1, 2007 up to January 1, 2008, a total of 8784 
hourly data of wind speed in m/s (Fig. 3) and wind power in 
kWh for one turbine, whose capacity is around 2,200kW. In  

 
Figure 2. Flowchart of the propose methodology. 
Source: The authors. 

 
 

 
Figure 3. (a) Wind speed (m/s), (b) Power (kWh).  
Source: The authors. 

 
 
Fig. 4 it is shown the wind power output versus wind 

speed for the entire period, thereby generating the power 
curve covering the whole dataset. In this work it is used both: 
Rssa [33] and hdrcde [34] packages available in R software. 

In what follows, the three stages approach proposed in 
this paper is applied to the Brazilian wind farm dataset. 

 
4.2.  First stage: Wind speed forecast 

 
The first stage of the modelling process to forecast wind 

speed starts by choosing the L and r hyperparameters. To get 
better separability of the periodic components it is recommended 
that the window length L be proportional to the seasonal period 
(24 hours), as indicated in the first column in Table 1. 
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Figure 4. Power Curve (kWh).  
Source: The authors. 

 
 

Table 1. 
Lag parameter L. 

Parâmetro L Parâmetro r RMSE 
24 1 até 10 1,9557 
36 1 até 16 2,0143 
168 1 até 25 1,9217 
720 1 até 18 1,4822 

2920 1 até 28 2,6318 
4380 1 até 29 2,4642 

Source: The authors. 
 
 
For each value of L it was applied SSA and the 

hyperparameter r was chosen by enumeration, i.e., it was 
incorporated one by one component until one finds a value that 
minimizes the root mean square error (RMSE) between the 
observed series and the forecasts given by eq. (12). Thus the 
hyperparameters L and r were set at 720 and 18 respectively, as 
indicated in Table 1. Notice that the r value in this process in 
only used with the purpose of determining L.  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑡𝑡� − 𝑦𝑦𝑡𝑡)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (12) 

 
With the identification of L = 720, starts the second step 

of SSA decomposition stage, i.e., the grouping of eigentriples 
via cluster analysis, in particular, using agglomerative 
hierarchical method. This information is used in SSA 
procedure to extract the level (first chart of Fig. 5), that 
corresponds to the first component of the time series as can 
be seen in Fig. 6 identified as Level Component.  

Having obtained extracted the level, the second stage of 
SSA is applied to reconstruct the time series. The residuals 
are considered the new time series on which it is applied 
again SSA to extract the periodic components that maybe 
present, as can be identified in Fig. 6 for almost all the 
eigenvectors. Reconstructing the time series was obtained 
from 259 out of 720 eigentriples. The reconstructed time 
series is shown on Fig. 7 and the resulting wind speed 
forecasting for 24 hours ahead on Fig. 8. 

 
Figure 5. Eigenvectors. 
Source: The authors. 

 
 

 
Figure 6. Original time series, Reconstructed series for level component and 
Residuals. 
Source: The authors. 

 
 

In order to compare the performance of the SSA forecast, other 
models like double seasonal Holt-Winters and SARIMA were 
fitted to the data. Naïve estimator is also used for this purpose and 
all these results are presented in Fig. 9. A numerical comparison is 
made via some error measures as mean absolute percentage error 
(MAPE), root mean square error (RMSE), mean absolute error 
(MAE) and U-THEIL depicted in Table 2 and given by eq. (13), 
(14) and (15), respectively. The results of these statistics, in bold, 
indicate that SSA have a better performance in comparison with 
the other models. 
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Figure 7. Original time series, Reconstructed series for periodic components 
and Residuals. 
Source: The authors. 

 
 

 
Figure 8. Wind speed (m/s) forecasting 24 hours ahead.  
Source: The authors. 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��

𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡�
𝑦𝑦𝑡𝑡

�
𝑁𝑁

𝑡𝑡=1

 (13) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�|𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡� |
𝑁𝑁

𝑡𝑡=1

 (14) 

 

𝑈𝑈 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �
∑ �𝑦𝑦�𝑡𝑡+1 − 𝑦𝑦𝑡𝑡+1

𝑦𝑦𝑡𝑡
�
2

𝑁𝑁−1
𝑡𝑡=1

∑ �𝑦𝑦𝑡𝑡+1 − 𝑦𝑦𝑡𝑡
𝑦𝑦𝑡𝑡

�
2

𝑁𝑁−1
𝑡𝑡=1

 (15) 

 
4.3.  Second stage: Stochastic power curve estimation 

 
The second stage employs kernel estimators to obtain the 

stochastic power curve, where the full density function is 

estimated by repeating the conditional kernel density given 
by eq. (10) and eq. (11). Thus, it is necessary to create a grid 
with the wind power values (𝑝𝑝) ranging from zero up to the 
wind farm capacity, or like in this study up to the turbine 
capacity. Variations in 𝑝𝑝 are obtained by small increments 
until the established capacity.  

