
 

INGENIERÍA • Vol. 17 • No. 2 • ISSN 0121-750X • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 

 
 

 
 
 

Research paper 

Assessment of the Input Substrate Characteristics In-

cluded in the Anaerobic Digestion Model No. 1 

(ADM1) 

Evaluación de las Características del Sustrato de Entrada Incluidas en 

el Modelo De Digestión Anaerobia No. 1 (ADM1). 

Laura Andrea Morales 1, Ángel David Rodríguez 1, Herbert Enrique Rojas 1 

1 Electromagnetic Compatibility and Interference Research Group (GCEM-UD), Department of Electrical Engi-
neering, Universidad Distrital Francisco José de Caldas, Bogotá DC - Colombia 

Correspondencia: laamoralesg@correo.udistrital.edu.co1, androdriguezv@correo.udistrital.edu.co2, hero-
jasc@udistrital.edu.co3 

Received: 27/12/2016 Modified: 08/03/2017 Accepted: 05/04/2017 
 

Abstract  
 

Context: Anaerobic Digestion (AD) is a well-established process and widely used for wastewater treat-

ment and power generation worldwide. In engineering, the Anaerobic Digestion Model number 1 

(ADM1) is the preferred tool for predicting the behavior of AD. However, this model requires a detailed 

characterization of the input substrate, which is often a difficult and expensive process. This paper pre-
sents an analysis of the input waste variables in the ADM1 and its effects on the biogas production, in 

order to identify on which variables the characterization should be centered. 

 

Method: A sensitivity analysis was performed using a simple methodology that consisted of establish-
ing a reference case and change the value of each input concentrations one at a time leaving the other 

parameters equal. For this a specific range of variation was defined using the values of parameter ex-
tracted from several references. Simulations were done in MATLAB/Simulink® using a routine devel-

oped by the authors based on the ADM1 implementation proposed in the Lund University, Sweden. 

 

Results: The analysis reveals that most critical variables involved in the methane production are tem-
perature, volumetric flow rate of substrates and the concentrations of proteins, lipids and carbohydrates. 

For the case analyzed, variations in concentrations of lipids and carbohydrates increase the production 

of methane by more than 500%. 

 

Conclusions: In the concentrations of proteins, lipids and carbohydrates should focus the characteriza-
tion of waste input when the ADM1 is implemented. Also, simulations shows that the input concentra-

tions should be carefully estimated because oversizing of these can cause erroneous results. 
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1. Introduction 

Anaerobic digestion (AD) is a complex biological process that comprises a network of sequential and parallel 

reactions of biochemical and physicochemical nature. These reactions are made by several microbial groups in an 

anaerobic environment [1], [2]. The process begins with a decomposition of organic matter in the absence of oxygen 

producing biofertilizer and biogas. The first resultant product is a substrate rich in nitrogen, phosphorus, potassium, 
and calcium; while the second product is a biofuel composed mainly of methane (CH4) and carbon dioxide (CO2), 

able to override fossil fuels [3].  

Other benefits offered by AD include a reduction in the chemical oxygen demand (COD), the control of pathogens 

and the odor reduction in wastewater [4]. However, microorganisms that develop the AD process are highly sensitive 

so any variation in the reactor conditions or changes in the residue that feed them could inhibit or damage the biolog-

ical process [2], [5]. For these reasons, it is necessary to have a reliable characterization of each waste that enters to 

the reactor and control many of the variables involved in the process, such as: temperature, pH, carbon/nitrogen ratio 

(C/N), organic leading rate and hydraulic and solid retention times [5], [6]. 

Several control methods have been developed to optimize the behavior of the AD process increasing the biogas 

production. These improvements have turn the biofuel in a more competitive source of renewable energy [7], [8]. 

Nevertheless, in order to develop adequate control strategies it is necessary to use mathematical models to predict the 

behavior of the AD process in a reliable way [5]. In the last four decades, several models of the AD process have 
been proposed. Some of them have a limited number of equations including kinetic rates and work for specific appli-

cations [9], [10]. Currently, complex models include more species of microorganisms and present the characterization 
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Resumen  

Contexto: La digestión anaeróbica (DA) es un proceso bien establecido y ampliamente utilizado para 

el tratamiento de aguas residuales y generación de energía en todo el mundo. En ingeniería, el modelo 
de digestión anaeróbica número 1 (ADM1) es la herramienta preferida para predecir el comportamiento 

de la DA. Sin embargo, este modelo requiere una caracterización detallada del sustrato de entrada, que 

a menudo es un proceso difícil y costoso. En este trabajo se presenta un análisis de las variables que 
caracterizan el residuo de entrada en el ADM1 y sus efectos en la producción de biogás, con el fin de 

identificar cuáles son las variables en las que la caracterización debería centrarse. 

Método: Se realizó un análisis de sensibilidad utilizando una metodología simple que consistió en es-
tablecer un caso de referencia y cambiar el valor de cada una de las concentraciones de entrada una a la 

vez dejando los otros parámetros iguales. Para ello se definió un rango específico de variación utilizando 
los valores de parámetros extraídos de varias referencias. Las simulaciones se realizaron en MATLAB 

/ Simulink® mediante una rutina desarrollada por los autores y basada en la implementación de ADM1 

propuesta en la Universidad de Lund, Suecia. 

Resultados: El análisis revela que la mayoría de las variables críticas implicadas en la producción de 
metano son la temperatura, el caudal volumétrico del sustrato y las concentraciones de proteínas, lípidos 
y carbohidratos. Para el caso analizado, las variaciones en las concentraciones de lípidos y carbohidratos 

pueden llegar a aumentar la producción de metano en más de un 500%. 

Conclusiones: En las concentraciones de proteínas, lípidos y carbohidratos debe centrarse la caracteri-
zación de los residuos de entrada a un sistema de DA cuando se implementa el ADM1. Además, las 

simulaciones muestran que las concentraciones del sustrato deben ser cuidadosamente estimadas, ya que 
el sobredimensionamiento de estas puede causar resultados erróneos. 
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of different substrates [11]–[13]. 

 One of these complex models is the Anaerobic Digestion Model Number 1 (ADM1), which is the most studied in 

the literature [14], [15]. The ADM1 is a robust model that provides good results when the characterization of the 

waste input is correctly realized. However, the model has many input variables and the available information is scarce. 

For this reason, in several cases the application of the ADM1 is reduced to use the input variables and the parameters 

presented in the model report [3]. This condition makes difficult the diffusion of the model in research areas different 

to biochemistry or microbiology among others. 

Some methodologies to facilitate the application of the ADM1 and to reduce its inputs number have been developed 

[15]–[17]. These papers focus on facilitating the characterization of the input residue, however, do not evaluate how 
a variation in these input variables affects methane production. For this reason, this paper presents a sensitivity anal-

ysis of the ADM1 in order to identify the variables that most affect the AD process and the most important variables 

involved in the input waste characterization. In addition, a brief description of the model structure, its advantages and 

its applications are presented. For the sensitivity analysis, 911 simulations were made using a Matlab/Simulink® 

routine and a user interface developed by authors. The implementation of the ADM1 is based on the work of Rosen 

& Jeppsson with wastewater treatment plants, where computational and methodological considerations for proper 

implementation of the ADM1 are presented [18]. 

The rest of the paper continues as follows: the ADM1 model structure and some aspects to take into account during 

its implementation are described in section II. In section III, the methodology used for the sensitivity analysis and the 

results provided for the sensitivity analysis of the ADM1 model are presented. A discussion about the critical varia-

bles involved in the input waste characterization for AD process is shown in Section IV. Finally, some conclusions 
are presented in section V. 

2. Anaerobic Digestion Model N° 1 (ADM1) 

The ADM1 was developed by a group of experts in the AD process, sponsored by the International Water Associ-
ation (IWA) [5]. The ADM1 is divided into a liquid phase and a gas phase. The first stage gathers the input residue 

concentrations and the substrate concentrations inside the reactor, also called digester. The second phase gathers the 

gases produced by the AD of biomass. In these phases occur several conversion processes, called biochemical and 

physicochemical reactions. These biochemical reactions and its conversion processes (listed 1 to 7) are showed in 

Figure 1 [3]. 