Similarly, it is required to create a grid for axis 𝑥𝑥 with the 
wind speed values ranging from zero up to few meters above 
the maximum wind speed recorded in the database used. This 
work chooses the speed of 20 m/s as the maximum possible 
wind speed, because the maximum wind speed recorded in 
database is very close to this value. Notice that the 
discretization for both wind power and wind speed must be 
carried out at regular increments.  

Using these grids and eq. (10) and (11), it is estimated the 
conditional density of wind power. This result is depicted in Fig. 10.  

 

 
Figure 9. Wind speed (m/s) forecasting 24 hours ahead for different 
methodologies.  
Source: The authors. 

 
 

Table 2.  
Error measures of wind speed forecast. 

H = 24 SSA SARIMA D.S. HW NAIVE 
MAPE 0,1382 0,2751 0,3208 0,2832 
RMSE 1,2050 1,5630 1,8467 2,3121 
MAD 0,9585 1,2692 1,4500 1,8911 
U-THEIL 0,5345 0,6932 0,8191 1,0255 

Source: The authors. 
 
 

 
Figure 10. Conditional density estimation of wind power on wind speed.  
Source: The authors. 
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To produce an estimate of the conditional density of wind 
power production in each discrete value, the wind power 
should be conditional on a specific wind speed. These 
estimates are stored to be used in the next stage of the 
methodological framework. 

 
4.4.  Third stage: Wind power density forecast 

 
Considering the estimation of the conditional probability 

density of wind output, calculated in the previous stage, and 
the wind speed forecasts generated by applying sequential 
SSA in the first stage, it is obtained the corresponding 
conditional wind power density forecast. In particular, 
assuming wind speed forecasts values of 6 m / s and 11 m / s 
and using the estimated stochastic power curve, one can 
obtain the respective probability density forecast of wind 
power conditioned for these two wind speeds, which is 
shown in Fig. 11. 

 

 
Figure 11. Wind power density for a wind speed of 6 and 11 m/s. 
Source: The authors. 

For each forecast of the wind speed CKDE provides a full 
probability density function for wind generation. Even 
though, the purpose of this work is density forecasting, it was 
evaluated point forecast accuracy using the mean of the 
distribution as the central location, i.e., a possible point 
forecast. Analogous to the wind speed forecast, it will be used 
RMSE, MAE and U-THEIL to evaluate wind power point 
forecast. Fig. 12 shows wind power forecast take into a count 
the wind speed forecasted by sequential SSA.  

Using wind speed forecasts provide by the Naïve method, 
Double seasonal Holt-Winters and SARIMA model and CKDE 
it is possible to generate the point forecast for the wind energy 
production as can be seen in Fig. 13 for each model, while in 
Table 3 are displayed the results of the error measures for the 
different approaches. 

According to [35,36], the mean of a density forecast is 
considered the optimal point forecast for a quadratic loss 
function. This suggests the use of the MAE and the RMSE as 
the goodness of fit criteria. The results of the error measures 
in bold in Table 3, show that the sequential SSA for wind 
speed provide a better performance. 

 

 
Figure 12. Wind power (kW) forecasting 24 hours ahead. 
Source: The authors. 

 
 

 
Figure 13. Wind power (kWh) forecasting 24 hours ahead for different 
methodologies. 
Source: The authors. 

 
 

Table 3.  
Error measures for wind power forecast. 

H = 24 SSA SARIMA D.S. HW NAIVE 
RMSE 375,73 380,49 458,96 498,24 
MAD 252,66 264,47 324,84 329,52 
U-THEIL 0,7541 0,7637 0,9212 1,0000 

Source: The authors. 
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5.  Conclusions 
 
This paper proposes a new methodological framework for 

modeling short-term wind power generation and captures the 
uncertainty concerning to wind speed. The developed work 
provides insight on how to obtain forecasts of wind power 
probability density function by applying sequential SSA and 
CKDE. For short-term wind speed forecast it is used SSA 
approach that proved to be a robust alternative to produce 
wind speed forecast. The comparison with other 
methodologies to produce wind speed forecast, show that an 
improvement of the forecasts for the wind energy is improved 
considerably using the proposed method in this paper. As a 
future work, it is suggested to incorporate other explanatory 
variables such as direction, temperature and air pressure to 
modeling wind speed and evaluate other kernel density 
estimator that allows time-varying for the parameters. 
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