 

Figure 1. Biochemical reactions in the ADM1: (1) acidogenesis from sugars, (2) acidogenesis from amino acids, 

(3) acetogenesis from LCFA, (4) acetogenesis from propionate, (5) acetogenesis from butyrate and valerate,       (6) 

aceticlastic methanogenesis, and (7) hydrogenotrophic methanogenesis. (Source: [1, 10]) 

 

In the biochemical reaction, there are three biological steps: acidogenesis, acetogenesis and methanogenesis. As 

well as an extracellular disintegration and one-step of extracellular hydrolysis. On the other hand, the physicochem-

ical reactions are divided into liquid–liquid reactions (association and dissociation of ions) and gas-liquid exchanges. 

These reactions are used to describe the acid-base equilibria and the biological inhibition factors due to variations of 
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the pH and the concentration of dissolved gases [1], [18]. 

Using the ADM1 it is possible to describe, in general terms, the AD process and provides a common basis for 

validating and comparing results obtained experimentally. In addition, the model allows developing control strategies 

and optimize the AD process. The model has 29 state variables with a dynamic behavior. These variables are divided 

into 26 for the liquid phase and three (3) for the gas phase which are the concentrations of CH4, CO2 and hydrogen 

(H2) [18]. Table I shows the input substrate characteristics which are divided in its soluble concentrations (S), partic-

ulate concentrations (X) and the operational parameters (volumetric flow and the operation temperature) that consti-

tute the input vector of ADM1. These variables are grouped in a Peterson matrix, where they interact with 19 bio-

chemical processes by means of kinetic rates, stoichiometric and physical parameters that are included in the complete 
model [1]. 

TABLE I 

Substrate characteristics - Input vector of the ADM1  

𝒊 Variable Description Value base case 
Range of 

variation 

No of 

variations 

1 𝑆𝑠𝑢 Sugars 0,01 0,001-10 28 

2 𝑆𝑎𝑎 Amino acids 0,001 0,001-10 28 

3 𝑆𝑓𝑎 Long chain fatty acids (LCFA) 0,001 0,001-10 28 

4 𝑆𝑣𝑎 Valerate total 0,001 0,001-10 28 

5 𝑆𝑏𝑢 Butyrate total 0,001 0,001-10 28 

6 𝑆𝑝𝑟𝑜 Propionate total 0,001 0,001-10 28 

7 𝑆𝑎𝑐  Acetate total 0,001 0,001-10 28 

8 𝑆ℎ2 Dissolved Hydrogen gas 1e-8 1e-8 -0,01 7 

9 𝑆𝑐ℎ4 Dissolved Methane gas 1e-5 1e-8 -0,01 7 

10 𝑆𝐼𝐶  Carbon inorganic 0,04 0,001-0,3 22 

11 𝑆𝐼𝑁 Nitrogen Inorganic 0,01 0,001-0,3 32 

12 𝑆𝐼 Soluble inerts 0,02 0,001-10 46 

13 𝑋𝑥𝑐 Complex Composites 2 0,01-70 23 

14 𝑋𝑐ℎ Carbohydrates 5 0,1-200 32 

15 𝑋𝑝𝑟 Proteins 20 0,1-200 38 

16 𝑋𝑙𝑖 Lipids 5 0,1-200 36 

17 𝑋𝑠𝑢 Sugar degraders 0 0,1-1 15 

18 𝑋𝑎𝑎 Amino acids degraders  0,01 0,1-1 15 

19 𝑋𝑓𝑎 LCFA Degraders 0,01 0,1-1 15 

20 𝑋𝑐4 Valerate and Butyrate Degraders  0,01 0,1-1 15 

21 𝑋𝑝𝑟𝑜 Propionate degraders 0,01 0,1-1 15 

22 𝑋𝑎𝑐 Acetate degraders 0,01 0,1-1 15 

23 𝑋ℎ2 Hydrogen degraders 0,01 0,1-1 15 

24 𝑋𝐼 Particulate Inert  25 0,01-250 35 

25 𝑆𝑐𝑎𝑡  Cations (strong bases) 0,04 0-0,16 23 

26 𝑆𝑎𝑛 Anions (strong acids)  0,02 0-0,16 20 

27 𝑄𝑖𝑛 Volumetric flow rate 170 0-1000 229* 

28 𝑇𝑜𝑝  Operating Temperature 35 10-80 42 

Note: * It corresponds to the total variation of Qin in six different magnitudes of reactor liquid volume. Also, the units for flow are 
in m3/day and the temperature in °C and the concentrations are expressed in Kg COD/m3, except SIC, SIN, Scat and San that are 

expressed in Kmole/m3. 

Inside the model, each state variable has a mass balance represented by the differential equation shown in (1), 

where 𝑚𝑥 is the specific mass of the chemical or biological species (𝑥), the input and output rates of the mass flow 

are defined by 𝑚̇𝑥,𝑖𝑛 and 𝑚̇𝑥,𝑜𝑢𝑡, respectively, and 𝑟̇ is the net mass generation rate for each specie [19]. When the 

reactor volume (𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟) do not change over time, and there is a homogeneous mixture of the substrate (within the 

digester), it can be assumed that the effluent concentration is equal to the substrate concentration inside the system 

Sx, so the mass balance can be described by (2).  

  
𝑑𝑚𝑥

𝑑𝑡
=  𝑚̇𝑥,𝑖𝑛 − 𝑚̇𝑥,𝑜𝑢𝑡 + 𝑟̇                                                                      (1) 

𝑑𝑆𝑥

𝑑𝑡
=  

𝑞𝑖𝑛𝑆𝑥,𝑖𝑛

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟
−

𝑞𝑜𝑢𝑡𝑆𝑥

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟
+ 𝜌𝑥̇                                                                    (2) 

In this mathematical expression, Sx,in is the affluent concentration,  𝜌𝑥̇  is volumetric mass generation rate and 𝑞𝑖𝑛 

and 𝑞𝑜𝑢𝑡 are the input and output flows, respectively. Additionally, the expression presented in (2) can become in an 

algebraic  equation under  the  steady-state condition  described  in (3). This is possible because the derivative of the  

concentration (dSx/dt) becomes to zero. However, if the reactor is closed (batch upload) and the initial concentration 

inside de has reached steady-state, the mass balance can be described by (4) [19]. 

  0 =  
𝑞𝑖𝑛𝑆𝑥,𝑖𝑛

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟
−

𝑞𝑜𝑢𝑡𝑆𝑥

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟
+ 𝜌𝑥̇                                                                    (3) 

          
𝑑𝑆𝑥

𝑑𝑡
= 𝜌𝑥̇                                                                             (4) 
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On the other hand, organic matter usually have different degradation rates, so the ADM1 uses the chemical oxygen 

demand (COD) as a common basis to characterize different biomass concentrations. In this context, COD can be 

divided to represent different rates of biodegradation as it is shown in Figure 2. In addition, COD relates the organic 

substrate, the active biomass and oxygen used, keeping the mass balances [5], [20]. It is important to note that during 

the implementation of the model developed by Rosen & Jeppsson in [18], inputs are divided into three groups: the 

characteristics of the waste input, substrate concentrations at steady-state within the digester and a set of biochemical, 

physicochemical, stoichiometric and physical parameters of the system. 

 

Figure 2. Division of the chemical oxygen demand (COD) (Source: adapted from [17]) 

3. Sensitivity analysis 

Sensitivity analysis is a systematic study of how variations of the incoming data affect the outputs of a model. In 

dynamic and complex models, such as the ADM1, this type of analysis are important because allows checking the 

internal logic of the model and understand its operation. It also identify values for which the model has discontinuities 
or limits and define the relevance of each parameter in order to determine the attention to be given during their 

measurement and control. 

3.1. Methodology 

Due to the complexity of the ADM1 and the number of input variables, the sensitivity analysis was performed 

modifying the value of each input concentrations shown in Table I one at a time leaving the other parameters equal. 
For this paper, the work presented in [18] was defined as a base case where a continuous stirred tank reactor (CSTR) 

in steady state was simulated for a wastewater treatment plant. The changes of the input concentrations depending on 

the residue used (i.e., agro-wastes, wastewater). For this reason, a specific range of variation was defined using the 

values of parameter extracted from several references [6], [17], [18], [21]–[25]. Although this review allowed iden-

tifying the maximum and minimum possible values for many of the variables, some input concentrations like 

𝑆𝑐ℎ4and 𝑆ℎ2 were not documented, so it was decided to vary them in a wide range for academic purposes. 

The analysis was focused on the methane production (in mass units) because it is one of the most common indexes 

used for estimating the efficiency of the AD process. The methane production can be calculated using the following 

expression [21]: 

𝐶𝐻4 
[
𝐾𝑔 𝐶𝐻4

𝑑𝑎𝑦
]

=
1𝑚𝑜𝑙 𝐶𝐻4

0.064𝑘𝑔 𝐶𝑂𝐷
∗

0.016𝑘𝑔

1𝑚𝑜𝑙 𝐶𝐻4

∗ [𝑞𝑔𝑎𝑠𝑡
∗

𝑃𝑎𝑡𝑚

𝑃𝑔𝑎𝑠,𝑡
] ∗ 𝑆𝑔𝑎𝑠,𝐶𝐻4

    (5) 

Where, 𝑞𝑔𝑎𝑠_𝑡 is the amount of total gas expressed in [Nm3/day], 𝑆𝐶𝐻4
 is the concentration of methane in [kg 

COD/m3], 𝑃𝑎𝑡𝑚 is the atmospheric pressure in [bars] and 𝑃 𝑔𝑎𝑠,𝑡 is the sum of the partial pressures (in bars) of the 

gases included in the biogas model (outputs variables of the ADM1). It is important to note that the factor 

 𝑃𝑎𝑡𝑚/𝑃𝑡𝑜𝑡𝑎𝑙,𝑔𝑎𝑠 𝑡 is used in (5) to remove the normalized value of 𝑞𝑔𝑎𝑠𝑡
. Finally, in order to obtain an idea about the 

energetic potential of the biogas it was established that 1 [kg CH4] equals to 50 [MJ] [21]. 

3.2. Results 

In this section, the results obtained from the sensitivity analysis of the variables listed in Table I are presented. It is 

important to note that some parameters were changed between extreme values in order to find critical conditions in 

the model. This process provides a better understanding about the impact that each variable has on the AD process 

and determine the ranges in which the ADM1 could provide unreliable results. In addition, for a better comparison 

of results the concentrations (parameters) that have the same scale and possess the same units were grouped in the 
same plot. 

Figure 3 illustrates the methane production with respect to the variation of the following soluble concentrations: 

sugars (𝑆𝑠𝑢), amino acids (𝑆𝑎𝑎), long chain fatty acids (𝑆𝑓𝑎), valerate total (𝑆𝑣𝑎), butyrate total (𝑆𝑏𝑢), propionate total 

(𝑆𝑝𝑟𝑜) and acetate total (𝑆𝑎𝑐). These variables were changed from 0,001 to 10 [Kg COD/m3]. Results presented in 

Figure 3 show a linear growth in all concentrations except for amino acids. With respect to soluble concentration, the 

variable that produces the greatest variation on the methane production is the acetic acid (𝑆𝑎𝑐), which causes an 
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increase up to 35%. This increase is not very significant considering that the input concentration was changed about 

10000 times with respect to the value of the base case. 

 
Figure 3. Methane production with respect to soluble concentrations 

On the other hand, from the sensitivity analysis it is observed that some variables produce small changes (<0,1%) 

on the CH4 production. This is the case of dissolved methane concentration (𝑆𝑐ℎ4) and hydrogen concentration (𝑆ℎ2), 

whose behavior is shown in Figure 4. These concentrations do not affect the decomposition of organic matter inside 

the reactor because before the AD process starts they are very small (ideally zero). In the base case, these variables 

are fixed whit a value close to zero to avoid numerical problems [18]. Figure 5 shows the variation of inert soluble 

compounds (𝑆𝐼) and inert particles (𝑋𝐼). In this case, negligible variations (<0,001%) on CH4 production are observed 

when inert concentrations are changed. These minimum variations confirm that inputs 𝑆𝑐ℎ4, 𝑆ℎ2, 𝑆𝐼 and 𝑋𝐼 do not 

involved in the process of CH4 production. 

Figure 6 shows that inorganic carbon concentration (SIC) and inorganic nitrogen concentration (SIN) have an inverse 

behavior. In the first case, SIC presents a slight increase in the CH4 production of about 0,48%, while the second 

concentration (SIN) presents a reduction of 25%, stabilizing when SIN = 0,22 with a CH4 production of 283 [kg 

CH4/day]. The concentration of complex compounds (Xxc) was plotted in Figure 7. Due to the range variation of Xxc 

is different from other input concentrations, this Figure 7 shows a linear behavior with a growth rate of 23,4 (obtained 

from a linear regression). The variation on the CH4 production presents an increase of 140% compared to the value 

of the base case. 

Figure 8 presents the methane production due to changes in the concentration of three macromolecules: carbohy-

drates (Xch), proteins (Xpr) and lipids (Xli). For all macromolecules, the methane production presents a pronounced 

linear growth, especially when carbohydrates and proteins increase. Later, CH4 production is inhibited when proteins 

and carbohydrates reach a concentration of about 160 [kg COD/m3] and lipids grow above 180 [kg COD/m3]. In the 
case of carbohydrates, CH4 production reaches a maximum value of 7190 [kg CH4/day] which equivalent to an in-

crease of 532% with respect to the base value. For lipids, CH4 reaches a maximum value of 7383 [kg CH4/day]. 

Meanwhile, proteins reach a maximum value of 4122 [kg CH4/day] (increase of 262%) before the ADM1 present 

unreliable results. 
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Figure 8. Methane production with respect to Xch Xpr y Xli 

Particulate concentrations associated with the consumption of sugars (Xsu), amino acids (Xaa), fatty acids (Xfa) and 

acetic acid (Xac) among others are presented in Figure 9. In this figure, Xac is the most representative concentration 

since the maximum value achieved was 1150 [kg CH4/day] which is equivalent to a slight increase of 1% in the 

methane production. 

 
Figure 5. Methane production with respect to Xsu, Xaa, Xfa, Xc4, Xpro, Xac, Xh2 

 

Methane production and pH value with respect to variations of cations and anions are shown in Figure 10 and 

Figure 11, respectively. These parameters are important in the ADM1 because they are used to obtain the load balance 

and the concentration of hydronium ion (H+) used in the computation of the pH value. From simulations, the recom-

mended range for the pH in the AD process is 6.5 to 7.5 (without being inhibited) [19]. In addition, it can be noted 
that the variation of Scat reduces the methane production from 1141 to 990 [kgCH4/day] due to an increase in the pH 

value (outside of the recommended range). In the case of San, the methane production remains in an average value of 

1140 [kgCH4/day] until the San reaches a value of 0,149 [Kmole/m3], in which the process is completely inhibited 

because the pH value starts to decrease. 

0

1500

3000

4500

6000

7500

9000

0 50 100 150 200

[k
g
 C

H
4
/d

a
y
]

Variation in Xch, Xpr and Xli [kg COD/m3]

Xch Xli xpr

1137

1140

1143

1146

1149

1152

0 0,2 0,4 0,6 0,8 1

[k
g
 C

H
4
/d

ay
]

Variation of Si [kg COD/m3]

Xsu Xaa Xfa Xc4 Xpro Xac Xh2

  

Figure 3. Methane production with respect to SIC (left axis)             

and SIN (right axis) 

Figure 4. Methane production with respect to XXC 
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Figure 10. Methane production with respect to Scat and San Figure 11. pH value with respect to Scat and San 

In general terms, when the AD process exceeds this threshold (pH value), it is so late to take a corrective action. 

However, if the pH variation is detected early the process can be controlled with the addition of chemicals such as: 

sodium carbonate, sodium bicarbonate, gaseous ammonia, ammonium hydroxide and sodium hydroxide [26]. In the 

case of the variation of the volumetric flow rate of substrates (Qin), it should be noted that in biogas plants this is a 

parameter easily adjustable because it has direct control over the amount of substrate input. However, the variation 

of Qin should be done considering the dilution rate (D), which is presented in (6). This parameter relates Qin with the 

liquid volume of the reactor (Vliq). 

𝐷 =
𝑄𝑖𝑛 

𝑉𝑙𝑖𝑞
 [𝑑𝑎𝑦−1]      (6) 

As an operating condition, D must be less than the growth rate of the species that grows slower. This is necessary 

to guarantee that microbial population has enough time to multiply inside the reactor (digester). If this condition is 

not accomplished, the AD process will be inhibited by lack of microorganisms [7]. The variation of Qin for different 

volumes of the reactor is shown in Figure 12, where the composition of the input residue and the other parameters of 

the base case were kept constant. From these results, it is possible to determine the maximum dilution rate that can 

be allowed before the system is inhibited. Using the Matlab® routine developed by authors, the maximum calculated 

dilution rate was D=0,21 [day-1] and the maximum Qin reaches 730 [m3/day], generating a maximum output of 3394 

[kg CH4/day]. 

 
Figure 12. Methane production with respect to Qin and Vliq 

It is important to note that the temperature affects directly the speed of the biochemical reactions and the growth 

rate of the microorganisms [19]. Therefore, for a correct implementation of the ADM1 is necessary to adjust the input 

parameters according to the operating temperature. However, there are few data in the literature that allow to relate 

the kinetic rates of biochemical processes with changes in temperature. For this reason, in this work it was decided 

not to vary these parameters, leaving them equal to the base case in all simulations.  

On the other hand, Figure. 13 presents the complete gas production (CH4, CO2 and H2), including water vapor 

(H2O), obtained when temperature changes from 10°C to 80°C. In this case, to estimate how the ADM1 behaves at 

different temperatures, the input variables remain fixed using the base case values [18]. Figure 13 shows that the 

highest methane production in volumetric units [m3/day] is produced when the temperature is 40 °C. In addition, the 

total production of biogas (qgas_total) increases as the temperature increases. However, the quality of the biogas, in 
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terms of methane content, decreases while the water vapor and the amount of carbon dioxide and dihydrogen increase 

[27]. When the temperature reaches 72 °C the conditions within reactor become very aggressive for microbial popu-

lations and gas production drops abruptly. 

 
Figure 13. Methane production with respect to temperature 

4. Discussion  

From the sensitivity analysis, the variables that proved to have a greater impact on methane production are the 

concentrations of proteins (Xpr), lipids (Xli) and carbohydrates (Xch) which depend partially from the input waste 

characteristics. However, simulations of the ADM1 show that care must be taken with the entry of the input variables 

due to very high values can overload the reactor.  In addition, as is shown in the Figure 14 it is necessary to maintain 
the accumulation of acids under control because these concentrations may decrease the pH (under 6,5) and inhibit the 

AD process due to the interruption of the methanogens [19], [26]. For this reason, the pH must be continually moni-

tored because it has a remarkable impact on the stability of the AD process by regulating the coexistence of microbial 

populations. It is important to note, that when the concentration of proteins and amino acids is very high, a toxic 

compound as ammonium may appear [5].  

 

Figure 14. pH value with respect to Xch, Xpr and Xli 

Another variable that demonstrated a representative impact on methane production was the temperature, which is 

considered by many authors as the most important variable to control the AD process. The temperature must be 

maintained at a constant value (fluctuations below 2 °C/day) to avoid the death of microorganisms [27]. On the other 

hand, although the increase of the temperature reduces the retention time and provides better degradative behavior 

[28], this implies a more robust control, an increase in the energy consumption, an increase in the concentrations of 

organic acids (which decrease the pH) and makes the process more vulnerable to inhibitors such as ammonia [27]. 

These factors collectively may decrease the efficiency of the AD process. 

5. Conclusions 

In this paper a sensitivity analysis of the anaerobic digestion model ADM1 including its 26 variables of the liquid 

phase and three variables of the gas phase (CH4, CO2 and H2) was presented. Input waste variables were varied 

individually using a Matlab® Simulink routine implemented by authors. Simulations show that most critical variables 
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involved in the methane production are temperature (T), volumetric flow rate of substrates (Qin) and the concentra-

tions of proteins (Xpr), lipids (Xli) and carbohydrates (Xch). For the analyzed cases, Xli and Xch increase the production 

of methane by more than 500%, so in these variables should focus the characterization of waste input when the ADM1 

is implemented. 

The ADM1 facilitates the design of new biogas plants and allows validating hypothesis and optimizing designs. 

An example of the model versatility was showed in the Figure 12, where the maximum Qin to obtain the greatest 

amount of methane for the base case was calculated. Finally, inhibition due to reduction of pH and high ammonia 

concentration present as variables in the ADM1 establish operating limits for the process. These parameters are used 

to develop control strategies that maximize the biogas production. Furthermore, simulations show that the input con-
centrations should be carefully estimated because oversizing of these can cause erroneous results. 

Finally, it is important to mention that some limitations during the development of this work were the lack of real 

data and the use of a steady state system for all simulations. In addition, to present the sensitivity analysis of ADM1 

it was decided change the value of the input concentrations one at a time maintaining the other parameters equal to 

the base case. However, in the case of modifying several parameters at a time, the results are unknown. Future studies 

will be focused in analyze this topic. 
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